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The relationship between TT̄ deformations and the uniform light-cone gauge, first noted by Baggio and
Sfondrini [Phys. Rev. D 98, 021902 (2018)], provides a powerful generating technique for deformed
models. We recall this construction, distinguishing between changes of the gauge frame, which do not
affect the theory, and genuine deformations. We investigate the geometric interpretation of the latter and
argue that they affect the global features of the geometry before gauge fixing. Exploiting a formal relation
between uniform light-cone gauge and static gauge in a T-dual frame, we interpret such a change as a
T-duality–shift–T-duality transformation involving the two light-cone coordinates. In the static-gauge
picture, the TT̄ Castillejo-Dalitz-Dyson factor then has a natural interpretation as a Drinfeld-Reshetikhin
twist of the worldsheet Smatrix. To illustrate these ideas, we find the geometries yielding a TT̄ deformation
of the worldsheet S matrix of pp-wave and Lin-Lunin-Maldacena backgrounds.
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I. INTRODUCTION

The study of two-dimensional quantum field theories
(QFTs) plays an important role in our understanding of
condensed matter systems, string theory—where the string
worldsheet is two dimensional—and QFT in general,
providing useful toy models that may capture interesting
physical features of higher-dimensional theories. Even
among two-dimensional models, only some rather special
theories can be understood in full detail, usually because
they enjoy additional symmetries such as conformal
invariance or integrability. Given such an exactly solvable
theory, it is interesting to try and deform it while main-
taining its solvability. A rather general class of such
deformations can be constructed out of the conserved
currents of a theory. A famous example is the marginal
deformation of a conformal field theory (CFT) by a
composite operator constructed out of one chiral and
one antichiral current: a JJ̄ deformation. Relevant defor-
mations of CFTs are also interesting, as they generate a

renormalization group flow and can give rise to families of
integrable theories.
More recently, irrelevant deformations have been con-

sidered, in particular the TT̄ deformation. This deformation
can be constructed for any two-dimensional Poincaré-
invariant QFT—conformal, integrable, or not—and it is
sourced by the determinant of the stress-energy tensor,
det½Tαβ� ¼ T00T11 − T01T10 [1]. Interestingly, this defor-
mation acts in a simple way on the spectrum of the original
theory: each energy level evolves according to an ordinary
differential equation (ODE) [2,3]. In a similar way, the
classical Hamiltonian and Lagrangian obey an ODE in the
space of fields, which can often be solved in closed form
[3,4]. Over the last three years, TT̄ deformations of a
number of integrable [3,5,6], as well as of more general
[7–10] theories have been considered.1

A striking link has emerged between string theory and
TT̄ deformations, fueled by the initial observation that the
TT̄ deformation of a theory of free bosons is related to
strings in flat space [3]; see also Refs. [30,31]. It was
subsequently understood [24] that the link between strings
and TT̄ deformations is much more general and becomes
particularly transparent in the uniform light-cone gauge of
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1Interesting applications to several classes of two-dimensional
theories, such as supersymmetric theories [11–15], two-
dimensional gravity [16–19] and AdS3=CFT2 holography
[20–29], have also emerged.
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Refs. [32–34]; see also Ref. [35] for a pedagogical review.
In fact, this framework can be used as a powerful technique
to generate TT̄-deformed actions: finding the deformed
Hamiltonian requires solving an algebraic equation rather
than an ODE [11,36]. Moreover, this approach can be
applied to general current-current deformations [37] of the
type considered in Refs. [38–44].
The link between TT̄ deformations and string theory in a

uniform light-cone gauge is the focus of this paper. Given a
two-dimensional model to be deformed, it can be uplifted
to a reparametrization-invariant model by adding two extra
fields, where fixing a particular light-cone gauge gives back
the original model. The uniform light-cone gauge admits a
family of gauge frames; however, a change of frame mimics
the TT̄ deformation. Changing the gauge parameter a
affects the relation between volume, R, and energy Hw:s:

