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ACTIVE SET COMPLEXITY OF THE AWAY–STEP FRANK–WOLFE ALGORITHM

IMMANUEL M. BOMZE∗, FRANCESCO RINALDI† , AND DAMIANO ZEFFIRO‡

Abstract. In this paper, we study active set identification results for the away-step Frank-Wolfe algorithm in different
settings. We first prove a local identification property that we apply, in combination with a convergence hypothesis, to
get an active set identification result. We then prove, in the nonconvex case, a novel O(1/

√

k) convergence rate result and
active set identification for different stepsizes (under suitable assumptions on the set of stationary points). By exploiting
those results, we also give explicit active set complexity bounds for both strongly convex and nonconvex objectives. While
we initially consider the probability simplex as feasible set, in the appendix we show how to adapt some of our results to
generic polytopes.
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1. Introduction. Identifying a surface containing a solution (and/or the support of sparse solu-
tions) represents a relevant task in optimization, since it allows to reduce the dimension of the problem
at handle and to apply a more sophisticated method in the end (see, e.g. [4, 6, 14, 15, 16, 20, 21, 22]).
This is the reason why, in the last decades, identification properties of optimization methods have been
the subject of extensive studies.

The Frank-Wolfe (FW) algorithm, first introduced in [17], is a classic first-order optimization method
that has recently re-gained popularity thanks to the way it can easily handle the structured constraints
appearing in many real-world applications. This method and its variants have been indeed applied in the
context of, e.g., submodular optimization problems [1], variational inference problems [26] and sparse
neural network training [18]. It is important to notice that the FW approach has a relevant drawback
with respect to other algorithms: even when dealing with the simplest polytopes, it cannot identify the
active set in finite time (see, e.g., [8]). Due to the renewed interest in the method, it has hence become a
relevant issue to determine whether some FW variants admit active set identification properties similar
to those of other first order methods. In this paper we focus on the away-step Frank-Wolfe (AFW)
method and analyze active set identification properties for problems of the form

min {f(x) | x ∈ ∆n−1} ,

where the objective f is a differentiable function with Lipschitz regular gradient and the feasible set

∆n−1 =

{

x ∈ R
n :

n
∑

i=1

xi = 1, x ≥ 0

}

is the probability simplex. We further extend some of the active set complexity results to general poly-
topes.

1.1. Contributions. It is a classic result that on polytopes and under strict complementarity
conditions the AFW with exact linesearch identifies the face containing the minimum in finite time
for strongly convex objectives [19]. More general active set identification properties for Frank-Wolfe
variants have recently been analyzed in [8], where the authors proved active set identification for se-
quences convergent to a stationary point, and AFW convergence to a stationary point for C2 objectives
with a finite number of stationary points and satisfying a technical convexity-concavity assumption
(this assumption is substantially a generalization of a property related to quadratic possibly indefinite
functions). The main contributions of this article with respect to [8] are twofold:
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• First, we give quantitative local and global active set identification complexity bounds under
suitable assumptions on the objective. The key element in the computation of those bounds is a
quantity that we call "active set radius". This radius determines a neighborhood of a stationary
point for which the AFW at each iteration identifies an active constraint (if there is any not
yet identified one). In particular, to get the active set complexity bound it is sufficient to know
how many iterations it takes for the AFW sequence to enter this neighborhood.

• Second, we analyze the identification properties of AFW without the technical convexity-
concavity C2 assumption used in [8] (we consider general nonconvex objectives with Lipschitz
gradient instead). More specifically, we prove active set identification under different conditions
on the stepsize and some additional hypotheses on the support of stationary points.

In order to prove our results, we consider stepsizes dependent on the Lipschitz constant of the gradient
(see, e.g., [2], [24] and references therein). By exploiting the affine invariance property of the AFW (see,
e.g., [25]), we also extend some of the results to generic polytopes. In our analysis we will see how the
AFW identification properties are related to the value of Lagrangian multipliers on stationary points.
This, to the best of our knowledge, is the first time that some active set complexity bounds are given
for a variant of the FW algorithm.

The paper is organized as follows: after presenting the AFW method and the setting in Section 2,
we study the local behaviour of this algorithm regarding the active set in Section 3. In Section 4 we
provide active set identification results in a quite general context, and apply these to the strongly convex
case for obtaining complexity bounds. Section 5 treats the nonconvex case, giving both global and local
active set complexity bounds. In the final Section 6 we draw some conclusions. To improve readability,
some technical details are deferred to an appendix.

1.2. Related work. In [9] the authors proved that the projected gradient method and other
converging sequential quadratic programming methods identify quasi-polyhedral faces under some non-
degeneracy conditions. In [10] those results were extended to the case of exposed faces in polyhedral
sets without the nondegeneracy assumptions. This extension is particularly relevant to our work since
the identification of exposed faces in polyhedral sets is the framework that we will use in studying the
AFW on polytopes. In [35] the results of [9] were generalized to certain nonpolyhedral surfaces called
"Cp identifiable" contained in the boundary of convex sets. A key insight in these early works was the
openness of a generalized normal cone defined for the identifiable surface containing a nondegenerate
stationary point. This openness guarantees that, in a neighborhood of the stationary point, the pro-
jection of the gradient identifies the related surface. It turns out that for linearly constrained sets the
generalized normal cone is related to positive Lagrangian multipliers on the stationary point.
A generalization of [9] to nonconvex sets was proved in [11], while an extension to nonsmooth objectives
was first proved in [23]. Active set identification results have also been proved for a variety of projected
gradient, proximal gradient and stochastic gradient related methods (see for instance [33] and references
therein).
Recently, explicit active set complexity bounds have been given for some of the methods listed above.
Bounds for proximal gradient and block coordinate descent method were analyzed in [31] and [30] under
strong convexity assumptions on the objective. A more systematic analysis covering many gradient re-
lated proximal methods (like, e.g., accelerated gradient, quasi Newton and stochastic gradient proximal
methods) was carried out in [33].
As for FW-like methods, in addition to the results in [19] and [8] discussed earlier, identification results
have been proved in [13] for fully corrective variants on the probability simplex. However, since fully
corrective variants require to compute the minimum of the objective on a given face at each iteration,
they are not suited for nonconvex problems.

2. Preliminaries. In the rest of this article f : ∆n−1 → R will be a function with gradient having
Lipschitz constant L and X ∗ will be the set of stationary points of f . The constant L will also be
used as Lipschitz constant for ∇f with respect to the norm ‖ · ‖1. This does not require any additional
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hypothesis on f since ‖ · ‖1 ≥ ‖ · ‖, so that

‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖ ≤ L‖x − y‖1

for every x, y ∈ ∆n−1.
For x ∈ R

n, X ⊂ R
n the function dist(x, X) will be the standard point set distance and for A ⊂ R

n the
function dist(A, X) will be the minimal distance between points in the sets:

dist(A, X) = inf
a∈A,x∈X

‖a − x‖ .

We define dist1 in the same way but with respect to ‖ · ‖1. We use the notation

supp(x) = {i ∈ [1 : n] | xi 6= 0}

for the support of a point x ∈ R
n.

Given a (convex and bounded) polytope P and a vector c we define the face of P exposed by c as

F(c) = argmax{c⊤x | x ∈ P } .

It follows from the definition that the face of P exposed by a linear function is always unique and
nonempty.
We now introduce the multiplier functions, which were recently used in [14] to define an active set
strategy for minimization over the probability simplex.
For every x ∈ ∆n−1, i ∈ [1 : n] the multiplier function λi : ∆n−1 → R is defined as

λi(x) = ∇f(x)⊤(ei − x),

or in vector form

λ(x) = ∇f(x) − x⊤∇f(x)e .

For every x ∈ X ∗ these functions coincide with the Lagrangian multipliers of the constraints xi ≥ 0.
For a sequence {ak}k∈N0

we will drop the subscript and write simply {ak} (unless of course the sequence
is defined on some other index set).
FW variants require a linear minimization oracle for the feasible set (the probability simplex in our
case):

LMO∆n−1
(r) ∈ argmin{x⊤r | x ∈ ∆n−1}.

Keeping in mind that
∆n−1 = conv({ei, i = 1, . . . , n}),

we can assume that LMO∆n−1
(r) always returns a vertex of the probability simplex, that is

LMO∆n−1
(r) = eı̂

with ı̂ ∈ argminiri.
Algorithm 1 is the classical FW method on the probability simplex. At each iteration, this first order

method generates a descent direction that points from the current iterate xk to a vertex sk minimizing
the scalar product with the gradient, and then moves along this search direction of a suitable stepsize
if stationarity conditions are not satisfied.

