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Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) ex-
periments. Despite this, there is no well-established method for their removal. Instead, functional trials of
fNIRS data containing a motion artifact are often rejected completely. However, in most experimental cir-
cumstances the number of trials is limited, and multiple motion artifacts are common, particularly in chal-
lenging populations. Many methods have been proposed recently to correct for motion artifacts, including
principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based
signal improvement. The performance of different techniques has been often compared in simulations, but
only rarely has it been assessed on real functional data. Here, we compare the performance of these motion
correction techniques on real functional data acquired during a cognitive task, which required the participant
to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemo-
dynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of
the hemodynamic response have been derived. Our results show that it is always better to correct for motion
artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of
artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results there-
fore support previous studies that have shown wavelet filtering to be the most promising and powerful tech-
nique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for
others to objectively test the impact of different motion correction algorithms and therefore select the most
appropriate for the analysis of their own fNIRS experiment.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive
neuroimaging technique, which uses light in the near-infrared range
to infer cerebral activity. From the changes in intensity of light direct-
ed from a source fiber into the tissues of the head and back-scattered
to a detector fiber positioned several centimeters from the source,
concentration changes of oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) can be computed (Boas et al., 2002;
Jöbsis, 1977). fNIRS is becoming more and more common in the
study of infants (Lloyd-Fox et al., 2010; Taga et al., 2011; Wilcox et
al., 2010), cognition (Cutini et al., 2012; Köchel et al., 2011; Tupak
ental Psychology (DPSS), Uni-
ax: +39 049 8276547.
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et al., 2012), motor tasks (Brigadoi et al., 2012; Perrey, 2008) and in
studies with difficult and hard-to-test populations, e.g. stroke pa-
tients (Lin et al., in press; Muehlschlegel et al., 2009; Obrig and
Steinbrink, 2011). Although the improvement in fNIRS technology
has been significant in recent years, effectively coupling the sources
and the detectors to the head can be problematic and motion artifacts
are often a significant component of the measured fNIRS signal. In-
deed, every movement of the head causes a decoupling between the
source/detector fiber and the scalp, which is reflected in the mea-
sured signal, usually as a high-frequency spike and a shift from the
baseline intensity. In order to properly estimate the hemodynamic re-
sponse function (HRF), motion artifacts should be detected and
removed.

A common and simple way to solve the issue of motion artifacts is
to reject all trials where a motion artifact has been detected. Howev-
er, this approach is only suitable if the number of motion artifacts
detected is low and the number of trials is high, otherwise the risk
is that too few trials will be accepted, resulting in a very noisy

http://dx.doi.org/10.1016/j.neuroimage.2013.04.082
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hemodynamic response. fNIRS is particularly suited for examining
challenging populations (e.g. infants, clinical patients, children)
who might not be easily investigated with fMRI. However, in
these populations the number of functional trials is almost
always strictly limited, and therefore trial rejection might not
be feasible.

Several methods have been proposed to solve this issue. Some
methods require a complementary measure of the motion artifact to
aid in its removal, e.g. with a short-separation fNIRS channel
(Robertson et al., 2010), or with an accelerometer (Virtanen et al.,
2011). Others rely on the inherent changes in the amplitude and fre-
quency of the data due to the artifact and act as post-processing tech-
niques. The latter group does not require a complementary measure
and thus can be used with every experimental paradigm, making it
the most general solution. Among these approaches are principal com-
ponent analysis (PCA) (Zhang et al., 2005), Kalman filtering (Izzetoglu
et al., 2010), correlation-based signal improvement (CBSI) (Cui et al.,
2010),wavelet filtering (Molavi andDumont, 2012) and spline interpo-
lation (Scholkmann et al., 2010).

Motion artifacts can have different shapes, frequency content
and timing. They can be high amplitude, high frequency spikes,
easily detectable in the data-series or they can have lower frequen-
cy content and be harder to distinguish from normal hemodynamic
fNIRS signals. Motion artifacts can be generally classified into three
categories, spikes, baseline shifts and low-frequency variations.
They can be isolated events or they can be temporally correlated
with the HRF. Therefore, it is likely that the efficacy of each motion
artifact correction technique will vary with the type of motion ar-
tifact and that the best technique to apply is data-dependent. One
way to estimate the performance of a motion correction technique
or to compare different techniques is to simulate motion artifacts
(Scholkmann et al., 2010) or to ask participants to move their
head purposely to create a motion artifact (Izzetoglu et al., 2010;
Robertson et al., 2010). However, real motion artifacts are complex
and variable, and thus difficult to simulate. Furthermore, motion
artifacts are not only due to the movement of the head, but also
due to the movement of the eyebrows or the jaw, for example.
The most suitable approach to quantifying the performance of dif-
ferent motion artifact correction techniques is to use real,
resting-state fNIRS data, which are contaminated with real motion
artifacts, and add a simulated HRF to these data (Cooper et al.,
2012). Knowing the true hemodynamic response, it is possible to
compute the MSE (mean-squared error) and the Pearson's correla-
tion coefficient (R2) between the simulated and the recovered HRF,
and hence to have a quantitative measure to compare the different
performances.

