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Abstract—This paper deals with a finite-set model pre-
dictive current control in synchronous motor drives. The
peculiarity is that it does not require the knowledge of any
motor parameter. The inherent advantage of this method is
that the control is self-adapting to any synchronous motor,
thus easing the matching between motor and inverter com-
ing from different manufacturers. Overcoming the flaws of
the existing look-up table based parameter-free techniques,
the paper elaborates the past current measurements by
a recursive least square algorithm to estimate the future
behaviour of the current in response to a finite-set of
voltage vectors. The paper goes through the mathematical
basis of the algorithm till a complete set of experiments that
prove the feasibility and the advantages of the proposed
technique.

Index Terms—Model predictive control (MPC),
parameter-free, recursive least square (RLS), synchronous
motor, PMSM, IPM.

I. INTRODUCTION

Model Predictive Control (MPC) represents a promising
architecture in electric drives applications, because of high
dynamic performances, relatively easy tuning and possibility
of including constrains in the problem resolution [1], [2]. The
higher computational cost with the respect to PI controllers
have represented a critical disadvantage in real-time imple-
mentation, as electric drives. However, nowadays fast proces-
sors and new platforms hardware, e.g. DSP-FPGA solutions,
are available, thus interest in MPC is further increased [1].

The MPC principle consists into predicting the system
dynamic in a future time window and choosing the optimal
control input on the basis of a functional cost. Various aspects
concerning the optimal functioning of the motor drive can be
considered, such as the reduction of common-mode voltage
[3], field-weakening operations of interior permanent magnet
motors [4], thermal stress of the inverter [5] or even special
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machines, such as dual three-phase motors [6]. Furthermore,
an integral action can be included in MPC algorithms such as
in [7], [8]. There are mainly two approaches to MPC problem
formulation based on the input voltage to be considered.
The first group considers a continuous control signal to be
generated by means of a modulator. The second group exploits
the discrete nature of inverters, thus reducing the number of
possible control actions. This method is named finite-set MPC
and it is considered in this work. A detailed discussion about
the differences between the two approaches is reported in
[1]. The finite-set policy has been largely investigated in both
electric motor and power converter control. A relatively low
computational burden is required when inverters have a low
number of levels, e.g. two levels, and short prediction horizons
are chosen.

In general, systems dynamics prediction require an internal
model of the specific process. Focusing on synchronous mo-
tors, the voltage balance equations in the dq reference frame
is generally adopted. The electric parameters of the motor
must be known, e.g. stator resistance, apparent and differential
inductances. However, considering for instance multi-purpose
drives applications, motor parameters are not always available.
This could be the case of motor and inverter produced by
different companies. In this case, only nominal motor data are
given, which are affected at least by production variability. It is
worth noticing also that both stator resistance and inductance
parameters depends on the operating conditions of the motor,
i.e. temperature and magnetic saturation, respectively [9], [10].

The most common countermeasures rely on ad-hoc self-
commissioning procedures which are carried out during motor
installation or production. Scientific literature is vast in this
field [11]–[13]. Another practical approach is to combine
already known information with online estimation of the pa-
rameters. For instance, when nominal parameters are provided,
different observers can be implemented to adapt parameters
value in the whole operating region [14]–[17].

An interesting solution is reported in [18], where the in-
ductance variation is nested in the MPC formulation, provid-
ing also an integral-like action on the current tracking. The
drawback is that the current prediction error is ascribed to
the inductance variation, without considering the resistance
and permanent magnet flux linkages variations and with the
inverter non idealities perfectly compensated.

A new paradigm in the predictive control research is to
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completely skip the motor parameters knowledge, resorting to
a motor parameter-free approach to carry out the current pre-
diction. This eases the matching between motor and inverter,
useful in case of different manufacturers.