Algorithm 1 Frank–Wolfe method on the probability simplex
1. Initialize x0 ∈ ∆n−1, k := 0
2. Set sk := eı̂, with ı̂ ∈ argmini∇if(xk) and dFW

k := sk − xk

3. If xk is stationary, then STOP
4. Choose the step size αk ∈ (0, 1] with a suitable criterion
5. Update: xk+1 := xk + αkdFW

k

6. Set k := k + 1. Go to Step 2.
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It is well known [12, 34] that the method exhibits a zig zagging behaviour as the sequence of iterates
{xk} approaches a solution on the boundary of the feasible set. In particular, when this happens the
sequence {xk} converges slowly and, as we already mentioned, it does not identify the smallest face
containing the solution in finite time. Both of these issues are solved by the away-step variant of the
FW method, reported in Algorithm 2. The AFW at every iteration chooses between the classic FW
direction and the away-step direction dA

k calculated at Step 4. This away direction shifts weight away
from the worst vertex to the other vertices used to represent the iterate xk. Here the worst vertex
(among those having positive weight in the iterate representation) is the one with the greatest scalar
product with the gradient, or, equivalently, the one that maximizes the linear approximation of f given
by ∇f(xk). The stepsize upper bound αmax

k in Step 8 is the maximal possible for the away direction
given the boundary conditions. When the algorithm performs an away step, we have that either the
support of the current iterate stays the same or decreases of one (we get rid of the component whose
index is associated to the away direction in case αk = αmax

k ). On the other hand, when the algorithm
performs a Frank Wolfe step, only the vertex given by the LMO is eventually added to the support of
the current iterate. These two properties are fundamental for the active set identification of the AFW.

Algorithm 2 Away–step Frank–Wolfe on the probability simplex
1. Initialize x0 ∈ ∆n−1, k := 0
2. Set sk := eı̂, with ı̂ ∈ argmini∇if(xk) and dFW

k := sk − xk

3. If xk is stationary then STOP
4. Let vk := e̂, with ̂ ∈ argmaxj∈Sk

∇jf(xk), Sk := {j : (xk)j > 0} and dA
k := xk − vk

5. If −∇f(xk)⊤dFW
k ≥ −∇f(xk)⊤dA

k then
6. dk := dFW

k , and αmax
k := 1

7. else
8. dk := dA

k , and αmax
k := (xk)i/(1 − (xk)i)

9. End if
10. Choose the step size αk ∈ (0, αmax

k ] with a suitable criterion
11. Update: xk+1 := xk + αkdk

12. k := k + 1. Go to step 2.

In our analysis, we will sometimes require a lower bound on the step size which is always satisfied by
the exact linesearch and the Armijo rule for a proper choice of the parameters.

3. Local active set variables identification property of the AFW. In this section we prove
a rather technical proposition which is the key tool to give quantitative estimates for the active set
complexity. It states that when the sequence is close enough to a fixed stationary point at every step
the AFW identifies one variable violating the complementarity conditions with respect to the multiplier
functions on this stationary point (if it exists), and it sets the variable to 0 with an away step. The
main difficulty is giving a tight estimate for how close the sequence must be to a stationary point for
this identifying away step to take place.
A lower bound on the size of the nonmaximal away steps is needed in the following theorem, otherwise
of course the steps could be arbitrarily small and there could be no convergence at all.
Let {xk} be the sequence of points generated by the AFW. We further indicate with x∗ a fixed point
in X ∗, with the extended support

I = {i ∈ [1 : n] | λi(x
∗) = 0}

and with Ic = {1, ...n} \ I. Note that by complementary slackness, we have x∗
j = 0 for all j ∈ Ic.

Before proving the main theorem we need to prove the following lemma to bound the Lipschitz
constant of the multipliers on stationary points.

Lemma 3.1. Given h > 0, xk ∈ ∆n−1 such that ‖xk − x∗‖1 ≤ h let

Ok = {i ∈ Ic | (xk)i = 0}
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and assume that Ok 6= Ic. Let δk = maxi∈[1:n]\Ok
λi(x

∗). For every i ∈ {1, ..., n}:

(3.1) |λi(x
∗) − λi(xk)| ≤ h(L +

δk

2
) .

Proof. By considering the definition of λ(x), we can write

|λi(xk) − λi(x
∗)| = |∇f(xk)i − ∇f(x∗)i + ∇f(x∗)⊤(x∗ − xk) + (∇f(x∗) − ∇f(xk))⊤xk|

≤ |∇f(x∗)i − ∇f(xk)i + (∇f(xk) − ∇f(x∗))⊤xk| + |∇f(x∗)⊤(x∗ − xk)| .(3.2)

By taking into account the fact that xk ∈ ∆n−1 and gradient of f is Lipschitz continuous, we have

|∇f(xk)i − ∇f(x∗)i + (∇f(x∗) − ∇f(xk))⊤xk| = |(∇f(x∗) − ∇f(xk))⊤(xk − ei)|
≤ ‖∇f(x∗) − ∇f(xk)‖1‖xk − ei‖∞(3.3)

≤ Lh,

where the last inequality is justified by the Hölder inequality with exponents 1, ∞.
We now bound the second term in the right-hand side of (3.2). Let

uj = max{0, (x∗ − xk)j}, lj = max{0, −(x∗ − xk)j} .

We have
∑

j∈[1:n] x∗
j =

∑

j∈[1:n](xk)j = 1 since {x∗, xk} ⊂∈ ∆n−1, so that

∑

j∈[1:n]

(x∗ − xk)j =
∑

j∈[1:n]

(uj − lj) = 0 and hence
∑

j∈[1:n]

uj =
∑

i∈[1:n]

lj .

Moreover, h′ def

= 2
∑

j∈[1:n] uj = 2
∑

j∈[1:n] lj =
∑

j∈[1:n] uj + lj =
∑

j∈[1:n] |x∗
j − (xk)j | ≤ h, hence

h′/2 =
∑

j∈[1:n]

uj =
∑

j∈[1:n]

lj ≤ h/2 .

We can finally bound the second piece of (3.2), using uj = lj = 0 for all j ∈ Ok (because (xk)j = x∗
j = 0):

|∇f(x∗)⊤(x∗ − xk)| = |∇f(x∗)⊤k − ∇f(x∗)⊤l| ≤ h′

2
(∇f(x∗)M − ∇f(x∗)m)

≤ h

2
(∇f(x∗)M − ∇f(x∗)m),(3.4)

where ∇f(xk)M and ∇f(xk)m are respectively the maximum and minimum component of the gradient
in [1 : n] \ Ok.
Now, considering inequalities (3.2), (3.3) and (3.4), we can write

|λi(xk) − λi(x
∗)| ≤ Lh +

h

2
(∇f(x∗)M − ∇f(x∗)m).

By taking into account the definition of δk and the fact that λ(x∗)j ≥ 0 for all j, we can write

δk = max
i,j∈[1:n]\Ok

(∇f(x∗)i − ∇f(x∗)j) ≥ ∇f(x∗)M − ∇f(x∗)m.

We can finally write

|λi(xk) − λi(x
∗)| ≤ h(L +

δk

2
),

thus concluding the proof.
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We now show a few simple but important results that connect the multipliers and the directions selected
by the AFW algorithm. Notice that for a fixed xk the multipliers λi(xk) are the values of the linear
function x 7→ ∇f(xk)⊤x on the vertices of ∆n−1 (up to a constant), which in turn are the values
considered in the AFW to select the direction. This basic observation is essentially everything we need
for the next results.

Lemma 3.2. Let Sk = {i ∈ {1, ..., n} | (xk)i > 0}. Then
(a) If max{λi(xk) | i ∈ Sk} > max{−λi(xk) | i ∈ [1 : n]}, then the AFW performs an away step

with dk = dA
k = xk − eı̂ for some i ∈ argmax{λi(xk) | i ∈ Sk}.

(b) For every i ∈ [1 : n] \ Sk if λi(xk) > 0 then (xk+1)i = (xk)i = 0.

Proof. (a) Notice that since the vertices of the probability simplex are linearly independent for every
k the set of active atoms is necessarily Sk. In particular
dA

k ∈ argmax{−∇f(xk)⊤d) | d = xk − ei, i ∈ Sk} and this implies

(3.5) dA
k = xk − eı̂ for some ı̂ ∈ argmax{−∇f(xk)⊤(xk − ei) | i ∈ Sk} = argmax{λi(xk) | i ∈ Sk} .

As a consequence of (3.5)

(3.6) − ∇f(xk)⊤dA
k = max{−∇f(xk)⊤d | d = xk − ei, i ∈ Sk} = max{λi(xk) | i ∈ Sk} ,

where the second equality follows from λi(xk) = −∇f(xk)⊤d with d = xk − ei.
Analogously

(3.7)
−∇f(xk)⊤dFW

k = max{−∇f(xk)⊤d | d = ei − xk, i ∈ {1, ...n}} =

= max{−λi(xk) | i ∈ {1, ...n}} .