The next step towards establishing a standard approach for the
correction of motion artifacts in fNIRS data is to compare the perfor-
mance of multiple motion correction approaches on real cognitive
data. To that end, the aim of this paper is to compare the performance
of five motion correction techniques: PCA, spline interpolation, wave-
let filtering, Kalman filtering and CBSI, on real data acquired during a
cognitive linguistic paradigm. This data-series has been specifically
chosen because it contains a particular type of motion artifact, a
task-related, low frequency artifact with amplitude comparable with
that of the HRF. These characteristics make artifact detection and cor-
rection especially challenging. In most cases to date, motion correc-
tion techniques have been tested, with great success, on high
frequency spike artifacts occurring randomly throughout the
data-series, but their ability to isolate and correct artifacts which
more closely resemble normal physiological fNIRS signals has not
been assessed. As the true HRF in these data is unknown, we use pa-
rameters related to a physiologically plausible HRF to compare the
performance of each motion correction technique. We also compare
the performance of each correction technique with the results
obtained by rejecting all trials where a motion artifact was detected
and the results obtained by simply including all trials and ignoring
the motion artifact altogether.
Materials and methods

fNIRS data

Twenty-two students of the University of Padova (10 males, mean
age 25.54 ± 3.14) took part in the experiment, after providing written
informed consent. The data of one participant was discarded because
she was unable to correctly perform the task, while the data of three
others was discarded because of poor SNR in every channel (likely
due to a large mass of hair). Therefore, the total number of participants
considered in the following analysis is 18. Each participant was com-
fortably seated in front of an LCD computer monitor at a viewing dis-
tance of approximately 60 cm in a dimly lit room. The paradigm
consisted of a color-naming of a non-color word task; the participant
was asked to say aloud the color of the text of a word appearing on
the screen. The study consisted of 4 different stimulus conditions,
with 40 trials per condition presented to the participants, leading to a
total of 160 trials, divided into two sets of 80. Each wordwas presented
on the screen until the subject started to pronounce the color of the
word (~850 ms). The inter-stimulus interval varied among 10, 11 or
12 s. The experiment was approved by the ethical committee of the
University of Padova.

The fNIRS data was acquiredwith amulti-channel, frequency-domain
NIR spectrometer (ISS Imagent™, Champaign, Illinois) equipped
with 32 laser diodes (16 emitting light at 690 nm and 16 at
830 nm) and 4 photo-multiplier tubes. Source and detector fibers
were positioned on the participants' head using a probe-placement
method based on a physical model of the head surface (Cutini et al.,
2011) so that frontal and premotor areas were sampled (Fig. 1a)
(for more details on the positions of sources and detectors see
Cutini et al. (2008)). Each source fiber carried light at both of the
two different wavelengths; five source fibers were placed around
each detector fiber, at a distance of 3 cm. Therefore, a total of 20
channels per wavelength (10 per hemisphere) were measured for
each participant. The sampling frequency was set to approximately
7.8 Hz.

The data acquired during this experiment contained a particular
type of motion artifact, which was caused by the participants' jaw
movement induced by the vocal response. The opening and closing of
the mouth caused an abrupt displacement of the sources and detectors
positioned on the participant's head, thus producing amotion artifact in
the data series that was correlated with the evoked cerebral response
(present in the first 1–2 s after stimulus onset). The shape and duration
of this artifact (Fig. 1b) differ from themore common spike-like artifacts
because it is slower and correlated with the hemodynamic response.
Given that its amplitude is comparable to the hemodynamic response
elicited by cortical activity, the artifact is more difficult to detect.

It is also important to note that not all participants and all chan-
nels presented this type of artifact; participants with less hair tended
to have the fiber holder placed more tightly to the head and hence
this type of artifact was less common. The artifact was also
channel-specific, appearing more commonly in the most anterior
channels (see Fig. 1a). The fact that the motion artifact is not observed
on all channels simultaneously is likely to affect the performance of
the motion artifact correction, since some methods inherently require
unwanted signal components to be apparent in multiple channels.
While this hypothesis may be reasonable in many cases, as motion arti-
facts are often due to movement of the whole head, this is not the case
for this data series. Therefore, it is likely that the correction methods
which work on a channel-by-channel basis will perform better than
those that work on all channels all together. Belowwe describe themo-
tion correction techniques compared in the present work.
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Motion correction techniques

Spline interpolation
The spline interpolation method employed here is a channel-by-

channel approach, based on that proposed by Scholkmann et al.
(2010). It acts only on motion artifacts detected, leaving the remaining
part of the signal unmodified. Motion artifact segments are automati-
cally identified on a channel-by-channel basis (using the function
hmrMotionArtifactByChannel from the Homer2 NIRS Processing pack-
age (Huppert et al., 2009), as detailed below in Data processing). The
period of motion artifact is then modeled via a cubic spline interpola-
tion. The resulting spline interpolation is then subtracted from the orig-
inal signal, to correct for the motion artifact. The time series must then
be reconstructed as the spline subtraction creates different signal levels
for the corrected signal compared to the original signal. Every segment
is shifted by a value given by the combination of the mean value of the
segment and the mean value of the previous segment to ensure a con-
tinuous signal. For a more detailed description of the method, see
Scholkmann et al. (2010). The spline interpolation depends on a param-
eter, p, which determines the degree of the spline function. If p = 0, the
interpolation will be a straight line, while if p = 1, it will be a cubic in-
terpolation. In this study the parameter p was set to 0.99, the same
value used by both Scholkmann et al. (2010) and Cooper et al. (2012).

A drawback of the spline approach is that it needs to be preceded
by a reliable technique that identifies the motion artifacts. If the arti-
facts are difficult to detect, spline interpolation will not be applied ap-
propriately and thus the technique will not improve the signal.
However, an advantage of the spline approach is the ability to remove
baseline shifts.