Parameter-free predictive current control is generally based
on a finite-set voltage vectors. The first work in this field,
[19], adopted look-up tables (LUTs) for storing the current
variations related to each of the eight base voltage vectors.
This information is used to predict the best voltage vector to
be applied, according to a predetermined cost function. The
method suffered of a stagnation problem, due to the fact that
if a voltage vector is not applied for many consecutive time
steps, the stored information regarding the related current vari-
ation becomes obsolete. Two methods have been proposed to
partially solve the stagnation problem so far. A direct method,
proposed in [20], consists in modifying the cost function to
force arbitrarily the application of voltage vectors not applied
for long time. Of course, the arbitrary modification of the
cost function acts as a disturbance in pursuing the desired
control target. Conversely, indirect method have been proposed
in [21], [22] to avoid the modification of the cost function.
The LUTs update is carried out by reconstructing the current
variations by specific mathematical relationships among the
inverter voltage vectors at the cost of an increased complexity
of the control algorithm. The information obsolescence is
emphasised by both the fast changing of the operating point
and the motor speed.

The research described in this paper is still around a
parameter-free finite-set MPC current controller, but the prob-
lem of stagnation is definitely overcome by a new approach to
the current prediction. To this aim, the model for the current
prediction is derived by a particular recasting of the standard
dq voltage equation.

The proposed method requires four coefficients, that are
estimated by taking advantage of the information nested in the
past measured current variations induced by known voltage
vectors. A Recursive Least Squares (RLS) algorithm carries
out the task of adapting the model parameters runtime. The
sensitivity of the current prediction on both the operating point
and the speed is greatly reduced.

The paper is organised as follows. Sect. II describes the
recasting of the standard motor dq voltage balance equations.
Sect. II-A reports the application of the RLS algorithm with
some design hints. Sect. III presents the complete motor
parameter-free finite-set MPC, whereas Sect. IV details the
experimental tests and compares them with those of other
MPC algorithms. Conclusions are reported in Sect. V.

II. THEORY OF OPERATION

A finite-set MPC current controller requires a model of the
current behaviour to predict synchronous motors dynamic. In
order to design a finite-set MPC scheme that does not need any
motor information, all the parameters used in the prediction
phase have to be on-line identified.

To ease the mathematical representation, only the d-axis
equation of a synchronous motor is considered. Equation of

the q-axis dynamic is identical and lead to similar results, as
summarised at the end of this Section.

ud = Rid +
dλd(id, iq)

dt
− ωeλq(id, iq)

= Rid + ld(id, iq)
did
dt
− ωeλq(id, iq)

(1)

where ud and id are the d-axis voltage and current, respec-
tively, iq is the q-axis current, R is the stator resistance,
λd(id, iq) and λq(id, iq) are the d- and q-axis flux linkages,
respectively, ld(id, iq) , ∂λd(id, iq)/∂id is the differential d-
axis inductance and ωe is the motor electric speed obtained
multiplying the mechanical speed by the pole pairs number.
The magnetic cross-coupling between d and q axes is ne-
glected.

The motor current dynamic is commonly described on the
basis of the discretized voltage balance in the dq synchronous
reference frame. In turn, the discretisation of the current
derivative yield did/dt ≈ ∆id(k)/Tc = (id(k)−id(k−1))/Tc,
where Tc is the control sampling time. The last of (1) can be
discretised at time kTc as follows:

∆id(k)

Tc
= −Rid(k)− λq(k)ωe(k)

ld(k)
+
ud(k)

ld(k)
(2)

where λq(k) = λq(id(k), iq(k)) and ld(k) = ld(id(k), iq(k)).
Equivalent equations can be written also for the q-axis. To
ease the mathematical representation the time step dependence
(k) is omitted in the rest of the paper, whereas preference is
given to highlight the dependence of the motor parameters and
quantities on the dq currents.