We can now prove that −∇f(xk)⊤dFW
k < −∇f(xk)⊤dA

k , so that the away direction is selected under
assumption (a):

− ∇f(xk)⊤dFW
k = max{−λi(xk) | i ∈ {1, ...n}} <

< max{λi(xk) | i ∈ Sk} = −∇f(xk)⊤dA
k ,

where we used (3.6) and (3.7) for the first and the second equality respectively, and the inequality is
true by hypothesis.
(b) By considering the fact that (xk)i = 0, we surely cannot choose the vertex ei to define the away-step
direction. Furthermore, since λ(xk)i = ∇f(xk)⊤(ei − xk) > 0, direction d = ei − xk cannot be chosen
as the Frank-Wolfe direction at step k as well. This guarantees that (xk+1)i = 0.

We can now prove the main theorem. The strategy will be to split [1 : n] in three subsets I, Jk ⊂ Ic

and Ok = Ic \Jk and use Lemma 3.1 to control the variation of the multiplier functions on each of these
three subsets. In the proof we examine two possible cases under the assumption of being close enough
to a stationary point. If Jk = ∅, which means that the current iteration of the AFW has identified the
support of the stationary point, then we will show that the AFW chooses a direction contained in the
support, so that also Jk+1 = ∅.
If Jk 6= ∅, we will show that in the neighborhood claimed by the theorem the largest multiplier in
absolute value is always positive, with index in Jk, and big enough, so that the corresponding away step
is maximal. This means that the AFW at the iteration k + 1 identifies a new active variable.

Theorem 3.1. If Ic is not the empty set, let us define

δmin = min{λi(x
∗) | i ∈ Ic} > 0, Jk = {i ∈ Ic | (xk)i > 0} .

Assume that for every k such that dk = dA
k the step size αk is either maximal with respect to the boundary

condition (that is αk = αmax
k ) or αk ≥ −∇f(xk)⊤dk

L‖dk‖2 . If ‖xk − x∗‖1 < δmin

δmin+2L = r∗ then

(3.8) |Jk+1| ≤ max{0, |Jk| − 1} .

The latter relation also holds in case Ic = ∅ whence we put r∗ = +∞.
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Proof. If Ic = ∅, or equivalently, if λ(x∗) = 0, then there is nothing to prove since Jk ⊂ Ic = ∅ ⇒
|Jk| = |Jk+1| = 0.
So assume Ic 6= ∅. By optimality conditions λi(x

∗) ≥ 0 for every i, so necessarily δmin > 0.
For every i ∈ [1 : n], by Lemma 3.1

(3.9)

λi(xk) ≥ λi(x
∗) − ‖xk − x∗‖1(L +

δk

2
) >

> λi(x
∗) − r∗(L +

δk

2
) = λi(x

∗) − δmin(L + δk

2 )

2L + δmin
.

We now distinguish two cases.
Case 1: |Jk| = 0. Then δk = 0 because Jk ∪ I = I and λi(x

∗) = 0 for every i ∈ I. Relation (3.9)
becomes

λi(xk) ≥ λi(x
∗) − δminL

2L + δmin
,

so that for every i ∈ Ic, since λi(x
∗) ≥ δmin, we have

(3.10) λi(xk) ≥ δmin − δminL

2L + δmin
> 0 .

This means that for every i ∈ Ic we have (xk)i = 0 by the Case 1 condition Jk = ∅ and λi(xk) > 0 by
(3.10). We can then apply part (b) of Lemma 3.2 and conclude (xk+1)i = 0 for every i ∈ Ic. Hence
Jk+1 = ∅ = Jk and Theorem 3.1 is proved in this case.
Case 2. |Jk| > 0. For every i ∈ argmax{λj(x∗) | j ∈ Jk}, we have

λi(x
∗) = max

j∈Jk

λj(x∗) = max
j∈Jk∪I

λj(x∗),

where we used the fact that λj(x∗) = 0 < λi(x
∗) for every j ∈ I. Then by the definition of δk, it follows

λi(x
∗) = δk.

Thus (3.9) implies

(3.11) λi(xk) > λi(x
∗) − δmin(L + δk

2 )

2L + δmin
= δk − δmin(L + δk

2 )

2L + δmin
,

where we used (3.9) in the inequality. But since δk ≥ δmin and the function y 7→ − y
2L+y is decreasing

in R>0 we have

(3.12) δk − δmin(L + δk

2 )

2L + δmin
≥ δk − δk(L + δk

2 )

2L + δk
=

δk

2
.

Concatenating (3.11) with (3.12), we finally obtain

(3.13) λi(xk) >
δk

2
.

We will now show that dk = xk − e̂ with ̂ ∈ Jk.
For every j ∈ I, since λj(x∗) = 0, again by Lemma 3.1, we have

(3.14)

|λj(xk)| = |λj(xk) − λj(x∗)| ≤ ‖xk − x∗‖1(L + δk/2) <

< r∗(L + δk/2) =
δmin(L + δk

2 )

2L + δmin
≤ δk/2,
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where we used ‖xk − x∗‖1 < r∗, which is true by definition, in the first inequality, and rearranged (3.12)
to get the last inequality. For every j ∈ Ic, by (3.9), we can write

λj(xk) > δmin − δmin(L + δk

2 )

2L + δmin
> −δk

2
.

Then using this together with (3.14) and (3.11), we get −λj(xk) < δk/2 < λh(xk) for every j ∈ [1 :
n], h ∈ argmax{λq(x∗) | q ∈ Jk}. So the hypothesis of Lemma 3.2 is satisfied and dk = dA

k = xk − e̂

with ̂ ∈ argmax{λj(xk) | j ∈ Sk}. We need to show ̂ ∈ Jk. But Sk ⊆ I ∪ Jk and by (3.14) if ̂ ∈ I then
λl(xk) < δk/2 < λj(xk) for every j ∈ argmax{λj(x∗) | j ∈ Jk}. If ̂ ∈ Ok then (xk)̂ = 0 and ̂ /∈ Sk.
Hence we can conclude argmax{λj(xk) | j ∈ Sk} ⊆ Jk and dk = xk − e̂ with ̂ ∈ Jk. In particular, by
(3.13) we get

(3.15) max{λj(xk) | j ∈ Jk} = λ̂(xk) >
δk

2
.

We now want to show that αk = αmax
k . Assume by contradiction αk < αmax. Then by the lower bound

on the stepsize and (3.13)

(3.16) αk ≥ −∇f(xk)⊤dk

L‖dk‖2
=

λi(xk)

L‖dk‖2
≥ δmin

2L‖dk‖2
,

where in the last inequality we used (3.15) together with δk ≥ δmin. Also, by Lemma 7.1

(3.17)

‖dk‖ = ‖e̂ − xk‖ ≤
√

2(e̂ − xk)̂ = −
√

2(dk)̂ ⇒ (dk)̂

‖dk‖2
≤ (dk)̂

‖dk‖
√

2
≤ −1/2

(xk)̂ = (xk − x∗)̂ ≤ ‖xk − x∗‖1

2
<

r∗
2

=
δmin

4L + 2δmin
.

Finally, combining (3.17) with (3.16)

(xk+1)̂ = (xk)̂ + (dk)̂αk <
r∗
2

− ‖dk‖2

2
αk ≤ r∗

2
− ‖dk‖2

2

δmin

2L‖dk‖2

=
δmin

4L + 2δmin
− δmin

4L
< 0,

where we used (3.16) to bound αk in the first inequality, (3.17) to bound (xk)̂ and
(dk)̂

‖dk‖2 . Hence

(xk+1)̂ < 0, contradiction.

4. Active set complexity bounds. Before giving the active set complexity bounds in several
settings it is important to clarify that by active set associated to a stationary point x∗ we do not mean
the set supp(x∗)c = {i ∈ [1 : n] | (x∗)i = 0}} but the set Ic(x∗) = {i ∈ [1 : n] | λi(x

∗) > 0}. In general
Ic(x∗) ⊂ supp(x∗)c by complementarity conditions, with

(4.1) supp(x∗)c = Ic(x∗) ⇔ complementarity conditions are strict in x∗.

The face F of ∆n−1 defined by the constraints with indices in Ic(x∗) still has a nice geometrical
interpretation: it is the face of ∆n−1 exposed by −∇f(x∗).
It is at this point natural to require that the sequence {xk} converges to a subset A of X ∗ for which Ic

is constant. This motivates the following definition:

Definition 4.1. A compact subset A of X ∗ is said to have the support identification property (SIP)
if there exists an index set Ic

A ⊂ [1 : n] such that

Ic(x) = Ic
A for all x ∈ A .
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The geometrical interpretation of the above definition is the following: for every point in the subset
A the negative gradient −∇f(x∗) exposes the same face. This is trivially true if A is a singleton,
and it is also true if for instance A is contained in the relative interior of a face of ∆n−1 and strict
complementarity conditions hold for every point in this face. We further define

δmin(A) = min{λi(x) | x ∈ A, i ∈ Ic
A} .