Principal component analysis (PCA)
Principal component analysis (PCA) applies an orthogonal transfor-

mation to the original data set composed of N measurements to pro-
duce N uncorrelated components. The order of these components is
related to the variance of the original data that the component accounts
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Fig. 1. a) Probe placement: detectors in blue and sources in yellow. Numbers represent the
The blue line shows the 830 nm wavelength time-series, the red line the 690 nm waveleng
poses. Vertical lines indicate when the stimulus is presented to the participant. Note how t
for. Thus, the first component will account for the largest proportion of
the variance of the data. Since motion artifacts are often much larger in
amplitude that normal physiological fNIRS signals, they should consti-
tute a large proportion of the variance of the data; thus, it is supposed
that the first M components will represent the variance caused by the
motion artifacts. Hence, removing the first M components from the sig-
nal should correct for the motion artifacts (Zhang et al., 2005).

The performance of PCA is directly dependent on the number of
measurements available (N) and the number of components removed
(M). In this study Nwas equal to 40, the number of channels. The num-
ber M is a free parameter of PCA analysis. A way to automatically adjust
this value on a subject-by-subject basis is to set the amount of variance
to be removed from the data. The sensitivity analysis performed by
Cooper et al. (2012) suggested that 97% of the total variance should be
removed to optimize the performance of PCA. This value was obtained
for 20 data sets in which themotion artifacts had a generally larger am-
plitude compared to the evoked hemodynamic response. Since in the
present data set motion artifacts have an amplitude similar to the cere-
bral signal, it is likely that removing 97% of the total variance will re-
move also part of the evoked response. Therefore, in this study the
PCA was performed with two different values of threshold on the vari-
ance: 97% (which will be referred as PCA_97) and 80% (referred as
PCA_80). The value of 80% was chosen to be more conservative and re-
move only the variance supposed to account for the motion artifacts
and it is very close to the value already used by Wilcox et al. (2005).
The choice to run PCA with both values is motivated by the possibility
of showing the importance of properly choosing the value of M for
each data group.

Wavelet filtering
The wavelet-based motion artifact removal proposed by Molavi and

Dumont (2012) is a channel-by-channel approach designed to correct
for motion artifacts. The Wavelab 850 toolbox (www-stat.stanford.edu/
~wavelab) for MATLAB was used here to perform the wavelet analysis.
The Daubechies 5 (db5) wavelet was chosen, the same used by Molavi
550 560 570
e [s]

830 nm
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channels. b) Example of motion artifacts present in the time-series of one participant.
th time-series. The 690 nm time-series has been shifted by −0.3 for visualization pur-
he motion artifact is correlated to the task.
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and Dumont (2012). The discrete wavelet transform is applied to every
channel data series for a number of levels of decomposition, L, given by
the duration of the time series. For every level a series of detail and ap-
proximation coefficients are obtained. Assuming that themeasured signal
is a linear combination of the physiological signal of interest and the arti-
facts, that the detail wavelet coefficients have a Gaussian probability dis-
tribution and that the hemodynamic response is smoother and slower
than motion artifacts, the expectation is that the coefficients accounting
for the evoked response will be centered around zero and with low vari-
ance, while the outliers of the Gaussian distribution are the coefficients
accounting for themotion artifacts. Therefore, setting these outlying coef-
ficients to zero before reconstructing the signal with the inverse discrete
wavelet transform should remove the corresponding motion artifacts in
the temporal time-series. Outliers are detected using a probability thresh-
old α: if the probability of a given wavelet detail coefficient is less than α,
then this coefficient is assumed not to belong to the Gaussian distribution
and it is hence considered an outlier and set to zero.

The parameter α is the tuning parameter of wavelet filtering. In
this study it was set to 0.1, the same value used by Cooper et al.
(2012) and by Molavi and Dumont (2012).

Discrete Kalman filter
The discrete Kalman filtering proposed by Izzetoglu et al. (2010)

is also a channel-by-channel approach. The Kalman filter acts on a
state-space representation of a dynamic system to provide, recursively,
a solution to the linear optimal filtering problem. The Kalman filter is a
two-step filter: firstly, at time = tk, a prediction of the state x at
time = tk + 1 and of its uncertainty is computed, using knowledge on
prior states. Then, when the measured signal at time = tk + 1 comes,
it is used to update and correct the predicted state xk + 1, which is
then used again in theprediction of thenext state (formore information
on the Kalman filter theory see Grewal and Andrews, 2001; Haykin,
2001).

To use the Kalman filter for motion correction, the transition ma-
trix, which uses prior knowledge on the states to predict the future
one, has been chosen as an autoregressive model of order M = 4
(Cooper et al., 2012; Izzetoglu et al., 2010). The coefficients of the
model are determined using the Yule–Walker equations, computing
the correlation between the longest motion-free period of the signal
and itself translated by between 1 to M data-points. A model order
higher than M = 4 tends to render the algorithm unstable. In order to
model the signal over the frequency range we are interested in (i.e.
less than 1 Hz), these 4 datapoints must cover a longer period of data
than is covered by 4 datapoints at the sampling frequency of 7.8 Hz. It
is therefore necessary to downsample the data as part of the Kalman fil-
ter correction procedure. The output measurement of the Kalman filter
has been assumed as the motion-corrupted signal, while the state x as
the motion-free one and the measurement noise as the motion artifact.
The covariance of the measurement noise has been computed as the
variance of the whole data-series, while the covariance of the process
noise as the variance of the motion-free segments. Motion-free seg-
ments were identified as parts of the signal where the Homer2 function
hmrMotionArtifact did not find any artifacts.