The d-axis current increment (2) can be represented as the
sum of two terms. The first one is obtained by applying a null
voltage to the system:

δi0d(id, iq, ωe) = − RTc
ld(id, iq)

id + Tcωe
λq(id, iq)

ld(id, iq)
(3)

The second term is obtained by the application of one of the
other six (active) voltage vectors of the inverter:

δifd(id, iq, ϑe, v) =
Tc

ld(id, iq)

2Udc

3
cos
(

(v − 1)
π

3
− ϑe

)
(4)

where ϑe is the electric angle, Udc is the DC-bus voltage and
v ∈ U , [1 . . . 6] is the index of the applied voltage vector.
The overall current variation in (2) can be expressed as:

∆id(k) = δi0d(id, iq, ωe) + δifd(id, iq, ϑe, v) (5)

By putting

p1,d , δi0d(id, iq, ωe); p2,d ,
Tc

ld(id, iq)

2Udc

3
(6)

the d-axis current variation (5) can be rearranged as follows:

∆ivd =
[
1, cos

(
(v − 1)

π

3
− ϑe

)] [
p1,d, p2,d

]T
= φv pd (7)

The vector of coefficients pd is defined as [p1,d, p2,d]T . It
is worth pointing out that the regressors φv change with the
considered voltage vector v. Finally, the current variations can
be calculated by means of (7) without prior knowledge of the
motor parameters, provided that the elements of pd are known.
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Similarly, the q-axis current variations are calculated as:

δi0q(id, iq, ωe) = − RTc
lq(id, iq)

iq − Tcωe
λd(id, iq)

lq(id, iq)
(8)

δifq (id, iq, ϑe, v) =
Tc

lq(id, iq)

2Udc

3
sin
(

(v − 1)
π

3
− ϑe

)
(9)

where lq(id, iq) , ∂λq(id, iq)/∂iq is the q-axis differential in-
ductance and λd(id, iq) is the d-axis flux linkage. An identical
approach is used to obtain the pq coefficients that describe the
q-axis current variations, i.e. ∆ivq = δi0q + δifq , leading to:

∆ivq =
[
1, sin

(
(v − 1)

π

3
− ϑe

)][
p1,q, p2,q

]T
= φv pq (10)

A. The Recursive Least Square Estimator

The elements of pd and pq have to be estimated online.
For the sake of brevity, only pd estimation is discussed in
this paper, bearing in mind that pq can be estimated using the
same approach. It is worth highlighting that pd is time variant.
In particular, p1,d depends both on the operating speed and
magnetic iron saturation, see (3), whereas p2,d depends only
on magnetic iron saturation, see (4).

The RLS technique is one of the most widespread method
for estimating parameters during normal operations of a pro-
cess [23]. It is particularly suited for applications that require
adaptability to different working conditions. For these reasons
it was adopted for estimating p1,d and p2,d that are the working
point dependent coefficients.

The standard algorithm consists of a set of equations that
can be solved recursively:

G(k) = Q(k − 1)ΦT (k)(ΦQ(k − 1)ΦT (k) + fI)−1

p̂d(k) = p̂d(k − 1) + G(k) (y(k)−Φ(k)p̂d(k − 1)) (11)

Q(k) =
1

f
(Q(k − 1)−G(k)Φ(k)Q(k − 1))

The estimated parameter vector p̂d(k) is computed recursively
minimising the error between measured current variation
stored in y and the model presented in (7). The same set of
equations apply for the estimation of p̂q(k), too. Matrix G(k)
is the gain matrix and it weights the error between measure-
ments and estimations in the coefficients vector updates. The
regressors matrix Φ(k) = [φv(k), φv(k − 1), . . . ]T includes
all the regressors vectors φv related to the measured current
variations involved in the p̂d(k) estimation, i.e. the ones re-
lated to the measurements y(k) = [∆ivd(k), ∆ivd(k−1), . . . ]T.
Finally, Q(k) is the estimation error covariance matrix. A
forgetting factor f is also introduced in (11) to properly weight
the old data in the estimation, and its value determination is
discussed in Sect. IV-B.

Being two the number of elements in p̂d(k), the vector y(k)
should have at least size 2×1 (and Φ(k), accordingly, at least
size 2 × 2). In other words, at least two current variations
measurements are requested in (11).

There are several possibility to select the measurements
y(k). A first solution consists of using the last two measured
current variations, i.e. ∆ivd(k− 1) and ∆ivd(k), independently
from the voltages applied in the considered control periods. A

k − 1k − 2

∆id(k)

k − 1

k −M

∆id(k − 1)

t t

MTc

u∗
d(k − 1) 6= u∗

d(k − 2)

Case II:

u∗
d(k − 1) = u∗

d(k − 2) = ... 6= u∗
d(k −M − 1)

Case I:

2Tc

k

i

∆id(k −M)

k

∆id(k)i

Fig. 1. Different cases evaluation for the regressors vector φ calculation.