Notice that by the compactness of A we always have δmin(A) > 0 if A enjoys the SIP. We can finally
give a rigorous definition of what it means to solve the active set problem:

Definition 4.2. Consider an algorithm generating a sequence {xk} converging to a subset A of X ∗

enjoying the SIP. We will say that this algorithm solves the active set problem in M steps if (xk)i = 0
for every i ∈ Ic

A, k ≥ M .

We can now apply Theorem 3.1 to show that once a sequence is definitely close enough to a set enjoying
the SIP, the AFW identifies the active set in at most |Ic| steps. We first need to define a quantity that
we will use as a lower bound on the stepsizes:

(4.2) ᾱk = min

(

αmax
k ,

−∇f(xk)⊤dk

L‖dk‖2

)

,

Theorem 4.1. Let {xk} be a sequence generated by the AFW, with stepsize αk ≥ ᾱk. Let X ∗ be
the set of stationary points of a function f : ∆n−1 → R with ∇f having Lipschitz constant L. Assume
that there exists a compact subset A of X ∗ with the SIP such that xk → A. Then there exists M such
that

(xk)i = 0 for every k ≥ M and all i ∈ Ic
A .

Proof. Let Jk = {i ∈ Ic
A | (xk)i > 0} and choose k̄ such that dist1(xk, A) < δmin(A)

2L+δmin(A) = r∗ for

every k ≥ k̄. Then for every k ≥ k̄ there exists y∗ ∈ A with ‖xk − y∗‖1 < r∗. But since by hypothesis
for every y∗ ∈ A the support of the multiplier function is Ic

A with δmin(A) ≤ λi(y
∗) for every i ∈ Ic

A, we
can apply Theorem 3.1 with y∗ as fixed point and obtain that |Jk+1| ≤ max(0, |Jk| − 1). This means
that it takes at most |Jk̄| ≤ |Ic

A| steps for all the variables with indices in Ic
A to be 0. Again by (3.8),

we conclude by induction |Jk| = 0 for every k ≥ M = k̄ + |Ic
A|, since |Jk̄+|Ic

A
|| = 0.

The proof above also gives a relatively simple upper bound for the complexity of the active set problem:

Proposition 4.1. Under the assumptions of Theorem 4.1, the active set complexity is at most

min{k̄ ∈ N0 | dist1(xk, A) < r∗∀k ≥ k̄} + |Ic
A|,

where r∗ = δmin(A)
2L+δmin(A) .

We now report an explicit bound for the strongly convex case, and analyze in depth the nonconvex case
in Section 5. From strong convexity of f , it is easy to see that the following inequality holds for every
x on ∆n−1:

(4.3) f(x) ≥ f(x∗) +
u1

2
‖x − x∗‖2

1,

with u1 > 0.

Corollary 4.1. Let {xk} be the sequence of points generated by AFW with αk ≥ ᾱk. Assume that
f is strongly convex and let

(4.4) hk ≤ qkh0,

with q < 1 and hk = f(xk) − f∗, be the convergence rate related to AFW. Then the active set complexity
is

max

(

0,

⌈

ln(h0) − ln(u1r2
∗/2)

ln(1/q)

⌉)

+ |Ic| .
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Proof. Notice that by the linear convergence rate (4.4), and the fact that q < 1, the number of steps
needed to reach the condition

(4.5) hk ≤ u1

2
r2

∗

is at most

k̄ = max

(

0,

⌈

ln(h0) − ln(u1r2
∗/2)

ln(1/q)

⌉)

.

We claim that if condition (4.5) holds then it takes at most |Ic| steps for the sequence to be definitely
in the active set.
Indeed if qkh0 ≤ u1

2 r2
∗ then necessarily xk ∈ B1(x∗, r∗) by (4.3), and by monotonicity of the bound (4.4)

we then have xk+h ∈ B1(x∗, r∗) for every h ≥ 0. Once the sequence is definitely in B1(x∗, r∗) by (3.8)
it takes at most |Jk̄| ≤ |Ic| steps for all the variables with indices in Ic to be 0. To conclude, again by
(3.8) since |Jk̄+|Ic|| = 0 by induction |Jm| = 0 for every m ≥ k̄ + |Ic|.

Remark 4.1. We would like to notice that strong convexity of f in Corollary 4.1 might actually
be replaced by condition given in (4.3) if we assume the linear rate (4.4) (which may not hold in the
nonconvex case).

The proof of AFW active set complexity for generic polytopes in the strongly convex case requires
additional theoretical results and is presented in the appendix.

5. Active set complexity for nonconvex objectives. In this section, we focus on problems
with nonconvex objectives. We first give a more explicit convergence rate for AFW in the nonconvex
case, then we prove a general active set identification result for the method. Finally, we analyze both
local and global active set complexity bounds related to AFW. A fundamental element in our analysis
will be the FW gap function g : ∆n−1 → R defined as

g(x) = max
i∈[1:n]

{−λi(x)} .

We clearly have g(x) ≥ 0 for every x ∈ ∆n−1, with equality iff x is a stationary point. The reason why
this function is called FW gap is evident from the relation

g(xk) = −∇f(xk)⊤dFW
k .

This is a standard quantity appearing in the analysis of FW variants (see, e.g., [25] ) and is computed for
free at each iteration of a FW-like algorithm. In [27], the author uses the gap to analyze the convergence
rate of the classic FW algorithm in the nonconvex case. More specifically, a convergence rate of O( 1√

k
)

is proved for the minimal FW gap up to iteration k:

g∗
k = min

0≤i≤k−1
g(xi).

The results extend in a nice and straightforward way the ones reported in [29] for proving the convergence
of gradient methods in the nonconvex case. Inspired by the analysis of the AFW method for strongly
convex objectives reported in [32], we now study the AFW convergence rate in the nonconvex case with
respect to the sequence {g∗

k}.
In the rest of this section we assume that the AFW starts from a vertex of the probability simplex.

This is not a restrictive assumption. By exploiting affine invariance one can indeed apply the same
theorems to the AFW starting from en+1 for f̃ : ∆n → R satisfying

f̃(y) = f(y1e1 + ...ynen + yn+1p),

where p ∈ ∆n−1 is the desired starting point. We will discuss more in detail the invariance of the AFW
under affine transformations in Section 7.2.
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5.1. Global convergence. We start investigating the minimal FW gap, giving estimates of rates
of convergence:

Theorem 5.1. Let f∗ = minx∈∆n−1
f(x), and let {xk} be a sequence generated by the AFW algo-

rithm applied to f on ∆n−1, with x0 a vertex of ∆n−1. Assume that the stepsize αk is larger or equal
than ᾱk (as defined in (4.2)), and that

(5.1) f(xk) − f(xk + αkdk) ≥ ρᾱk

(

−∇f(xk)⊤dk

)

for some fixed ρ > 0. Then for every T ∈ N

g∗
T ≤ max

(

√

4L(f(x0) − f∗)

ρT
,

4(f(x0) − f∗)

T

)

.

Proof. Let rk = −∇f(xk) and gk = g(xk). We distinguish three cases.

Case 1. ᾱk < αmax
k . Then ᾱk = −∇f(xk)⊤dk

L‖dk‖2 and relation (5.1) becomes

f(xk) − f(xk + αkdk) ≥ ρᾱkr⊤
k dk =

ρ

L‖dk‖2 (r⊤
k dk)2

and consequently

(5.2) f(xk) − f(xk+1) ≥ ρ

L‖dk‖2
(r⊤

k dk)2 ≥ ρ

L‖dk‖2
g2

k ≥ ρg2
k

2L
,

where we used r⊤
k dk ≥ gk in the second inequality and ‖dk‖ ≤

√
2 in the third one.

As for Sk, by hypothesis we have either dk = dFW
k so that dk = ei − xk or dk = dA

k = xk − ei for some
i ∈ {1, ..., n}. In particular Sk+1 ⊆ Sk ∪ {i} so that |Sk+1| ≤ |Sk| + 1.
Case 2: αk = ᾱk = αmax

k = 1, dk = dFW
k . By the standard descent lemma [5, Proposition 6.1.2] applied

to f with center xk and α = 1

f(xk+1) = f(xk + dk) ≤ f(xk) + ∇f(xk)⊤dk +
L

2
‖dk‖2 .