Correlation-based signal improvement (CBSI)
The correlation-based signal improvement (CBSI) is a channel-by-

channel approach developed by Cui et al. (2010) to reducemotion arti-
facts caused by themovement of the head. It is based on the hypothesis
that HbO and HbR should be negatively correlated during functional ac-
tivation but they becomemore positively correlated when a motion ar-
tifact occurs. The measured HbO and HbR signal, x and y respectively,
can be described as:

x ¼ x0 þ α � F þ Noise
y ¼ y0 þ F þ Noise

�

where x0 and y0 are the trueHbO andHbR signal to be estimated, F is the
motion artifact, with identical effects on both chromophores (but for a
constant weighting α), and Noise is the remaining high frequency
white noise, easily removed with a low-pass filter. To compute x0 and
y0, two assumptions are required: the correlation between x0 and y0
should be close to −1 and the correlation between the artifact F and
the true signal x0 should be close to 0. This leads to the following equa-
tions for the computation of the true HbO and HbR signal:

x0 ¼ x−α � yð Þ=2
y0 ¼ − 1=αð Þ � x0

�

with

α ¼ std xð Þ=std yð Þ

where std(x) is the standard deviation of x. The approach taken by Cui et
al. (2010), also assumes that the ratio between HbO and HbR when no
artifact is present is the same as when an artifact occurs.

Data processing

The data processing was performed using some of the Homer2
NIRS processing package functions (Huppert et al., 2009) based in
MATLAB (Mathworks, MA USA). A flow-chart depicting the signal
processing steps is presented in Fig. 2. For every subject, the raw optical
intensity data series were converted into changes in optical density
(OD). Channels with a very low optical intensity were discarded
from the analysis using the function enPruneChannels. All trials
where the participant gave a wrong response to the stimulus were
also discarded from the analysis. Then the motion detection algorithm
hmrMotionArtifactwas applied to theOD time-series to identifymotion
artifacts. This algorithm finds the data-points exceeding a threshold in
change of amplitude (AMPthresh) and a threshold in change of stan-
dard deviation (SDThresh) within a given period of time (tMotion)
and then marks those points from the beginning of the window to
tMask seconds later as motion. Both the thresholds, the window length
and tMask, are set by the user. In this study, AMPThresh = 0.4,
SDThresh = 50, tMotion = 1 and tMask = 1, which provided a com-
promise between the number of motion artifacts identified in noisier
data series and the number identified in less noisy data series. The func-
tion hmrMotionArtifact assumes that when an artifact is identified in
one channel, that period of data should be removed from all channels
and hence, the output of this algorithm is not channel specific. Thus,
for the spline technique, the function used to detect motion artifacts
was instead hmrMotionArtifactByChannel, which works exactly the
same way as hmrMotionArtifact but on a channel-by-channel basis.

After motion artifact identification, 8 different processing streams
were performed. Six of these processing streams included amotion cor-
rectionmethod, one applied the trial rejection technique and one recov-
ered the evoked response without removing or correcting the motion
artifacts.

Of the 6 processing streams including amotion correctionmethod, 5
(PCA_80, PCA_97, Spline, Wavelet, Kalman filter) started with the
application of the motion correction technique on the OD data.
hmrMotionArtifact was run again on the corrected OD time series
and the trials where a motion artifact was still present were rejected.

A band-pass filter (third order Butterworth filter) with cut-off fre-
quencies of 0.01–0.5 Hzwas then applied to the data in order to reduce
very slow drifts and high frequency noise. The OD data were then
converted into concentration changes using themodified Beer–Lambert
law (Cope and Delpy, 1988; Delpy et al., 1988). Finally, to recover the
mean hemodynamic response, all remaining trials related to the same
stimulus type were block-averaged. This produced four mean HRFs,
one per stimulus type, for each channel and each participant.
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Fig. 2. Signal processing steps for all techniques. The processing streams for every tech-
nique are represented by colored arrows: black for rejection, blue for no motion cor-
rection, red for PCA_80, cyan for Spline, green for Wavelet, magenta for CBSI, orange
for Kalman filter and gray for PCA_97.
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The 6th processing stream was different, since the CBSI method
works on concentration changes and not on OD data. Therefore, the
same band-pass filter was applied to the OD data series, which were
then converted into concentration changes. The CBSI method was
then applied and the mean HRF was recovered via block-averaging
the motion corrected trials. Before block-averaging, trials still contami-
nated by a motion artifact were rejected, using the hmrMotionArtifact
on the OD time-series after the CBSI correction.

In the processing streams for the rejection method and the no
motion correction method, the same band-pass filter was applied to
the OD data, which were then converted into concentration changes.
For the no motion correction method the mean HRF was recovered by
block-averaging the trials related to the same stimulus type, while for
the rejection method, before computing the mean HRF, all trials
where a motion artifact was detected were rejected.
Metrics for comparison

In order to compare quantitatively the performance of the different
motion correction techniques, five metrics were defined. Since the true
hemodynamic response is unknown, these metrics were chosen in
order to provide measures of how physiologically plausible the HRFs
are. The hemodynamic response function observed by fNIRS is relatively
well understood and well documented (Huppert et al., 2006; Plichta et
al., 2007). Although its scale and duration are variable, certain features
of the HRF are essentially stable. For instance, the increase in localized
cerebral blood flow that gives rise to the HRF is known to take 1–2 s
to become apparent after the onset of stimulation.