R ¼ R0 þ aHw:s:; ð1:1Þ

in a way that is typical for TT̄ deformations [2,3]. In string-
theory languageHw:s: is the worldsheet Hamiltonian which
also depends on a, precisely so that the a dependence
cancels in physical quantities like the spectrum. It is then
important to distinguish between mere changes of gauge
frame, and genuine deformations.
For genuine deformations the change of the Hamiltonian

density is not compensated by a redefinition of the
worldsheet length, and hence the spectrum changes as
for a TT̄ deformation. We consider this case and study the
effect of the deformation on the uplifted geometry. We will
argue that this deformation does not affect the geometry
locally, but does so globally. Exploiting a formal relation
between uniform light-cone gauge and static gauge [45],
we can make the geometric interpretation of the deforma-
tion more transparent, and recast it as a T-duality–shift–
T-duality (TsT) transformation [46] involving the two
longitudinal coordinates. Indeed, in a string sigma model,
such TsT transformations can equivalently be understood
as a twist of the boundary conditions of the involved
coordinates [47–49], rather than a genuine modification of
the local geometry. For integrable models, such a twist of
the boundary conditions results in a twist of the Bethe-Yang
equations [50]. Equivalently, from the point of view of the
deformed geometry, a TsT transformation in general leads
to a Drinfeld-Reshetikhin twist [51,52] of the worldsheet S
matrix [53,54]. Taking this view, we can interpret the
Castillejo-Dalitz-Dyson (CDD) factor [55] arising from TT̄
deformation [2,3] as such a Drinfeld-Reshetikhin twist
based on the Cartan charges corresponding to the two
longitudinal directions. This reinforces the identification
between TT̄ deformations and gauge fixing. In fact, the TT̄
CDD factor can be taken as a definition of such a
deformation [3].
We can apply these ideas to construct integrable

deformations of superstring backgrounds. The resulting

geometries are such that once a light-cone gauge is fixed,
the associated worldsheet S matrix differs from the unde-
formed one precisely by the TT̄ CDD factor. In the case
of AdS5 × S5, we can for instance construct a string
background which yields a TT̄ deformation of Beisert’s
S matrix [56] in the “string frame” of Ref. [57], preserving
integrability by virtue of being a TT̄ deformation. We
can also consider nonintegrable geometries, although the
resulting spectral problem will be less tractable. As an
illustration we consider Lin-Lunin-Maldacena (LLM)
backgrounds, where the deformation has a particularly
clean interpretation.2

This paper is structured as follows. In Sec. II we review
the uniform light-cone gauge and its relation with TT̄
deformations. In Sec. III we discuss the geometrical
interpretation of such deformations, the relation to TsT
transformations, and the interpretation of the CDD factor
as a Drinfeld-Reshetikhin twist. In Secs. IV and V we
illustrate our arguments on pp-wave and LLM back-
grounds respectively. We present some concluding remarks
in Sec. VI. Our results can be straightforwardly generalized
to the case of current-current deformations involving a uð1Þ
current J, such as JT̄ or TJ̄ deformations; we briefly
discuss this in the Appendix.

II. TT̄ DEFORMATIONS AND UNIFORM
LIGHT-CONE GAUGE

The relationship between TT̄ deformations and
uniform light-cone gauge3 was first noted in Ref. [24]
and subsequently exploited to construct TT̄-deformed
Lagrangians; see Ref. [11] and in particular Refs. [36,37].
Wewill briefly review this construction as it is central to our
subsequent discussion.

A. Uniform light-cone gauge

Consider a two-dimensional nonlinear sigma model with
action

S ¼ −
1

2

Z þ∞

−∞
dτ

Z
R

0

dσðγαβ∂αXμ∂βXνGμνðXÞ

þ εαβ∂αXμ∂βXνBμνðXÞÞ; ð2:1Þ

whereGμνðXÞ denotes the metric, BμνðXÞ is the B field, and
X collectively denotes the fields of the model. γαβ denotes
the two-dimensional worldsheet metric, which we take to
have unit determinant and signature ð−;þÞ, matching the
overall sign of the action.
Classically this model is reparametrization invariant. We

are currently interested in the classical theory and will not

2The (non)integrability of LLM geometries was discussed in
Ref. [58].

3The uniform light-cone gauge was introduced in
Refs. [32–34] and was reviewed in detail in Ref. [35].
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assume that the metric and B field describe a string
background. We do assume that the metric has at least
two shift isometries: one for a time-like coordinate t,
t → tþ δt, and one for a space-like coordinate ϕ,
ϕ → ϕþ δϕ. By Noether’s theorem these yield two con-
served charges

E ¼ −
Z

R

0

dσ pt; and J ¼
Z

R

0

dσ pϕ; ð2:2Þ

for shifts in t and ϕ respectively. Here we introduced the
momenta pμ, canonically conjugated to Xμ

pμ ¼
δS

δ∂τXμ ¼ −γ0β∂βXνGμνðXÞ − X́νBμνðXÞ; ð2:3Þ

and we use primes for space derivatives, X́ν ≡ ∂σXμ.
In the first-order formalism the action takes the form