(11)

p̂d

(12)

z−1

ivd(k)
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y(k) Φ(k)

z−(M+1)

z−2

fQ(0)

v(k + 1)
(13)-(15)

ϑe(k)

z−M

Fig. 2. Implementation of the RLS algorithm for estimating p̂d. The
same applies for p̂q estimation.

situation that may occur is when the same voltage vector is ap-
plied in two (or more) consecutive time steps. The RLS might
turn out to be an ill-conditioned problem, and unexpected
results could be obtained. In turn, it is difficult to estimate
two different parameters from very similar measurements.

Another solution is to exploit the last measured current
variation ∆ivd(k), whereas the second variation ∆ivd(k −M)
is measured M time instants before. Therefore, the vector of
measurements in (11) is defined as:

y(k) = [∆ivd(k), ∆ivd(k −M)] (12)

The value of M is equal to the number of time steps from the
application of a voltage vector different from the one applied
at the beginning of (k − 1). This corresponds to Case I of
Fig. 1. For instance, the same voltage vector can be applied for
M consecutive time steps. Thus, the previous voltage vector
different respect to the one applied at (k− 1) can be found at
(k −M − 1).

Adopting the second strategy, the RLS algorithm works
within a variable length time window. The minimum length
is equal to two, as shown in the Case II of Fig. 1. It happens
when two different voltages are applied in two consecutive
time steps. The last applied voltage vector gives:

φv(k) =
[
1, cos

(
(v(k − 1)− 1)

π

3
− ϑe(k)

)]
(13)

whereas the last different voltage vector v(k−M−1) returns:

φv(k−M) =
[
1, cos

(
(v(k−M − 1)− 1)

π

3
−ϑe(k−M)

)]
(14)

so that the regressors vector actually used in (11) is:

Φ(k) = [φv(k), φv(k −M)] (15)

The outlined algorithm is summarised in the block schematic
of Fig. 2.

In steady state conditions, the estimated p̂d(k) values are
not influenced by the time window length. The free response
(3) and the amplitude of(4) are constant when id, iq and ωe
are constant.
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PMAREL

Fig. 3. Scheme of the proposed predictive current control algorithm. The
state of the switch SW determines either current (SW = 1) or speed
(SW = 2) control mode.

The estimation of p̂d(k) is critical during transients, in
particular when Case I of Fig.1 occurs. The old measurement
∆id(k −M) carries information of the system in a previous
operating point. Therefore, an error on the coefficients p̂d

estimation occurs. It is hard to draw a theoretical analysis
on this side effect, since many different cases can happen.
Therefore, this aspect is discussed by means of simulations and
experiments in Sec. IV. Furthermore, it is expected that the
choice of the forgetting factor f affects the transient behaviour
of the RLS algorithm.

III. MOTOR PARAMETER-FREE PREDICTIVE CONTROL
ALGORITHM

The aim of this section is to show how the current predic-
tions can be calculated without the knowledge of the motor
parameters. The d-axis current variation can be obtained by
(7) using p̂d, which can be calculated as in (11), instead of
pd. The q-axis current variation can be obtained using the
coefficients p̂q in (10). The optimal voltage vector u to be
applied at time k + 1 is obtained by minimising the error

e(k) = i∗ − î(k + 2) (16)

which corresponds to the following minimisation problem

v(k + 1) = min
v∈U

eT (k) · e(k) (17)

where i∗ is the vector current references at time step (k + 1)
and î(k + 2) is the vector of the current estimates. In this
work, the prediction horizon is set at 2 to compensate for the
computation delay in the digital implementation of the finite-
set model predictive control algorithm.

The first step to solve the problem in (17) is computing the
current estimate at time (k + 1). The voltage vector u(k) is
known and î(k + 1) can be calculated applying (7) just once
for each of the dq currents.