Because in this particular data series themost commonmotion arti-
fact was present in the first 2 sec after the presentation of the stimulus,
the first metric we define is the area under the curve computed on the
mean HRF for the first two seconds after stimulus onset (AUC0–2). We
assume that the lower this index, the better the correction of the
artifact.

The secondmetric we computed is the ratio between the area under
the curve (AUC ratio) of the mean hemodynamic response between 2
and 4 s (AUC2–4) and AUC0–2. This assumes that the hemodynamic re-
sponse will reach its maximum between 2 and 4 s after the onset of
the stimulus.

The third metric we define is the mean of the standard deviation of
the single-trial (i.e. un-averaged) hemodynamic responses used in the
computation of the mean hemodynamic response. We refer to this as
the within-subject standard deviation (SD), and it should take into ac-
count the variability present in every subject. We assume, as a first ap-
proximation, that the variability between hemodynamic responses is
predominantly due tomotion artifacts, while the physiological variabil-
ity between them plays a minor role (and should be ideally constant
among the techniques). Our dataset provides 1440 values (18 subjects,
20 channels, 4 conditions) of each of these three metrics (AUC0–2, AUC
ratio and within-subject SD).

The fourth metric we computed is the standard deviation be-
tween subjects for a given channel and condition, referred to as
between-subject SD. This index considers the variability present be-
tween subjects. The total number of values obtained is 80 (20 chan-
nels and 4 conditions).

Finally, the fifth metric is the number of trials averaged for every
subject and condition in order to compute themeanHRF. Every channel
has the same number of trials block-averaged, because, after correction,
when a motion artifact was identified, the trials related were removed
from every channel. For this last metric a total of 72 values were
obtained (18 subjects and 4 conditions).

In the results that follow, all motion correction techniques were
compared to the no motion correction approach and to each other
using these 5 metrics.

Results

A summary of the results of the metrics AUC0–2, AUC ratio and
within-subject SD computed for all techniques, for both HbO and HbR,
are reported in Fig. 3. Fig. 4 shows the mean number of trials averaged
to obtain the final HRF with every technique, normalized to the mean
number of trials averaged with the no motion correction technique. A
repeated measure ANOVA with technique as a within-subject factor
has been computed for all thesemetrics. Every subject was represented
by a unique value for every technique, obtained by averaging all values
of the subject across channels and conditions. Amain effect of technique
has been found for all the metrics (all p b .01). Two-tail paired t-tests
were then performed to compare all the techniques to each other
using these metrics. Results are reported in Figs. 3 and 4.

The pattern of results for HbO and HbR are consistent. For AUC0–2,
no correction, rejection and spline interpolation present the highest
values and the highest standard deviations; the other techniques
present lower values, withWavelet, CBSI, Kalman and PCA_97 show-
ing less variability.

The CBSI and Kalman techniques produce the highest AUC ratio,
followed by Wavelet. For this metric, no correction and rejection ex-
hibit the worst performance.

Wavelet and PCA_97performverywell in reducing thewithin-subject
SD, while no correction and Spline yield the highest standard deviation.

Wavelet is the only technique able to recover all trials (Fig. 4). The
worst performing technique for this metric is obviously rejection;
about 40% of the trials have been rejected due to motion artifacts.
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In Fig. 5 four examples of the recovered HRF for all techniques are
displayed.
2.00

1.50

0.50
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Fig. 4. Bar plots with the mean number of trials averaged for each technique normal-
ized to the mean number of trials averaged with the no motion correction technique;
the error bars represent the standard deviation. The lines above indicate whether the
techniques that they link together differ significantly from each other (p b .05 if blue,
p b .01 if red).
Rejection vs. no motion correction

Scatter plots of the AUC0–2 computed on the mean HRFs recovered
via rejection (y axis) and no motion correction (x axis) are shown in
Figs. 6a,b for both HbO and HbR. Performance of no correction and
trial rejection are comparable for both HbO and HbR. In one third of
cases, trial rejection decreases AUC0–2, suggesting that it is at least par-
tially successful in removing the motion artifact. In another ~ third of
cases however, rejection increases AUC0–2, compared to not rejecting
the trials. In the final third of cases no motion artifacts have been iden-
tified and therefore the two techniques give the same results. No statis-
tically significant differences have been found between the two
techniques for this metric (paired t-tests: p = .475 for HbO and p =
.358 for HbR).

The same conclusions can be drawn for the AUC ratio metric (data
not shown). No statistically significant differences have been found be-
tween the two techniques (paired t-test: p = .487 for HbO andmargin-
ally significant p = .072 for HbR) for this metric. It is clear how
rejecting trials is characterized by a variable efficacy.

For the between-subject SD metric, the rejection method per-
forms worse than the no motion correction one, increasing the stan-
dard deviation among the subjects' mean HRF (65% of the time for
HbO and 60% for HbR). This is probably due to the very noisy mean
HRFs obtained from those subjects where many trials have been
rejected.