S ¼
Z þ∞

−∞
dτ

Z
R

0

dσ

�
pμ

_Xμ þ γ01

γ00
C1 þ

1

2γ00
C2

�
; ð2:4Þ

where the worldsheet metric acts as a Lagrange multiplier
giving the Virasoro constraints:

0 ¼ C1 ¼ pμX́
μ;

0 ¼ C2 ¼ pμpνGμν þ X́μX́νGμν þ 2GμνBνρpμX́
ρ

þGμνBμρBνλX́
ρX́λ: ð2:5Þ

Choice of the light-cone coordinates.—We now use the
isometric coordinates t and ϕ to construct light-cone
coordinates X�, to be used in the gauge fixing. These
coordinates are typically introduced as

X� ¼ 1

2
ðϕ� tÞ; ð2:6Þ

but it is convenient to generalize this choice by introducing
two parameters a and b

Xþ ¼ aϕþ ð1 − aÞt; X− ¼ ð1 − bÞϕ − bt;

Δab ≡ 1 − a − bþ 2ab ≠ 0; ð2:7Þ

so that we have

pþ ¼ b
Δab

pϕ þ
1 − b
Δab

pt; p− ¼ 1 − a
Δab

pϕ −
a
Δab

pt:

ð2:8Þ

Let us note that if b ¼ 1, then pþ ∼ pϕ with no dependence
on pt. We will see below that this case is pathological, so
we shall always assume b ≠ 1.
Uniform light-cone gauge fixing.—The uniform light-

cone gauge is fixed by imposing

Xþ ¼ τ; p− ¼ 1

1 − b
; ð2:9Þ

identifying the worldsheet time τ with the target space
direction Xþ, and making the momentum density for
p− constant. The choice of this constant is a matter of
future convenience; it is compatible with our requirement
that b ≠ 1. We can then eliminate the two remaining
longitudinal degrees of freedom X− and pþ through the
Virasoro constraints (2.5), obtaining

0 ¼ C1 ¼ pþX́þ þ p−X́
− þ piX́

i ⇒

X́− ¼ −ð1 − bÞpiX́
i; ð2:10Þ

while C2 ¼ 0 gives a quadratic equation for pþ.
4 The above

fixes X́− but not X− itself, as is to be expected for an
isometric coordinate; the action depends only on dX−. Of
course X− satisfies appropriate boundary conditions, which
we take to be periodic.5 This gives the level matching
constraint

0 ¼
Z

R

0

dσX́− ¼
Z

R

0

dσð−piX́
iÞ ¼ Pw:s:; ð2:11Þ

where we identified the final integral with the total
momentum on the worldsheet Pw:s: since −piX́

i is the
charge density for the symmetry σ → σ þ δσ.
In the end, the action (2.4) depends only on transverse

degrees of freedom, becoming

S ¼
Z þ∞

−∞
dτ

Z
R

0

dσ pμ
_Xμ

¼
Z þ∞

−∞
dτ

Z
R

0

dσðpi
_Xi − ð−pþÞÞ; ð2:12Þ

where we dropped a total derivative _X−. This identifies
−pþ as the worldsheet Hamiltonian,

Hw:s: ¼ −
Z

R

0

dσ pþðXi; X́i; piÞ; ð2:13Þ

which is expected because Hw:s: is canonically conjugated
to τ and hence to Xþ. As for p−, we find that in this gauge

P− ¼
Z

R

0

dσ p− ¼ R
1 − b

: ð2:14Þ

To conclude, the worldsheet HamiltonianHw:s: and volume
R are related to the target space energy E and (angular)
momentum J as

4This may degenerate into a linear equation should Gþþ ¼ 0
for some particular choice of a and b.