Since by the Case 2 condition min
(

−∇f(xk)⊤dk

‖dk‖2L , 1
)

= αk = 1 we have

−∇f(xk)⊤dk

‖dk‖2L
≥ 1 , so − L‖dk‖2 ≥ ∇f(xk)⊤dk ,

hence we can write

(5.3) f(xk) − f(xk+1) ≥ −∇f(xk)⊤dk − L

2
‖dk‖2 ≥ −∇f(xk)⊤dk

2
≥ 1

2
gk .

Reasoning as in Case 1 we also have |Sk+1| ≤ |Sk| + 1.
Case 3: αk = ᾱk = αmax

k , dk = dA
k . Then dk = xk − ei for i ∈ Sk and

(xk+1)j = (1 + αk)(xk)j − αk(ei)j ,

with αk = αmax
k = (xk)i

1−(xk)i
. Therefore (xk+1)j = 0 for j ∈ {1, ..., n} \ Sk ∪ {i} and (xk+1)j 6= 0 for

j ∈ Sk \ {i}. In particular |Sk+1| = |Sk| − 1.

For i = 1, 2, 3 let now ni(T ) be the number of Case i steps done in the first T iterations of the
AFW. We have by induction on the recurrence relation we proved for |Sk|

(5.4) |ST | − |S0| ≤ n1(T ) + n2(T ) − n3(T ) ,



12 I. M. BOMZE, F. RINALDI, D. ZEFFIRO

for every T ∈ N.
Since n3(T ) = T − n1(T ) − n2(T ) from (5.4) we get

n1(T ) + n2(T ) ≥ T + |ST | − |S0|
2

≥ T

2
,

where we used |S0| = 1 ≤ |ST |. Let now CT
i be the set of iteration counters up to T − 1 corresponding

to Case i steps for i ∈ {1, 2, 3}, which satisfies |CT
i | = ni(T ). We have by summing (5.2) and (5.3) for

the indices in CT
1 and CT

2 respectively

(5.5)
∑

k∈CT
1

f(xk) − f(xk+1) +
∑

k∈CT
2

f(xk+1) − f(xk) ≥
∑

k∈CT
1

ρg2
k

2L
+
∑

k∈CT
2

1

2
gk .

We now lower bound the right-hand side of (5.5) in terms of g∗
T as follows:

∑

k∈CT
1

ρg2
k

2L
+
∑

k∈CT
2

1

2
gk ≥ |CT

1 | min
k∈CT

1

ρg2
k

2L
+ |CT

2 | min
k∈CT

2

gk

2
≥

≥(|CT
1 | + |CT

2 |) min

(

ρ(g∗
T )2

2L
,

g∗
T

2

)

= [n1(T ) + n2(T )] min

(

ρ
(g∗

T )2

2L
,

g∗
T

2

)

≥

≥T

2
min

(

ρ(g∗
T )2

2L
,

g∗
T

2

)

.

Since the left-hand side of (5.5) can clearly be upper bounded by f(x0) − f∗ we have

f(x0) − f∗ ≥ T

2
min

(

ρ(g∗
T )2

2L
,

g∗
T

2

)

.

To finish, if T
2 min

(

g∗

T

2 ,
ρ(g∗

T )2

2L

)

=
T g∗

T

4 we then have

(5.6) g∗
T ≤ 4(f(x0) − f∗)

T

and otherwise

(5.7) g∗
T ≤

√

4L(f(x0) − f∗)

ρT
.

The claim follows by taking the max in the system formed by (5.6) and (5.7).

When the stepsizes coincide with the lower bounds ᾱk or are obtained using exact linesearch, we have
the following corollary:

Corollary 5.1. Under the assumptions of Theorem 5.1, if αk = ᾱk or if αk is selected by exact
linesearch then for every T ∈ N

(5.8) g∗
T ≤ max

(
√

8L(f(x0) − f∗)

T
,

4(f(x0) − f∗)

T

)

.

Proof. By points 2 and 3 of Lemma 7.2, relation (5.1) is satisfied with ρ = 1
2 for both αk = ᾱk and

αk given by exact linesearch, and we also have αk ≥ ᾱk in both cases. The conclusion follows directly
from Theorem 5.1.
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5.2. A general active set identification result. We can now give a general active set identifi-
cation result in the nonconvex setting. While we won’t use strict complementarity when the stepsizes
are given by (4.2), without this assumption we will need strict complementarity. Notice that if A ⊆ X ∗

enjoys the SIP and if strict complementarity is satisfied for every x ∈ A, then as a direct consequence
of (4.1) we have

(5.9) supp(x) = [1 : n] \ Ic(x) = [1 : n] \ Ic
A

for every x ∈ A. In this case we can then define supp(A) as the (common) support of the points in A.

Theorem 5.2. Let {xk} be the sequence generated by the AFW method with stepsizes satisfying
αk ≥ ᾱk and (5.1), where ᾱk is given by (4.2). Let X ∗ be the subset of stationary points of f . We have:

(a) xk → X ∗.
(b) If αk = ᾱk then {xk} converges to a connected component A of X ∗. If additionally A has the

SIP then {xk} identifies Ic
A in finite time.

Assume now that X ∗ =
⋃C

i=1 Ai with {Ai}C
i=1 compact, with distinct supports and such that Ai has the

SIP for each i ∈ [1 :C].
(c) If αk ≥ ᾱk and if strict complementarity holds for all points in X ∗ then {xk} converges to Al

for some l ∈ [1 : C] and identifies Ic
Al

in finite time.

Proof. a) By the proof of Theorem 5.1 and the continuity of the multiplier function we have

(5.10) xk(j) → g−1(0) = X ∗ ,

where {k(j)} is the sequence of indexes corresponding to Case 1 or Case 2 steps. Let k′(j) be the
sequence of indexes corresponding to Case 3 steps. Since for such steps αk′(j) = ᾱk′(j) we can apply
Corollary 7.1 to obtain

(5.11) ‖xk′(j) − xk′(j)+1‖ → 0 .

Combining (5.10), (5.11) and the fact that there can be at most n − 1 consecutive Case 3 steps, we get
xk → X ∗.
b) By the boundedness of f and point 2 of Lemma 7.2 if αk = ᾱk then ‖xk+1 − xk‖ → 0. It is a
basic topology fact that if {xk} is bounded and ‖xk+1 − xk‖ → 0 then the set of limit points of {xk}
is connected. This together with point a) ensures that the set of limit points must be contained in a
connected component A of X ∗. By Theorem 4.1 it follows that if A has constant support {xk} identifies
Ic

A in finite time.
c) Consider a disjoint family of subsets {Ui}C

i=1 of ∆n−1 with Ui = {x ∈ ∆n−1 | dist1(x, Ai) ≤ ri} where
ri is small enough to ensure some conditions that we now specify. First, we need

ri <
δmin(Ai)

2L + δmin(Ai)

so that ri is smaller than the active set radius of every x ∈ Ai and in particular for every x ∈ Ui there
exists x∗ ∈ Ai such that

(5.12) ‖x − x∗‖1 <
δmin(x∗)

2L + δmin(x∗)
.

Second, we choose ri small enough so that {Ui}C
i=1 are disjoint and

(5.13) supp(y) ⊇ supp(Ai) ∀y ∈ Ui ,

where these conditions can be always satisfied thanks to the compactness of Ai.
Assume now by contradiction that the set S of limit points of {xk} intersects more than one of the
{Ai}C

i=1. Let in particular Al minimize |supp(Al)| among the sets containing points of S. By point a)
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xk ∈ ∪C
i=1Ui for k ≥ M large enough and we can define an infinite sequence {t(j)} of exit times greater

than M for Ul so that xt(j) ∈ Ul and xt(j)+1 ∈ ∪i∈[1:C]\lUi. Up to considering a subsequence we can
assume xt(j)+1 ∈ Um for a fixed m 6= l for every j ∈ N0.
We now distinguish two cases as in the proof of Theorem 3.1, where notice that by equation (5.12) the
hypotheses of Theorem 3.1 are satisfied for k = t(j) and some x∗ ∈ Al.
Case 1. (xt(j))h = 0 for every h ∈ Ic