The rejection method, instead, performs better than the no motion
correction technique in thewithin-subject SDmetric (Figs. 6c,d). Statis-
tically significant differences have been found between the two tech-
niques (paired t-tests: p b .05 for both HbO and HbR). Indeed, the
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Fig. 3. Box plots of the AUC0–2, AUC ratio and within-subject SD computed for all techniqu
indicates the median, while the two extremities of the box plot represent the first and third
represent the significant statistical difference (p b .05 if the line is blue, p b .01 if the line i
cases where a lot of trials have been rejected have very low influence
on the performance of this index. It shows how rejecting trials where
amotion artifact had been detected is effective in reducing the standard
deviation between trials in the same subject.
Motion correction techniques vs. no motion correction

Scatter plots of AUC0–2, between-subject SD and within-subject SD
values computed on themeanHRFs recovered via the nomotion correc-
tion method (x axis) and all the other techniques (y axis) are shown in
Figs. 7, 8, 9 for both HbO and HbR.
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es and for both HbO (upper row) and HbR (bottom row). The red line in the box plot
quartile. Red crosses indicate outliers. The lines above linking the different techniques
s red).



Fig. 5. Examples of recovered mean HRFs for four selected subjects, channels and tasks for every technique for both HbO (solid line) and HbR (dashed line). HbR HRFs have been
shifted in baseline towards negative values for visualization purposes only. In a) Wavelet and CBSI provide some minimization of the motion artifact, while PCA_80 increases it. In b)
all techniques but PCA_97 are able to recover physiological HRFs, no motion correction included; PCA_97 highly underestimates the HRF. c) is an example of PCA_80 and PCA_97
adding a motion artifact in a motion-free channel and d) is an example of a channel in one subject where the Kalman filter is unstable. Gray line represents the actual task duration,
850 ms, which is the grand average of the reaction times, i.e. the time needed by participants between the appearance of the word and the color being pronounced.
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The wavelet technique is the most effective at reducing AUC0–2

(Figs. 7a,b), with a tendency to have a slightly detrimental effect
(7% of the times) when the value of AUC0–2 is already low when no
motion correction technique is applied. Kalman, CBSI and PCA_97
also perform well, reducing AUC0–2 compared to the no motion cor-
rection method (83, 74, 76% of the cases for HbO and 85, 63 and 72%
for HbR), although the variability is higher compared toWavelet. The
PCA_80 approach performs slightly worse, increasing the area under
the curve in 37% and 42% of cases for HbO and HbR, respectively. All
these changes achieve statistical significance (all p b .01). The spline
technique has little effect; marginally significant differences have
been found between Spline and no motion correction for HbO,
while significant differences have been found for HbR (paired
t-tests: p = .091 for HbO while p b .05 for HbR).

The Kalman filter is the most efficient technique in increasing the
AUC ratio, followed byWavelet and CBSI (statistically significant dif-
ferences, all p b .05, but CBSI in the HbO case p = .162). There is a
high percentage of cases where these techniques decrease the AUC
ratio, compared to no motion correction. Possibly, the amplitude of
the HRF in the 2–4 s window is driven by the motion artifact leading
to a bigger AUC ratio than when the artifact is removed. Both Spline
and PCA_80 have no statistically significant differences with the no
Fig. 6. a) and b) Scatter plots of the AUC0–2 metric computed with the rejection technique (y
and HbR (b). Trial rejection decreases AUC0–2 36% of the time for HbO and 37% for HbR, but i
identical for both techniques. c) and d) Scatter plots of the within-subject SD metric compu
technique (x axis) for both HbO (c) and HbR (d). Trial rejection decreases the standard dev
motion correction technique (paired t-tests: p = .510 and p = .307
for PCA_80 HbO and HbR respectively, p = .434 and p = .247 for
Spline HbO and HbR respectively). PCA_97 obtains the worst result,
performing significantly worse than the no motion correction tech-
nique in the HbO case (paired t-test: p b .05), while marginally signifi-
cant differences have been found for HbR (paired t-test: p = .069).

Except Spline, all techniques significantly reduce the within-subject
SD (Figs. 8a,b) (paired t-tests: all p b .05, Spline: p = .372 for HbO and
p = .720 forHbR). Crucially, thewavelet technique is able to reduce the
standard deviation in 100% of cases.

The between-subject SD metric (Figs. 9a,b) shows the same pat-
tern of results as the previously described metric, with Wavelet
outperforming the other techniques and Spline performing poorly.

Discussion

Several comparisons of motion correction techniques have been
performed using simulated data, but little is known about their perfor-
mance on real data. It is thus important to study their behavior in a real
situation. The methods chosen for comparison are motion correction
approaches that do not require any additional measurements. Themet-
rics used here for comparative purposes aim to quantify whether the
axis) vs. that computed with no motion correction technique (x axis) for both HbO (a)
ncreases it in almost the same percentage of cases. 28% of the times the AUC0–2 value is
ted with the rejection technique (y axis) vs. that computed with no motion correction
iation 54% of the time for HbO and 51% for HbR compared to no motion correction.
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Fig. 7. Scatter-plots of the AUC0–2 metric for both HbO (a) and HbR (b): no correction (x axis) vs. Wavelet, CBSI, Kalman, Spline, PCA_80 and PCA_97 (y axis).