The second step is to calculate the current estimates at time
(k + 2). Since the voltage vector has not been decided yet,
it is necessary to evaluate the current prediction for all the
voltage vectors in the set U . The current estimates î(k+2) can
be calculated by applying (7) for each of the voltage vectors
in U . The solution that satisfies the problem in (17) is thus
selected and the voltage vector reference u(k+ 1) is obtained
accordingly. In other words, the output of the problem (17) is
the index v(k + 1), i.e. the index of the voltage vector to be
applied at time instant (k + 1).
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Fig. 4. PMAREL flux current characteristic.

TABLE I
PARAMETERS OF THE MOTOR UNDER TEST

Motor Data Symbol Values

Pole pairs p 2
Phase resistance R 4.6 Ω
d-axis inductance (unsaturated) Ld 0.160 H
q-axis inductance (unsaturated) Lq 0.450 H
Permanent Magnet flux-linkage Λpm 0.12 V s
Nominal current IN 6 A
Nominal speed ΩN 700 rpm

It is worth noting that (7) requires the electrical position ϑe.
Since the voltage reference is actually applied at time (k+1),
it is correct to use the electrical position at time (k + 1).
However, ϑe(k + 1) is unknown. It is possible to estimate its
value by imposing that the speed variation during one time
step Tc is negligible. Therefore, the position ϑe(k + 1) can
be estimated assuming a constant speed within the prediction
horizon, i.e. using a linear extrapolation:

ϑ̂e(k + 1) = ϑe(k) + ωe(k)Tc (18)

The scheme of the proposed motor parameter-free predictive
current control is summarised in Fig. 3 . The updating logic
for the value of M is quite simple: the condition v(k − 1) 6=
v(k−M) must always be satisfied and M must be as low as
possible. It is straightforward that the minimum value of M
is 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed control scheme has been implemented by
means of a dSPACE MicroLabBox board. The rig layout
consists of two motors mechanically coupled. The motor under
test is a permanent magnet assisted reluctance (PMAREL)
synchronous motor. A second motor is mechanically coupled
to the PMAREL motor and acts as a programmable load.
Motor parameters and both the measured d-q flux-current
curves are provided in TABLE I and Fig. 4, respectively. All
the tests were carried out with a constant DC bus of 300 V.

The currents responses in the following results are reported
in p.u.. Where not specified, the normalisation quantities cor-
respond to the maximum torque-per-ampere (MTPA) operating
point at nominal current, i.e. (id, iq) = [−4.42 A, 4.05 A]. The
speed results are also normalised with respect to the nominal
speed value.
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Fig. 5. d-axis covariance Q and current at the startup.

A. Initialisation of the RLS algorithm

At the startup, the RLS algorithm in (11) is initialised with
a null estimated coefficient vector, i.e. p̂d(0) = [0; 0], and an
identity covariance matrix Q(0). This is a common solution
when a priori information are not available [23].

Fig. 5 (left) reports the evolution of the covariance ma-
trix Q elements at the startup. The random initialisation of
the covariance matrix does not influence significantly the
current transients, as shown in Fig. 5 (right). It is worth
noting that the application of an inappropriate voltage vector
following a wrong current prediction has limited effects on
the current transient, both in time and amplitude. Actually,
the RLS algorithm modifies the covariance matrix to correct
the prediction. The availability in few control periods Tc
of a reliable prediction assures quite limited effects on the
controlled current at startup. Anyway, the amplitude on the
current transients is strictly related to the ratio between the
bus voltage and the inductances of the motor, as inferable
from (4). The higher the ratio, the smaller the control period
required to get satisfactory performances.

As a general remark, large inductances are quite normal in
synchronous motors with dominant reluctance torque compo-
nent as in the present case. Nevertheless, there can be a large
variability in the inductance value for other motor topologies.
As one can observe from (11), the updating of the covariance
matrix Q(k) is influenced only by the regressor vector Φ and
the forgetting factor f and not by motor parameters. After few
control periods one can assume that the prediction algorithm
works correctly. The dynamics of the current control are still
influenced by the motor inductances, but their values are not
relevant for a successful motor startup.