Al
. In the notation of Theorem 3.1 this corresponds to the case

|Jt(j)| = 0. Then by (3.10) we also have λh(xt(j)) > 0 for every h ∈ Ic
Al

. Thus (xt(j)+1)h = (xt(j))h = 0
for every h ∈ Ic

Al
by Lemma 3.2, so that we can write

(5.14) supp(Am) ⊆ supp(xt(j)+1) ⊆ [1 : n] \ Ic
Al

= supp(Al),

where the first inclusion is justified by (5.13) for i = m and the second by strict complementarity (see
also (5.9) and the related discussion). But since by hypothesis supp(Am) 6= supp(Al) the inclusion
(5.14) is strict and so it is in contradiction with the minimality of |supp(Al)|.
Case 2. |Jt(j)| > 0. Then reasoning as in the proof of Theorem 3.1 we obtain dt(j) = xt(j) − eh̄ for

some h̄ ∈ Jt(j) ⊂ Ic
Al

. Let x̃∗ ∈ Al, and let d̃ = αt(j)dt(j). The sum of the components of d̃ is 0 with the

only negative component being d̃h̄ and therefore

(5.15) d̃h̄ = −
∑

h∈[1:n]\h̄

d̃h = −
∑

h∈[1:n]\h̄

|d̃h|

We claim that ‖xt(j)+1 − x̃∗‖1 ≤ ‖xt(j) − x̃∗‖1. This is enough to finish because since x̃∗ ∈ Al is arbitrary
then it follows dist1(xt(j)+1, Al) ≤ dist1(xt(j), Al) so that xt(j)+1 ∈ Ul, a contradiction.
We have

‖x̃∗ − xt(j)+1‖1 = ‖x̃∗ − xt(j) − αt(j)dt(j)‖1 =

=|x̃∗
h̄

− (xt(j))h̄ − d̃h̄| +
∑

h∈[1:n]\h̄

|x̃∗
h − (xt(j))h − d̃h| =

=|x̃∗
h̄

− (xt(j))h̄| + d̃h̄ +
∑

h∈[1:n]\h̄

|x̃∗
h − (xt(j))h − d̃h| ≤

≤|x̃∗
h̄

− (xt(j))h̄| + d̃h̄ +
∑

h∈[1:n]\h̃

(|x̃∗
h − (xt(j))h| + |d̃h|) =

=‖xt(j) − x̃∗‖1 + d̃h̄ +
∑

h∈[1:n]\h̄

|d̃h| = ‖xt(j) − x̃∗‖1

where in the third equality we used 0 = x̃∗
h̄

≤ −d̃h̄ ≤ (xt(j))h̄ and in the last equality we used (5.15).
Reasoning by contradiction we have proved that all the limit points of {xk} are in Al for some
l ∈ [1, ..., C]. The conclusion follows immediately from Theorem 4.1.

5.3. Quantitative version of active set identification. We now assume that the gap function
g(x) satisfies the Hölderian error bound condition

(5.16) g(x) ≥ θdist1(x, X ∗)p

for some θ, p > 0 (see e.g. [7] for some example). This is true for instance if the components of ∇f(x)
are semialgebraic functions. We have the following active set complexity bound:

Theorem 5.3. Assume X ∗ =
⋃

i∈[1:C] Ai where Ai is compact and with the SIP for every i ∈ [1 : C]

and 0 < d
def

= min{i,j}⊂[1:C] dist1(Ai, Aj). Let r∗ be the minimum active set radius of the sets {Ai}C
i=1.

Let q(ε) : R>0 → N0 be such that f(xk)−f(xk+1) ≤ ε for every k ≥ q(ε), and assume that g(x) satisfies
(5.16). Assume that the stepsizes satisfy αk = ᾱk, with ᾱk given by (4.2). Then the active set complexity
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is at most q(ε̄) + 2n for ε̄ satisfying the following conditions

(5.17) ε̄ < L ,

(

2
√

Lε̄

θ

)
1

p

< r∗ and 2

(

2
√

Lε̄

θ

)
1

p

+ 2n

√

2ε̄

L
≤ d .

The proof is substantially a quantitative version of the argument used to prove point b) of Theorem
5.2.

Proof. Fix k ≥ q(ε̄), so that

(5.18) f(xk) − f(xk+1) ≤ ε̄ .

We will refer to Case i steps for i ∈ [1 : 3] following the definitions in Theorem 5.1. If the step k is a
Case 1 step, then by (5.2) with ρ = 1/2 we have

f(xk) − f(xk+1) ≥ g(xk)2

4L

and this together with (5.18) implies

2
√

Lε̄ ≥ 2
√

L(f(xk) − f(xk+1)) ≥ g(xk) .

Analogously, if the step k is a Case 2 step, then by (5.3) we have

f(xk) − f(xk+1) ≥ g(xk)

2

so that 2ε̄ ≥ g(xk). By the leftmost condition in (5.17) we have ε̄ < L so that 2
√

Lε̄ ≥ 2ε̄, and therefore
for both Case 1 and Case 2 steps we have

(5.19) g(xk) ≤ 2
√

Lε̄ .

By inverting relation (7.1), we also have

(5.20) ‖xk − xk+1‖ ≤
√

2(f(xk) − f(xk+1))

L
≤
√

2ε̄

L
.

Now let k̄ ≥ q(ε̄) be such that step k̄ is a Case 1 or Case 2 step. By the error bound condition together
with (5.19)

(5.21) dist1(xk̄, X ∗) ≤
(

g(xk̄)

θ

)
1

p

≤
(

2
√

Lε̄

θ

)
1

p

< r∗ ,

where we used (5.19) in the second inequality and the second condition of (5.17) in the third inequality.
In particular there exists l such that dist1(xk̄, Al) ≤ (2

√
Lε̄/θ)1/p. We claim now that Ic

Al
is identified

at latest at step k̄ + n.
First, we claim that for every Case 1 or Case 2 step with index τ ≥ k̄ we have dist1(xτ , Al) ≤
(g(xτ )/θ)1/p. We reason by induction on the sequence {s(k′)} of Case 1 or Case 2 steps following
k̄, so that in particular s(1) = k̄ and dist1(xs(1), Al) ≤ g(xs(1)) is true by (5.21). Since there can be at
most n − 1 consecutive Case 3 steps, we have s(k′ + 1) − s(k′) ≤ n for every k′ ∈ N0. Therefore

(5.22)

‖xs(k′) − xs(k′+1)‖1 ≤
s(k′+1)−1
∑

i=s(k′)

‖xi+1 − xi‖1 ≤ 2

s(k′+1)−1
∑

i=s(k′)

‖xi+1 − xi‖ ≤

≤2[s(k′ + 1) − s(k′)]

√

2ε̄

L
≤ 2n

√

2ε̄

L
,
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where in the second inequality we used part 3 of Lemma 7.1 to bound each of the summands of the left-
hand side, and in the third inequality we used (5.20). Assume now by contradiction dist1(xs(k′+1), Al) >

(g(xs(k′+1))/θ)1/p. Then by (5.21) applied to s(k′ + 1) instead of k̄ there must exists necessarily j 6= l

such that dist1(xs(k′+1), Aj) ≤ (g(xs(k′+1))/θ)1/p. In particular we have

(5.23)

‖xs(k′) − xs(k′+1)‖1 ≥dist1(Al, Aj) − dist1(xs(k′+1), Aj) − dist1(xs(k′), Al) ≥

≥d −
(

g(xs(k′))

θ

)

1

p

−
(

g(xs(k′+1))

θ

)

1

p

≥ d − 2

(

2
√

Lε̄

θ

)
1

p

,

where we used (5.19) in the last inequality. But by the second condition of (5.17), we have

(5.24) d − 2

(

2
√

Lε̄

θ

)
1

p

> 2n

√

2ε̄

L
.

Concatenating (5.22), (5.24) and (5.23) we get a contradiction and the claim is proved. Notice that an
immediate consequence of this claim is dist1(xτ , Al) < r∗ by (5.21) applied to τ instead of k̄, where
τ ≥ k̄ is an index corresponding to a Case 1 or Case 2 step.
To finish the proof, first notice that there exists an index k̄ ∈ [q(ε̄), q(ε̄) + n] corresponding to a Case 1
or Case 2 step, since there can be at most n − 1 consecutive Case 3 steps. Furthermore, since by (5.21)
we have dist1(xk̄, Al) < r∗, by the local identification Theorem 3.1 in the steps immediately after k̄ the
AFW identifies one at a time the variables in Ic

Al
, so that there exists h ≤ n such that (xk̄+h)i = 0 for

every i ∈ Ic
Al

. Moreover, by the claim every Case 1 and Case 2 step following step k̄ happens for points
inside B1(Al, r∗) so it does not change the components corresponding to Ic

Al
by the local identification

Theorem 3.1. At the same time, Case 3 steps do not increase the support, so that (xk̄+h+l)i = 0 for

every i ∈ Ic
Al

, l ≥ 0. Thus active set identification happens in k̄ + h ≤ q(ε̄) + n + h ≤ q(ε̄) + 2n steps.

Remark 5.1. Assume that the set of stationary points is finite, so that Ai = {ai} for every i ∈ [1 :C]
with ai ∈ ∆n−1. Let

(5.25) cmin = min
i∈[1:C]

min
j:(ai)j 6=0

(ai)j

be the minimal nonzero component of a stationary point. Then one can prove a q(ε̄) + n active set
identification bound replacing (5.17) with the following condition on ε̄ which has no explicit dependence
on n:

ε̄ <L, r(ε̄) + l(ε̄) < min(r∗, d/2, cmin/2) ,

where r(ε̄) =
(

2
√

Lε̄
θ

)
1

p

and l(ε̄) = 2
√

2ε̄
L . We do not discuss the proof since it roughly follows the same

lines of Theorem 5.3’s proof.