10
−2

10
0

10
2

10
−2

10
0

10
2

0%

100%

No Correction

W
av

el
et

10
−2

10
0

10
2

10
−2

10
0

10
2

4%

96%

No Correction

C
B

S
I

10
−2

10
0

10
2

10
−2

10
0

10
2

3%

97%

No Correction

K
al

m
an

10
−2

10
0

10
2

10
−2

10
0

10
2

32%

32%

No Correction

S
p

lin
e

10
−2

10
0

10
2

10
−2

10
0

10
2

21%

74%

No Correction

P
C

A
 8

0

10
−2

10
0

10
2

10
−2

10
0

10
2

5%

95%

No Correction

P
C

A
 9

7

Within−subject SD HbOa

10
−2

10
0

10
2

10
−2

10
0

10
2

0%

100%

No Correction

W
av

el
et

10
−2

10
0

10
2

10
−2

10
0

10
2

38%

62%

No Correction

C
B

S
I

10
−2

10
0

10
2

10
−2

10
0

10
2

4%

96%

No Correction

K
al

m
an

10
−2

10
0

10
2

10
−2

10
0

10
2

28%

36%

No Correction

S
p

lin
e

10
−2

10
0

10
2

10
−2

10
0

10
2

35%

59%

No Correction

P
C

A
 8

0

10
−2

10
0

10
2

10
−2

10
0

10
2

12%

88%

No Correction

P
C

A
 9

7

Within−subject SD HbRb

Fig. 8. Scatter-plots of the within-subject SD metric for both HbO (a) and HbR (b): no correction (x axis) vs. Wavelet, CBSI, Kalman, Spline, PCA_80 and PCA_97 (y axis).
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Fig. 9. Scatter-plots of the between-subject SD metric for both HbO (a) and HbR (b): no correction (x axis) vs. Wavelet, CBSI, Kalman, Spline, PCA_80 and PCA_97 (y axis).
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technique is able to recover physiological hemodynamic responses. The
AUC0–2 and AUC ratio metrics are very specific to this set of data, but
since the aim of the study is to compare the techniques in their ability
to correct for this particular type of low-frequency, task-related motion
artifact, we believe that these metrics are the most informative.

The first result of note relates to the use of trial rejection. Our data
shows that the rejection technique will sometimes provide an im-
provement compared to no correction for motion artifacts, although
it might sometime deteriorate the results. The no motion correction
technique and the rejection technique are highly dependent on the
number of motion artifacts present in the data and on the number
of trials available for averaging. If few motion artifacts are present
in the data and the related trials are removed, the rejection technique
can improve the recovery of the HRF. For instance, the cases where
the AUC0–2 metric is increased to a very high value compared to no
motion correction are cases where a large proportion of trials had
been removed. The number of trials rejected is subject-dependent:
there are some subjects where no trials were discarded and others
where almost all have been rejected. The mean number of trials re-
moved per subject is about 40% the number of total trials (160).

Furthermore, we suspect that the number of trials containing
motion artifacts is even higher, since due to its particular shape
and frequency, the artifact present in this data-series was not always
properly detected.

An efficient motion correction technique should be applicable in
cases where the number of motion artifacts is high and in cases
where it is low. The good results achieved by the rejection technique
in the within-subject SD metric are probably due to the fact that the
cases where most of the trials are discarded have less influence on
this parameter. This is mirrored in the between-subject SD metric,
where rejection performs worse than no correction: in this case, the
noisier mean HRFs recovered with very few trials have greater influ-
ence on the total result. In conclusion, the rejection approach is not
appropriate for this data set. It can only be used with good results
when the number of artifacts is small compared to the number of
trials.

Spline interpolation has been shown to achieve very good results
in previous publications (Cooper et al., 2012; Scholkmann et al.,
2010). However, this is not the case for this study. It shows little im-
provement compared to the no motion correction technique, both in
the metrics we define and in the shape of the recovered hemody-
namic response. The reason why Spline is not working well on this
data set is due to its dependence on the method of artifact detection.
As previously stated, themainmotion artifact present in this data-set
is difficult to detect because it has an amplitude and frequency con-
tent that are not dis-similar from physiologically components pres-
ent in the fNIRS signals. As a result, there are likely to be many
occasions where spline interpolation is not applied when it should
be, leading to the same results as the no motion correction tech-
nique. It is likely that spline interpolation would have achieved bet-
ter results if this motion artifact could have been more easily
identified or a new and more efficient motion detection technique
had been implemented.

Cooper et al. (2012) showed that PCA performed better than nomo-
tion correction, but at the same time, it was outperformed by the other
techniques. The same result is apparent here. In this study, PCAwas run
with two different targets for the percentage of variance to be removed:
80% and 97%.

Although all metrics but one suggest that PCA_97 is successful in
removing motion artifacts, the mean HRFs themselves show that
PCA_97 is simply removing the HRF itself. In this data-set not every
subject exhibited motion artifacts and not every motion artifact
was present in every channel. PCA orders components by how well
they explain the data; hence, if there are a lot of large amplitude ar-
tifacts, the first principal components will account for those artifacts.
In the data studied here, removing 97% of the variancemeans remov-
ing not only motion artifacts but also part of the recovered HRFs and
other physiological aspects of the signal. PCA run with 80% of the
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variance removed (PCA_80), instead, achieves the same pattern of
results that Cooper et al. (2012) found in their paper: it is able to re-
cover a significant number of trials and to significantly reduce AUC0–

2 and the standard deviation metrics compared to no motion correc-
tion. However, the improvements are negligible compared to those
of the other techniques.