B. Tuning of the forgetting factor

The only parameter that has to be tuned in the proposed
scheme is the forgetting factor f in (11). The PMAREL motor
is dragged at its nominal speed ΩN by the load motor. The
switch SW in Fig. 3 is in the state 1. Three current steps, each
with a different value of forgetting factor f , are performed on
the d-axis. The results are reported in Fig. 6a. Similar results
can be obtained on the q-axis.

The coefficients evolution during the current steps are
reported in Fig. 6b, Fig. 6c and Fig. 6d. The coefficients values
were normalised with respect to the nominal current IN . It is
worth noting that in Fig. 6 the coefficients do not start from
zero since the recording started when the motor was already

in the steady state condition. For the sake of showing the
complete transient of the coefficients, a longer time window
was used compared to the one in Fig. 6a.

The forgetting factor value influences directly the prompt-
ness of the coefficients pd and pq estimation. It can be noticed
from in Fig. 6b that the higher the value of f , the slower
the estimation of p2,d. This is an intrinsic feature of the
RLS algorithm in (11): a value of f close to one means
that the oldest measurements are equally weighted to estimate
the actual value of the coefficients. On the contrary, smaller
values of f force the RLS algorithm to consider only the latest
measurements, but increasing the value of the covariance Q
as inferable from (11).

The delay in the case of f = 0.98 does not affect signifi-
cantly the d-axis current dynamics reported in 6a. This is due
to the fact that the differential inductance ld does not change
considerably during the current step (see (4)).

An interesting result of the test in Fig. 6 is obtained by
observing p̂1,q in Fig. 6d. Before the current step, i.e. at zero
dq-axes currents, p1,d is null, while p1,q is not null. This is
due to the back-electromotive force induced by the permanent
magnets as inferable from (8), since λd(0, 0) = Λpm as
highlighted in Fig. 4. As a final remark, the data collected
during the current step have shown that the current prediction
error is not significantly affected by the choice of the forgetting
factor, at least within the normal range adopted in RLS
algorithms.

C. Influence of speed on p̂d and p̂q estimation

It is worth recalling that parameters p1,q and p1,d are also
strongly influenced by the operating speed as inferable from
(3) and (8), respectively. The PMAREL motor speed is con-
trolled by means of a PI speed regulator, which corresponds
to the switch position SW = 2 in Fig. 3.

A speed ramp transient is commanded at no load condition
from zero till the nominal speed. The results are reported in
Fig. 7. The d-axis coefficient p1,d increases linearly with the
speed because of the motional term in (3). The coefficient
p1,q increases as well, but with a rather different slope. It
is quite straight from (8) that the current variation δi0q value
depends on the differential inductance lq and the d-axis flux
λd. However, lq is considerably higher than ld and thus the
slope of the current variation is smaller. A higher slope of
the coefficient p1,q is obtained by increasing the permanent
magnet flux linkage, such as the case of interior permanent
magnet motors. The experiment has also revealed that a speed
variation increases the noise of the current prediction error, but
the compensation given by (18) assures that the error remains
within a range of ±1% of the rated current.

D. Influence of current on p̂d and p̂q estimation

In order to show the load influence on the coefficients p̂d

and p̂q estimation, a q-axis current ramp test was carried out.
The result is reported in Fig. 8. The speed was maintained by
the load motor, and the motor under test was control in torque
mode by selecting SW = 1 in Fig. 3.
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The coefficient p̂2,q estimation is reported in Fig. 8b and
it allows to draw interesting considerations. Its value changes
with the current, that is the terms in (9) are changing with
the load. Therefore, the value of p̂2,q is strongly related to the
value of the differential inductance lq . A visual comparison
between the coefficient p̂2,q and the parameter lq in Fig. 8b
and 8c, respectively, confirms this relationship.

In case of unknown motor applied to the drive, it is possible
to find out a magnetic anisotropy by simply observing the
values of p̂2,d and p̂2,q . Different magnetic characteristics im-
ply different inductances and thus different coefficients. This
feature of the proposed algorithm goes toward the evolution
of plug-and-play drives at which this paper aims.