5It is possible to consider more general boundary conditions,
for instance involving winding along ϕ if its range is compact; see
e.g., Refs. [35,36].
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Hw:s: ¼
ð1 − bÞE − bJ

Δab
;

R ¼ 1 − b
Δab

ðð1 − aÞJ þ aEÞ ¼ J þ aHw:s:: ð2:15Þ

Clearly b ¼ 1 is a singular choice, as we would be
matching the worldsheet Hamiltonian with the potentially
quantized (angular) momentum J. Finally, unless a ¼ 0,
the volume R in which the theory will be quantized will be
state dependent: it depends on the energy of each given
state. This is a first indication of a relation with TT̄
deformations.
Choices of the parameters a and b.—Let us briefly

comment on some features of this perhaps somewhat
unconventional gauge choice. The parameter b allows us
to change the relation between Hw:s: and E. Strictly
speaking, the uniform light-cone gauge corresponds to
the choice where Hw:s: is the light-cone Hamiltonian,
Hw:s: ¼ E − J,6 achieved at b ¼ 1=2:

b ¼ 1

2
∶ Hw:s: ¼ E − J; R ¼ J þ aHw:s:: ð2:16Þ

Another simple choice is b ¼ 0, basically identifying the
worldsheet Hamiltonian with E:

b ¼ 0∶ Hw:s: ¼
E

1 − a
; R ¼ J þ aHw:s:: ð2:17Þ

In either case, the choice a ¼ 0 looks simple as it fixes the
volume of the theory in terms of the charge J, and hence
does not depend on the state, or more precisely, different
choices of J yield different superselection sectors that may
be studied separately.

B. Changing the gauge frame

We now come to the relation between the light-
cone gauge—in particular, the parameter a introduced in
Eq. (2.7)—and TT̄ deformations. This was first dis-
cussed in Ref. [24] and in greater detail in Ref. [36],
building on existing literature on the uniform light-cone
gauge [32–35].
Changes of gauge frame and the Hamiltonian.—Varying

the parameters a and b introduced in Eq. (2.7) cannot have
any physical consequence. It is simple to understand this
for a variation of b, with a fixed. Such a change of course
modifies the spectrum of Hw:s:, but will not affect the
spectrum of E, defined through Eq. (2.15); it is quite simply
a linear redefinition of the operator whose spectrum we
are computing. When varying a things are more subtle

(keeping b fixed for simplicity). Now R varies, and
moreover the Hamiltonian density−pþðXi; X́i; piÞ depends
explicitly on a. Hence formally we must have

0 ¼ d
da

Hw:s: ¼ −
d
da

Z
JþaHw:s:

0

dσ pþðXi; X́i; pi; aÞ:

ð2:18Þ

This property is well known in the context light-cone gauge-
fixed strings [35], and has also been verified perturbatively
for a number of models; see e.g., Refs. [27,59,60].
Changes of gauge frame and the S matrix.— It is

instructive to consider the condition (2.18) for models
described by a factorized S-matrix and Bethe ansatz. In
terms of particles corresponding to the fields Xi, with
worldsheet momentum p and energy ωiðpÞ,7 the inter-
actions of Hw:s: translate to a nontrivial S matrix. If this S
matrix is factorizable we need only the 2-to-2 scattering

matrix S
i0
2
i0
1

i1i2
ðp1; p2;aÞ, which depends on a, like Hw:s:. The

energy of a state with momenta p1;…pM can be computed
for asymptotic states, where all particles are approximately
free and

Pw:s: ¼
XM
k¼1

pk; Hw:s: ¼
XM
k¼1

ωikðpkÞ: ð2:19Þ

In finite volume R the momenta are quantized, as pre-
scribed by the Bethe-Yang equations, which for diagonal
scattering take the form8

eipjRðaÞ
YM
k≠j

S
ikij
ijik

ðpj; pk;aÞ ¼ 1: ð2:20Þ

Already in Ref. [57] it was argued that the a dependence of
the S matrix takes the form

S
ikij
ijik

ðpj; pk; aÞ ¼ eiaΦðpj;pkÞSikijijik
ðpj; pkÞ; ð2:21Þ

with

Φðpj; pkÞ ¼ pkωijðpjÞ − pjωikðpkÞ: ð2:22Þ

6For several string backgrounds this choice preserves some
manifest supersymmetry, protecting the corresponding vacuum
from quantum corrections and simplifying quantization of the
theory.

7The worldsheet momentum p should not be confused with the
conjugate momenta pμ. The index i denotes the flavor of the
particle.

8Nondiagonal S matrices can be incorporated by the nested
Bethe ansatz, and the following arguments can be repeated to
arrive at the same conclusion. The exact spectrum also incorpo-
rates finite-size effects (exponentially suppressed in R) [61,62].
These can be accounted for by the thermodynamic Bethe ansatz
[63,64], with again the same conclusion.
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This is a CDD factor [55], meaning that it solves the
homogeneous crossing equation, regardless of the specific
form of ωiðpÞ. Using that Pw:s: ¼ 0, we get

eipkðJþaHw:s:Þe−iapkHw:s:

YM
k≠j

S
ikij
ijik

ðpj; pkÞ ¼ 1; ð2:23Þ

which indeed is a independent.