Remark 5.2. When we have an explicit expression for the convergence rate q(ε), then we can get
an active set complexity bound using Theorem 5.3.

5.4. Local active set complexity bound. A key element to ensure local convergence to a strict
local minimum will be the following property

(5.26) xk ∈ argmax{f(x) | x ∈ conv(xk, xk+1)} .

which in particular holds when αk = ᾱk as it is proved in Lemma 7.2. The property (5.26) is obviously
stronger than the usual monotonicity, and it ensures that the sequence cannot escape from connected
components of sublevel sets. When f is convex it is immediate to check that (5.26) holds if and only if
{f(xk)} is monotone non increasing.
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Let x∗ be a stationary point which is also a strict local minimizer isolated from the other stationary
points and f̃ = f(x∗). Let then β be such that there exists a connected component Vx∗,β of f−1((−∞, β])
satisfying

Vx∗,β ∩ X ∗ = {x∗} = argminx∈Vx∗,β
f(x).

Theorem 5.4. Let {xk} be a sequence generated by the AFW, with x0 ∈ Vx∗,β and with stepsize
given by (4.2). Let

r∗ =
δmin(x∗)

2L + δmin(x∗)
.

Then xk → x∗ and the sequence identifies the support in at most

⌈

max

(

4(f(x0) − f̃)

τ
,

8L(f(x0) − f̃)

τ2

)⌉

+ 1 + |Ic(x∗)|

steps with

τ = min{g(x) | x ∈ f−1([m, +∞)) ∩ Vx∗,β} ,

where
m = min{ f(x) | x ∈ Vx∗,β \ Br∗

(x∗)} .

Proof. We have all the hypotheses to apply the bound given in Corollary 5.1 for g∗
k:

g∗
k ≤ max

(
√

8L(f(x0) − f∗)

k
,
4(f(x0) − f∗)

k

)

.

It is straightforward to check that if

h̄ =

⌈

max

(

4(f(x0) − f∗)

τ
,

8L(f(x0) − f∗)

τ2

)⌉

+ 1

then

g∗
h̄

< τ .

Therefore, by the definition of τ ,we get f(xh̄) < m. We claim that xh ∈ Br∗
(x∗) for every h ≥ h̄.

Indeed by point 1 of Lemma 7.2 the condition αk = ᾱk on the stepsizes imply that {xk} satisfies (5.26)
and it can not leave connected components of level sets. Thus since f(xh) < m we have

xh ∈ Vx∗,β ∩ f−1(−∞, m) ⊂ Br∗
(x∗) ,

where the inclusion follows directly from the definition of m. We can then apply the local active set
identification Theorem 3.1 to obtain an active set complexity of

h̄ + |Ic(x∗)| =

⌈

max

(

4(f(x0) − f∗)

τ
,
8L(f(x0) − f∗)

τ2

)⌉

+ 1 + |Ic(x∗)| ,

thus getting our result.

6. Conclusions. We proved general results for the AFW finite time active set convergence prob-
lem, giving explicit bounds on the number of steps necessary to identify the support of a solution. As
applications of these results we computed the active set complexity for strongly convex functions and
nonconvex functions. Possible expansions of these results would be to adapt them for other FW vari-
ants and, more generally, to other first order methods. It also remains to be seen if these identification
properties of the AFW can be extended to problems with nonlinear constraints.
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7. Appendix. In several proofs we need some elementary inequalities concerning the euclidean
norm ‖ · ‖ and the norm ‖ · ‖1.

Lemma 7.1. Given {x, y} ⊂ ∆n−1, i ∈ [1 : n]:
1. ‖ei − x‖ ≤

√
2(ei − x)i;

2. (y − x)i ≤ ‖y − x‖1/2
3. If {xk} is a sequence generated on the probability simplex by the AFW then ‖xk+1 − xk‖1 ≤

2‖xk+1 − xk‖ for every k.

Proof. 1. (ei − x)j = −xj for j 6= i, (ei − x)i = 1 − xi =
∑

j 6=i xj . In particular

‖ei − x‖ = (
∑

j 6=i

x2
j + (ei − x)2

i )
1

2 ≤ ((
∑

j 6=i

xj)2 + (1 − xi)
2)

1

2 =
√

2(
∑

j 6=i

xj) =
√

2(ei − x)i

2. Since
∑

j∈[1:n] xj =
∑

j∈[1:n] yj so that
∑

(x − y)j = 0 we have

(y − x)i =
∑

j 6=i

(x − y)j

and as a consequence

‖y − x‖1 =
∑

j∈[1:n]

|(y − x)j | ≥ (y − x)i +
∑

j 6=i

(x − y)j = 2(y − x)i .

3. We have xk+1 − xk = αkdk with dk = ±(ei − xk) for some i ∈ [1 : n]. By homogeneity it suffices to
prove ‖dk‖ ≥ 1

2 ‖dk‖1. We have

‖dk‖ ≥ 1 − (xk)i =
1

2
(1 − (xk)i +

∑

j 6=i

(xk)j) =
1

2
‖dk‖1 ,

where in the first equality we used
∑n

i=1(xk)i = 1 and in the second equality we used 0 ≤ xk ≤ 1.

7.1. Technical results related to stepsizes. We now prove several properties related to the
stepsize given in (4.2).

Lemma 7.2. Consider a sequence {xk} in ∆n−1 such that xk+1 = xk + αkdk with αk ∈ R≥0,
dk ∈ R

n. Let ᾱk be defined as in (4.2), let pk = −∇f(xk)⊤dk and assume pk > 0. Then:
1. If 0 ≤ αk ≤ 2pk/(‖dk‖2L), the sequence {xk} has the property (5.26).
2. If αk = ᾱk then (5.1) is satisfied with ρ = 1

2 . Additionally, we have

(7.1) f(xk) − f(xk+1) ≥ L
‖xk+1 − xk‖2

2
.

3. If αk is given by exact linesearch, then αk ≥ ᾱk and (5.1) is again satisfied with ρ = 1
2 .

Proof. By the standard descent lemma [5, Proposition 6.1.2] we have

(7.2) f(xk) − f(xk + αdk) ≥ αpk − α2 L‖dk‖2

2
.

It is immediate to check

(7.3) α∇f(xk)⊤dk + α2 L‖dk‖2

2
≤ 0 ,

for every 0 ≤ α ≤ 2pk

L‖dk‖2 and

(7.4) αpk − α2 L‖dk‖2

2
≥ αpk/2 ≥ α2 L‖dk‖2

2
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for every 0 ≤ α ≤ pk

L‖dk‖2 .

1. For every x ∈ conv(xk, xk+1) ⊆
{

xk + αdk | 0 ≤ α ≤ 2pk

L‖dk‖2

}

, we have

f(x) = f(xk + αdk) ≤ f(xk) + α∇f(xk)⊤dk + α2 L‖dk‖2

2
≤ f(xk) ,

where we used (7.2) in the first inequality and (7.3) in the second inequality.
2. We have

f(xk) − f(xk+1) = f(xk) − f(xk + ᾱkdk) ≥ ᾱkpk/2 ,

where we have the hypotheses to apply (7.4) since 0 ≤ ᾱk ≤ pk

L‖dk‖2 . Again by (7.4)

f(xk) − f(xk+1) = f(xk) − f(xk + ᾱkdk) ≥ ᾱ2
k

L‖dk‖2

2
= L

‖xk − xk+1‖2

2
.

3. If αk = αmax
k then there is nothing to prove since ᾱk ≤ αmax

k . Otherwise we have

(7.5) 0 =
∂

∂α
f(xk + αdk)|α=αk

= d⊤
k (∇f(xk + αkdk))

and therefore

(7.6)
−d⊤

k ∇f(xk) = −d⊤
k ∇f(xk) + d⊤

k ∇f(xk + αkdk) = −d⊤
k (∇f(xk) − ∇f(xk + αkdk))

≤ L‖dk‖‖xk − (xk + αkdk)‖ = αkL‖dk‖2 ,

where we used (7.5) in the first equality and the Lipschitz condition in the inequality. From (7.6) it
follows

αk ≥ −d⊤
k ∇f(xk)

L‖dk‖2
≥ ᾱk

and this proves the first claim. As for the second,

f(xk) − f(xk + αkdk) ≥ f(xk) − f(xk + ᾱkdk) ≥ ᾱk

2
pk ,

where the first inequality follows from the definition of exact linesearch and the second by point 2 of
the lemma.