The experiment led also to the conclusion that the current
prediction errors remain negligible because the RLS algorithm
is able to track efficiently the variation of the differential
inductance due to the moving working point (see Fig. 8).

E. Comparison between predictive control algorithms
For the sake of generality, the proposed algorithm is com-

pared with other two different predictive control algorithms.
It was recently proposed a new control paradigm including
the model-free concept [19]–[22]. The technique proposed in
this paper is inherently close to the model-free paradigm and
the comparison between them is proposed. In particular, the
technique proposed in [21] was used as term of comparison.
Furthermore, the results of the same tests obtained with a
model-based MPC controller are reported, too. Differential
inductances and motor fluxes are not constant in the model,
such as in (2), as proved by the magnetic fluxes curves
in Fig. 4. The implemented model-based MPC featured an
interpolation algorithm to obtain the correct magnetic fluxes
based on the dq-axes currents. The stator resistance variation
is neglected in the implementation.

A load step test was carried out at different speeds. The
motor under test was controlled in speed control mode, i.e.
SW = 2 in Fig. 3. The load reference is thus set by the
PI speed regulator and the current references are obtained
by means of the MTPA curve. Two different speed values
were considered aiming at showing the performances of the
proposed algorithm along the whole nominal speed range of
the motor under test.

A high speed test was carried out by maintaining the
nominal speed. The nominal load was applied step like and
the results of speed and currents measurements are reported
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Fig. 9. Comparison between finite-set current controllers at the nominal
point.

in Fig. 9a and 9b, respectively. It is known from literature
[21] that the model-free solution reduces its performances for
increasing speed and load. The prediction error is calculated
by the difference between the predicted and measured currents
and the results are reported in Fig. 9d and Fig. 9e for d- and q-
axes, respectively. The improvements in the current prediction
of the proposed technique respect to the model-free ones are
quite relevant. Finally, the prediction errors of the proposed
algorithm are comparable with the ones obtained by the model-
based MPC solution. The results are surprisingly quite similar,
even though the latter solution remains slightly superior.

Comparable results are obtained also at low speed (Fig. 10),
where the model-free solution of [21] is less affected by the
speed-dependent terms, but it is still dependent on the load.
The prediction error results of Fig. 10d and 10e confirms
the better accuracy of the proposed solution. Furthermore, the
results of the proposed solution are very close to the model-
based MPC ones.

In general, the proposed solution allows to sensibly improve
the performances of the model-free solution. This is due to the
filtering effect of the RLS algorithm in (11) which permits a
rather better current variation estimation. Under the light of
the results in Fig. 9 and 10, it is reasonable to say that a more
sophisticated estimation scheme, such as the RLS, justifies
the efforts of constructing a proper model of the system under
consideration. The key-point of the proposed technique is to
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Fig. 10. Comparison between finite-set current controllers at the 5%ΩN .

consider only the current variations and describe them by
means of an equivalent model using a description similar to
the free and forced response of the motor currents.

V. CONCLUSION

An adaptive finite-set MPC current regulator has been
proposed in this paper. No information about motor electric
parameters are required to control the synchronous motor
under test. The necessary information are obtained by means
of two recursive least square estimators, one for each axis.

The coefficients extrapolated using the recursive least square
algorithms are exploited in the prediction phase of the MPC
controller. Several tests are reported in order to highlight the
relationships between motor working conditions and estimated
parameters, in particular the influence of the working speed
and currents. The effects of the forgetting factor in the recur-
sive least square estimators are also discussed by means of
experiment.

The results of the proposed method improve sensibly the
performances of the model-free predictive control algorithm
presented in the scientific literature. Interesting benefits are
achieved in terms of prediction error and current tracking per-
formances. The price to pay is a more sophisticated solution,
which still does not require any information about the motor
parameters.

As a result of the proposed technique, future drives could
move towards a plug-and-play configuration. The results of the
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technique proposed in this paper show that the current tracking
performances are not significantly compromised. One of the
main advantages of the proposed technique is that complicated
self-commissioning procedures for parameter estimation may
be avoided, at least initially.
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