C. TT̄ deformations vs gauge-frame choices

The relation between the uniform light-cone gauge
and TT̄ deformations [24,36] is now clear. First, the
dependence of the volume R on the energy Hw:s: is
precisely such as to reproduce the Burgers equation
[2,3]. Second, the phase factor Φðpj; pjÞ is precisely the
TT̄ “CDD factor” of Refs. [3,30,31]. Indeed for a
relativistic theory with p ¼ m sinh θ and ωðpÞ ¼
m cosh θ we have Φðpj; pkÞ ¼ mjmk sinhðθk − θjÞ.
What is important to note is that the change of gauge
frames described above does not generate a new theory;
indeed we have stressed that a change of a does not
affect the spectrum of Hw:s: [see Eq. (2.18)]. What
would generate a deformation of the TT̄ type is to
deform the Hamiltonian density −pþðXi; X́i; pi; aÞ by
tuning a, without redefining the volume R accordingly.
In this sense the a dependence of the light-cone gauge
frame can be used to generate TT̄-deformed
Hamiltonian and Lagrangian densities [11,36]. In a
similar way, a variation of the frame parameter b also
induces a deformation if we vary the Hamiltonian
density −pþðXi; X́i; pi; bÞ without changing the relation
between Hw:s:, E and J of Eq. (2.15).
Our next goal will be to understand such deformations,

in particular those related to a, in geometric terms. Let us
introduce an ad hoc notation to denote deformations (as
opposed to changes of the gauge frame),

a → ā ¼ a − δa; b → b̄ ¼ b − δb; ð2:24Þ

meaning that δa and δb are deformation parameters,
which generate genuinely new theories. In particular, the
parameter δa is proportional to the TT̄ deformation
parameter.

III. DEFORMED BACKGROUNDS
FROM TT̄

We just reviewed how the TT̄ deformation of a
bosonic theory can be described by coupling it to two
additional isometric coordinates t and ϕ and endowing it
with parametrization invariance. Then the TT̄-deformed
Hamiltonian (or Lagrangian) density may be obtained
from gauge fixing this parent theory and varying the
gauge-frame parameter a while keeping the worldsheet

size R fixed.9 It is natural to ask what the geometrical
interpretation of the deformed parent theory is. For
instance, let us take a string background, fix uniform
light-cone gauge, and then vary the parameters a, b in
−pþðXi; X́i; pi; a; bÞ but not in Eq. (2.15). What geom-
etry would lead to such a gauge-fixed theory?

A. TT̄ deformations as a coordinate shift

Let us begin by considering the TT̄ deformation in terms
of reparametrizing the light-cone coordinates. The effect of
changing a and b in our light-cone parametrization
amounts to

Xþ → Xþ þ δa
X− þ ð2b̄ − 1ÞXþ

Δā b̄
;

X− → X− − δb
Xþ − ð2ā − 1ÞX−

Δā b̄
; ð3:1Þ

where the X� on the right-hand side are our new light-cone
coordinates. It may seem that such a redefinition is trivial.
Indeed this linear map is certainly a local diffeomorphism.
Hence locally the new metric that we obtain from such a
shift will be equivalent to the original one. This does not
mean that the geometry will be the same globally, unless we
also modify the boundary conditions of the field X�
according to the shift (3.1), and unless we redefine the
interpretation of the charges P�. Purely the coordinates
result in a different spectrum for the gauge-fixed theory. It
is instructive to work this out in some detail for some
examples, such as pp waves and flat space, or AdS5 × S5

and LLM geometries. We will do so in Secs. IV and V.
Before doing so we will discuss a more general and
transparent way to understand the geometric effect of the
shift (3.1), by exploiting a formal relation between the
uniform light-cone gauge and the static gauge [45].