Corollary 7.1. Under the hypotheses of Lemma 7.2, assume that f(xk) is monotonically decreas-
ing and assume that for some subsequence k(j) we have xk(j)+1 = xk(j) + ᾱk(j)dk(j). Then

‖xk(j) − xk(j)+1‖ → 0 .

Proof. By (7.1) we have

f(xk(j)) − f(xk(j)+1) ≥ L

2
‖xk(j) − xk(j)+1‖2

and the conclusion follows by monotonicity and boundedness.

7.2. AFW complexity for generic polytopes. It is well known as anticipated in the introduc-
tion that every application of the AFW to a polytope can be seen as an application of the AFW to the
probability simplex.
In this section we show the connection between the active set and the face of the polytope exposed by
−∇f(y∗), where y∗ is a stationary point for f . We then proceed to show with a couple of examples how
the results proved for the probability simplex can be adapted to general polytopes. In particular we
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will generalize Theorem 4.1, thus proving that under a convergence assumption the AFW identifies the
face exposed by the gradients of some stationary points. An analogous result is already well known for
the gradient projection algorithm, and was first proved in [10] building on [9] which used an additional
strict complementarity assumption but worked in a more general setting than polytopes, that of convex
compact sets with a polyhedral optimal face.
Before stating the generalized theorem we need to introduce additional notation and prove a few prop-
erties mostly concerning the generalization of the simplex multiplier function λ to polytopes.
Let P be a polytope and f : P → R

n be a function with gradient having Lipschitz constant L.
To define the AFW algorithm we need a finite set of atoms A such that conv(A) = P . As for the
probability simplex we can then define for every a ∈ A the multiplier function λa : P → R by

λa(y) = ∇f(y)⊤(a − y) .

Let finally A be a matrix having as columns the atoms in A, so that A is also a linear transformation
mapping ∆|A|−1 in P with Aei = Ai ∈ A.
In order to apply Theorem 3.1 we need to check that the transformed problem

min{f(Ax) | x ∈ ∆|A|−1}

still has all the necessary properties under the assumptions we made on f .
Let f̃(x) = f(Ax). First, it is easy to see that the gradient of f̃ is still Lipschitz. Also λ is invariant
under affine transformation, meaning that λAi (Ax) = λi(x) for every i ∈ [1 : |A|], x ∈ ∆|A|−1. Indeed

λAi (Ax) = ∇f(Ax)⊤(Ai − Ax) = ∇f(Ax)⊤A(ei − x) = ∇f̃(x)⊤(ei − x) = λi(x) .

Let Y ∗ be the set of stationary points for f on P , so that by invariance of multipliers X ∗ = A−1(Y ∗)
is the set of stationary points for f̃ . The invariance of the identification property follows immediately
from the invariance of λ: if the support of the multiplier functions for f restricted to B is {Ai}i∈Ic ,
then the support of the multiplier functions for f̃ restricted to A−1(B) is Ic.
We now show the connection between the face exposed by −∇f and the support of the multiplier
function. Let y∗ = Ax∗ ∈ Y ∗ and let

P ∗(y∗) = {y ∈ P | ∇f(y∗)⊤y = ∇f(y∗)⊤y∗} = argmax{−∇f(y∗)⊤y | y ∈ P } = F(−∇f(y∗))

be the face of the polytope P exposed by −∇f(y∗). The complementarity conditions for the generalized
multiplier function λ can be stated very simply in terms of inclusion in P ∗(y∗): since y∗ ∈ P ∗(y∗) we
have λa(y∗) = 0 for every a ∈ P ∗(y∗), λa(y∗) > 0 for every a /∈ P ∗(y∗). But P is the convex hull of the
set of atoms in A so that the previous relations mean that the face P ∗(y∗) is the convex hull of the set
of atoms for which λa(y∗) = 0:

P ∗(y∗) = conv{a ∈ A | λa(y∗) = 0}

or in other words since λAi (y∗) = 0 if and only if i ∈ I(x∗) = {i ∈ [1 : n] | λi(x
∗) = 0}:

(7.7) P ∗(y∗) = conv{a ∈ A | a = Ai, i ∈ I(x∗)} .

A consequence of (7.7) is that given any subset B of P with a constant active set, we necessarily get
P ∗(w) = P ∗(z) for every w, z ∈ B, since I(w) = I(z). For such a subset B we can then define

P ∗(B) = P ∗(y∗) for any y∗ ∈ B

where the definition does not depend on the specific y∗ ∈ B considered. We can now restate Theorem 4.1
in slightly different terms:
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Theorem 7.1. Let {yk} be a sequence generated by the AFW on P and let {xk} be the corresponding
sequence of weights in ∆|A|−1 such that {yk} = {Axk}. Assume that the stepsizes satisfy αk ≥ ᾱk (using

f̃ instead of f in (4.2)). If there exists a compact subset B of Y ∗ with the SIP such that yk → B, then
there exists M such that

yk ∈ P ∗(B) for every k ≥ M.

Proof. Follows from Theorem 4.1 and the affine invariance properties discussed above.

A technical point concerning Theorem 7.1 is that in order to compute ᾱk the Lipschitz constant L
of ∇f̃ (defined on the simplex) is necessary. When optimizing on a general polytope, the calculation
of an accurate estimate of L for f̃ may be problematic. However, by Lemma 7.2 if the AFW uses
exact linesearch, the stepsize ᾱk (and in particular the constant L) is not needed because the inequality
αk ≥ ᾱk is automatically satisfied.
We now generalize the analysis of the strongly convex case. The technical problem here is that strong
convexity, which is used in Corollary 4.1, is not maintained by affine transformations, so that instead we
will have to use a weaker error bound condition. As a possible alternative, in [28] linear convergence of
the AFW is proved with dependence only on affine invariant parameters, so that any version of Theorem
3.1 and Corollary 4.1 depending on those parameters instead of u1, L would not need this additional
analysis.
Let P = {y ∈ R

n | Cy ≤ b}, y∗ be the unique minimizer of f on P and u > 0 be such that

f(y) ≥ f(y∗) +
u

2
‖y − y∗‖2 .

The function f̃ inherits the error bound condition necessary for Corollary 4.1 from the strong convexity
of f : for every x ∈ ∆|A|−1 by [3], Lemma 2.2 we have

dist(x, X ∗) ≤ θ‖Ax − y∗‖
where θ is the Hoffman constant related to [CT , [I; e; −e]T ]T . As a consequence if f̃∗ is the minimum
of f̃

f̃(x) − f̃∗ = f(Ax) − f(y∗) ≥ u

2
‖Ax − y∗‖2 ≥ u

2θ2
dist(x, X ∗)2

and using that n‖ · ‖2 ≥ ‖ · ‖2
1 we can finally retrieve an error bound condition with respect to ‖ · ‖1:

(7.8) f̃(x) − f̃∗ ≥ u

2nθ2
dist1(x, X ∗)2.

Having proved this error bound condition for f̃ we can now generalize (3.5):

Corollary 7.2. The sequence {yk} generated by the AFW is in P ∗(y∗) for

k ≥ max

(

0,
ln(h0) − ln(uP r2

∗/2)

ln(1/q)

)

+ |Ic|

where q ∈ (0, 1), is the constant related to the linear convergence rate f(yk)−f(y∗) ≤ qk(f(y0)−f(y∗)),
uP = u

2nθ2 , r∗ = δmin

2L+δmin
with δmin = min{λa(y∗) | λa(y∗) > 0}.

Proof. Let I = {i ∈ [1 : |A|] | λAi (y∗) = 0}, P ∗ = P ∗(y∗). Since P ∗ = conv(A ∩ P ∗) and by
(7.7) conv(A ∩ P ∗) = conv{Ai | i ∈ I} the theorem is equivalent to prove that for every k larger than
the bound, we have yk ∈ conv{Ai | i ∈ I}. Let {xk} be the sequence generate by the AFW on the
probability simplex, so that yk = Axk. We need to prove that, for every k larger than the bound, we
have

xk ∈ conv {ei | i ∈ I} ,

or in other words (xk)i = 0 for every i ∈ Ic.
Reasoning as in Corollary 4.1 we get that dist1(xk, X ∗) < r∗ for every

(7.9) k ≥ ln(h0) − ln(uP r2
∗/2)

ln(1/q)
.
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Let k̄ be the minimum index such that (7.9) holds. For every k ≥ k̄ there exists x∗ ∈ X ∗ with
‖xk − x∗‖1 < r∗. But λi(x) = λAi (y∗) for every x ∈ X ∗ by the invariance of λ, so that we can apply
Theorem 3.1 with fixed point x∗ and obtain that if Jk = {i ∈ Ic | (xk)i > 0} then Jk+1 ≤ max(0, Jk −1).
The conclusion follows exactly as in Corollary 4.1.
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