An important problem with PCA is that it is a multi-channel
approach: it requires that an artifact is present in multiple channels.
Clearly this is not always true, particularly for artifacts arising from
movement of the facial muscles, which can be quite localized. This
is likely the cause of its poor performance. Another problem with
PCA applied to this data set is that its most basic assumption (that
the components of the signal are independent) is likely to be violated.
The motion artifact present in this data is temporally correlated with
the HRF, and therefore clearly not independent. The violation of this as-
sumption may also contribute to the poor performance of PCA.

The different results achieved with the two different percentages of
variance removed highlight the importance of choosing the correct
value for this parameter. The ideal value is clearly data-dependent. An
objective method to estimate the best percentage of variance to choose
could potentially be developed and wouldmake PCAmuchmore appli-
cable across a variety of data sets. PCA seems indeed more suited for
eliminating systemic oscillations (Cutini et al., in press; Virtanen et al.,
2009).

The discrete Kalman filtering approach is the best performing tech-
nique in the AUC ratio metric and performs very well in the AUC0–2 and
thewithin-subject SD. However, from Fig. 3, it can be noted that the var-
iability in the AUC0–2 metric, for example, is very large. This is reflected
in the fact that the poorest performance of the Kalman filter compared
to the other techniques is in the between-subject SD metric (Fig. 9). By
inspecting the recovered HRFs, it is clear that the Kalman filter is able to
recover physiologically plausible hemodynamic responses in most of
the subjects. However, in about 5 subjects out of 18, the filter is unstable
and the corrected signal is corrupted by noise (Fig. 5d). It is worth
re-stating that the Kalman filter requires, as does Spline, the identifica-
tion of artifacts prior to its application, whichmay also limit its success.
However, it is clear that the stability of theKalman filter approach has to
be improved in order for it to become an accepted motion correction
technique.

Wavelet filtering is the only technique able to recover all possible
trials. It is the best performing technique in the reduction of both the
standard deviation metrics, reducing it in 100% of cases compared to
that of no motion correction. It is the best performing approach also in
the AUC0–2 metric, reducing it in 93% of cases. Wavelet filtering does
not rely on any motion detection algorithm and it performs the best
for almost every metric computed. This result is significant because
thewavelet approachwas designed and (to date)mostly applied to cor-
rect for high frequency spike-like artifacts, while the motion artifact
present in this data-set is of a completely different form. Our results
therefore suggest that the wavelet approach can work very well with
different forms of motion artifacts, even those that are relatively subtle.
The main drawback of the wavelet approach is its high computational
cost and the possibility that it underestimates the HRF. It is likely that
somewavelet coefficients associated with the HRF are set to 0, because,
being that themotion artifact has a frequency near that of the hemody-
namic response, the coefficients belonging to the two entities are not
clearly distinct. Nevertheless, improvements in the probabilistic meth-
od used to detect wavelet coefficients related to the motion artifacts
might be a suitable way to further improve this technique and bypass
such drawback.

The correlation-based signal improvement technique shows a good
performance in all metrics, reducing both the standard deviations and
the AUC0–2 parameter. However, it relies on some assumptions that
are not always met. Most importantly, it assumes that HbO and HbR
are always positively correlated during an artifact and that the ratio of
HbO to HbR is constant, maintaining the same value also when the
artifact occurs. A failure to meet these hypotheses is likely to detrimen-
tally affect the performance of the CBSI method. A further drawback of
the CBSI technique is the fact that it recovers the HbR HRF signal from
that of the HbO HRF signal, such that they differ only by a constant neg-
ative value. This implies that the HbR hemodynamic response recov-
ered is not linked to the real data acquired and there are many cases,
particularly in the study of cerebral pathology, where such a rigid rela-
tion is likely to be breached (Obrig and Steinbrink, 2011).

For the type of motion artifact studied here, most of the tested cor-
rection techniques achieve good results, even if they are outperformed
bywavelet filtering. Previous studies have also shown that while wave-
let filtering is, on average, the best technique for motion artifact correc-
tion (Cooper et al., 2012; Molavi and Dumont, 2012), other techniques
can perform better for particular fNIRS datasets (Izzetoglu et al., 2010;
Scholkmann et al., 2010). Until a single, universally effective motion ar-
tifact correction method is finalized, the best approach for fNIRS analy-
sis may be to use an objective approach to select the most appropriate
technique specifically for each set of data. This can be performed using
themethods outlined in this paper. The two standard deviation metrics
we have proposed, aswell as the final number of trials recovered, can be
used as objective metrics to test the performance of different motion
correction approaches on different groups of data and thus select the
most appropriate technique for its analysis. It is only after many differ-
ent data-sets with different types of motion artifacts have been ana-
lyzed and compared using different motion correction techniques,
that a universal approach can be identified and accepted.

Conclusion

Motion artifact correction is an essential step in the fNIRS data pro-
cessing pipeline. All tested techniques produce an improvement in the
metrics computed compared to not correcting for motion artifacts.
However, the performance of spline interpolation and of PCA seems to
be variable depending on the data set used. We recommend using
them only when motion artifacts can be easily detected for the for-
mer and when motion artifacts are the principal source of variance
for the latter. The CBSI method is able to reduce the type of artifact
observed here, but it relies on stringent assumptions on the relation
between HbO and HbR that are not always met. The Kalman filter is
able to reduce motion artifacts, but can be unstable. The wavelet
filter is the most effective method of removing the low-frequency,
low-amplitude, HRF-correlated artifacts present in these data.
Given this result and that of previous studies, we believe that wave-
let filtering, with some improvements, has the potential to become a
standard method for correction of motion artifacts in fNIRS data.
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