B. From uniform light-cone gauge
to static gauge

In the Hamiltonian or first-order formalism one fixes a
light-cone gauge by fixing Xþ ¼ τ and p− ¼ ð1 − bÞ−1, as
in Eq. (2.9). Alternatively, as shown in Ref. [45], we can
obtain the same result, by T dualizing the action in X−,
integrating out the worldsheet metric, and fixing Xþ ¼ τ
and the T-dual coordinate X̃− ¼ σ=ð1 − bÞ, i.e., fixing a
static gauge. Let us briefly review why this is the case.
To perform T duality in the X− direction we gauge the

shift symmetry for X−, replacing

∂αX− → ∂αX− þ Aα ð3:2Þ
in the Lagrangian, and adding the term X̃−ϵαβ∂αAβ,

9More general actions and deformations may be studied in the
same way, and we refer the reader to Refs. [36,37] for a detailed
discussion of these points.
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Lð∂αXþ; ∂αX−; XiÞ → Lð∂αXþ; ∂αX− þ Aα; XiÞ
þ X̃−ϵαβ∂αAβ; ð3:3Þ

where the Lagrange multiplier field X̃− ensures that Aα is
flat and hence pure gauge. Integrating out X̃− gives back the
original Lagrangian, while integrating out Aα gives the
Lagrangian of the T-dual model. Upon integrating out Aα

we in particular need to take into account the equation of
motion for Aτ

∂σX̃− ¼ ∂L
∂ _X− ¼ p−; ð3:4Þ

where p− is the momentum conjugate to the original light-
cone coordinate X−. We see that the gauge condition p− ¼
1=ð1 − bÞ translates to

X̃− ¼ σ

1 − b
; ð3:5Þ

in the T-dual picture. The range of σ in the T-dual picture is
fixed by the requirement that X̃− winds an integer number
of times. This matches with the intuition that T duality
interchanges winding and momentum modes, so that a
vacuum with nonzero momentum P− along X− has nonzero
winding along X̃−. On the other hand, since we considered
no winding along X− in the original theory, we will have no
momentum along P̃−.

10 To understand the physical mean-
ing of P̃− we recall that p̃− is canonically conjugated to
X̃− ∼ σ. Indeed using the Virasoro constraint C1 we have

0 ¼ C1 ¼ 2p̃− þ piX́
i ⇒ P̃− ¼ 1

2
Pw:s:; ð3:6Þ

so that a state with zero winding in the original theory is
level matched in the T-dual description. In summary, fixing
a uniform light-cone gauge is equivalent to T dualizing in
X− and fixing a static gauge instead. This procedure has
been applied in setups of increasing generality in
Refs. [59,65,66].

C. TT̄ in the T-dual picture

Now let us compare light-cone gauge fixing with two
different choices of “gauge” parameter from the T-dual
perspective, having in mind to keep R fixed. Starting with a
parent theory T ða; bÞ with gauge parameters a and b, we
can T dualize in X− to obtain a dual model, T̃ ða; bÞ, whose
static gauge version is equivalent to the light-cone gauge
version of the original. In the parent theory we can vary our
choice of gauge parameters, where a → ā ¼ a − δa and
b → b̄ ¼ b − δb, corresponds to the coordinate redefinition

(3.1). In this resulting theory, we can fix a light-cone gauge
with respect to our new light-cone gauge coordinates, and
again view this from a T-dual perspective. All in all this
gives us two theories that in the static gauge are related by a
change of the gauge parameters a and b:

ð3:7Þ

where all arrows can be traversed in the opposite direction
as well of course. Clearly, T̃ ða; bÞ and T̃ ðā; b̄Þ are related
by a T duality in X̃−, followed by the coordinate redefi-
nition (3.1), followed by another T duality in X−. If we
specialize this to the case corresponding to a TT̄ trans-
formation only, i.e., δb ¼ 0 and b ¼ b̄ ¼ 1=2, the trans-
formation (3.1) is simply a shift,

Xþ → Yþ ¼ Xþ þ 2δaX−; X− → Y− ¼ X−: ð3:8Þ

Hence the diagram above yields precisely a TsT sequence:

ð3:9Þ

As we remarked, changing the light-cone gauge
parameters while keeping the string length fixed—a TT̄
deformation—results in a change of the original back-
ground that is rather subtle, as it affects the global
aspects of the geometry. However, things change consid-
erably by T dualizing and viewing the TT̄ deformation as a
TsT transformation. In the TsT picture, the deformation is
a true deformation of themetric, and cannot be removed by a
diffeomorphism (at least in general). This gives us a family
of backgrounds, which in static gauge manifestly give us a
Lagrangian density equal to the TT̄ deformation of the
original light-cone gauge-fixed string. If we treat the
parameter in this family of backgrounds as a gauge param-
eter, i.e., we also vary the string length [P− ¼ P−ðaÞ], we do
nothing. In the dual picture, we would have to adjust the
periodicity conditions of X̃−, because hereR is related to the
range of X̃−, and momentum becomes winding:

10Winding (dual momentum) can be incorporated in the gauge
fixing; see e.g., Ref. [37]. Here we focus on the simplest setting,
which suffices to obtain the relation between backgrounds.
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ð3:10Þ

This is in agreement with the fact that a TsT transformation
can be undone by a twist of the boundary conditions of the
coordinates involved [47], and in line with our expectation
that only global features of the geometry are affected. Here,
the nontrivial metric deformation is exactly what wewant to
keep. In other words, doing a TT̄ deformation instead
of a gauge transformation from the T-dual perspective
amounts to redefining the metric without keeping track
of any twist of the boundary conditions. Hence the TsT
approach makes more manifest the geometrical effect of a
TT̄ deformation.

D. TsT and boundary conditions

As we mentioned, it is well established that a TsT
transformation of a sigma model is classically equivalent
to twisting the boundary conditions of the sigma model
before the TsT transformation [47–49]. These twisted
boundary conditions affect the fields associated with the
TsT transformation, in our case Xþ and X−. Concretely a
TsT transformation of the type (3.9) corresponds to the
boundary conditions

YþðRÞ − Yþð0Þ ¼ XþðRÞ − Xþð0Þ þ 2δaP̃−;

Ỹ−ðRÞ − Ỹ−ð0Þ ¼ X̃−ðRÞ − X̃−ð0Þ − 2δaPþ: ð3:11Þ

Such a twist of the boundary conditions can usually be
equivalently viewed as a Drinfeld-Reshetikhin twist [51,52]
of the S matrix, of the form

S → eiγϵ
klQ̂k⊗Q̂lS; ð3:12Þ

for some γ ∈ R and depending on the Cartans Q̂j relative to
the twisted coordinates. This picture, and the effect of this
twist, is quite clear when such Cartans act linearly on the
particles of the theory; in the simplest case, they correspond
to the particle flavors, and Q̂j is proportional to the number
operator for a given particle flavor. In our case the situation
is not as transparent, because the charges corresponding to
Pþ and P̃− are not number operators in the Fock space. In
general, the charges corresponding to the longitudinal
isometries may not be linearly realized on the Fock space.
However for our particular gauge choice, both Pþ and P̃−
act diagonally on a single-particle state. To evaluate the
value of Pþ and P̃− on a one-particle state of momentum pj

we have to recall the static-gauge fixing, which for b ¼ 1=2
takes the form Xþ ¼ τ, X̃− ¼ 2σ. Then as we have seen in

Eqs. (2.12) and (3.6) we have that Hw:s: ¼ −Pþ and
Pw:s: ¼ 2P−, so that

PþðpjÞ ¼ −ωjðpjÞ; P̃−ðpjÞ ¼
1

2
pj: ð3:13Þ

Based on this, we expect the S matrix to undergo a
Drinfeld-Reshetikhin twist of the form (3.12). Con-
sidering for simplicity an S matrix of the form (2.21) such
a twist would yield

S
ikij
ijik

ðpj; pkÞ → S
ikij
ijik

ðpj; pk; δaÞ
¼ e2iδa½P̃þðpjÞP−ðpkÞ−P−ðpjÞP̃þðpkÞ�Sikijijik

ðpj; pkÞ
¼ eiδa½pjωik

ðpkÞ−pkωij
ðpjÞ�Sikijijik

ðpj; pkÞ: ð3:14Þ

We see that this precisely matches the CDD factor (2.22).
Below we will illustrate these ideas with some examples.

IV. FIRST EXAMPLE: pp-WAVE GEOMETRIES

Let us consider a pp-wave metric

ds2 ¼ 4dXþdX− − VðXiÞdXþdXþ þ dXidXi: ð4:1Þ

We will consider the case where the theory has a quadratic
action and is hence solvable, which is the case when

V ¼ const; or VðXiÞ ¼
X
i

ðμiXiÞ2: ð4:2Þ

In practice we could complete this to a supersymmetric
model, as well as possibly include a nontrivial B field with
H ¼ dB ¼ CijdXþ ∧ dXi ∧ dXj,11 but we will refrain
from doing so to avoid cluttering our analysis. In fact,
our analysis will be perhaps most interesting in the simplest
case VðXiÞ ¼ const, i.e., for a flat spacetime.
Shift of the light-cone coordinates. We can consider

changing the gauge parameters a → ā ¼ a − δa and b →
b̄ ¼ b − δb introduced above. This changes the form of the
light-cone components of the metric. It is insightful to
consider two simple cases. Let us first consider changing
b → b − δb. In terms of the new light-cone coordinates, the
original metric now gives light-cone components

Gþ− ¼ 4þ δb
4ð1 − 2aÞ

Δab
;

Gþþ ¼ −V þ δb
4

Δab
; G−− ¼ 0: ð4:3Þ

11Such a B field plays an important role in particular in
AdS3=CFT2 [67–69] where it allows for a particularly simple
exact S matrix [24,25,27,70].
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We can see that, up to rescaling Xþ, we have a simple
change of the potential VðXiÞ. The most interesting case,
and the one related to TT̄ deformations, is changing
a → a − δa, which we do for simplicity at b ¼ 1=2.
This gives

Gþ− ¼ 2 − 2δaV; Gþþ ¼ −V; G−− ¼ 4δað2 − δaVÞ;

Gþ− ¼ 1 − δaV
2

; Gþþ ¼ −δað2 − δaVÞ; G−− ¼ V
4
;

ð4:4Þ

where we suppressed the Xi dependence in V.

A. Hamiltonian and spectrum of the
deformed theories

Let us now fix light-cone gauge with Xþ ¼ τ and p− ¼ 2
(for b ¼ 1=2). The Hamiltonian can be easily found from
the Virasoro constraints [35]

−pþ ¼ ½ð1þ 2δaðpipi þ X́iX́iÞ
þ δa2ð16ðX́−Þ2 − ðpipi þ X́iX́iÞVÞ
− 16δa3ðX́−Þ2V þ 4δa4ðX́−Þ2V2Þ1=2 − ð1þ δaVÞ�
× ½δað2− δaVÞ�−1; ð4:5Þ

where X́− ¼ −piX́
i=2. This is not a particularly transparent

equation. However, expanding in the deformation param-
eter we recover

−pþ ¼ 1

2
pipi þ

1

2
X́iX́i þ 1

2
VðXiÞ

−
δa
4
½ðpipi þ X́iX́i þ 4X́−Þ

× ðpipi þ X́iX́i − 4X́−Þ − VðXiÞ2� þOðδa2Þ;
ð4:6Þ

which is the free pp-wave Hamiltonian at δa ¼ 0, cor-
rected by quartic interaction terms at leading order in δa.

B. Spectrum of the deformed theory

The spectrum of the deformed theory can be found in
principle from the Hamiltonian (4.5). However, it is
simplest to derive this from the form of the deformed
S matrix. The undeformed theory at δa ¼ 0 is free. The
dispersion relation is

ωiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þ μ2i

q
; ð4:7Þ

where c depends on the string tension, and the S matrix is
the identity. Hence the spectrum, for b ¼ 1=2 and a ¼ 0, is
fixed by the quantization condition

1 ¼ eipjR ¼ eipjJ ⇒ pj ¼
2πnj
J

; j ¼ 1;…M; ð4:8Þ

subject to the level-matching constraint
P

j nj ¼ 0 so that

Hw:s: ¼ E − J ¼
XM
j¼1

ωij

�
2π

J
nj

�
: ð4:9Þ

If we consider the deformed theory we have that the
quantization condition is modified by

1 ¼ eipjðRþδaHw:s:Þ ⇒ pj ¼
2πnj

J þ δaHw:s:
; ð4:10Þ

so that for the energy we have

Hw:s: ¼ E − J ¼
XM
j¼1

ωij

�
2πnj

J þ δaHw:s:

�
: ð4:11Þ

The case of flat space.—The above equation cannot be
solved in closed form unless μi ¼ 0, which is the flat-space
case. In that case we have ωðpÞ ¼ cjpj, so that we can
introduce left- and right-movers with

N ¼
X
i∶ni>0

ni; Ñ ¼ −
X
i∶ni<0

ni: ð4:12Þ

Hence we get the familiar equation

Hw:s: ¼
4πc

J − δaHw:s:
;

Hw:s: ¼ E − J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 16πcδaN

p
− J

2δa
; ð4:13Þ

where we used that N ¼ Ñ. We recover the fact that going
from a ¼ 0 to a ¼ 1=2, with δa ¼ 1=2, sends us from the
free pp-wave geometry ds2 ¼ 4dXþdX− þ dXidXi to the
flat-space one, where indeed

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 8πcN

p
: ð4:14Þ

C. Geometric interpretation of the shift

We have seen that a transformation with δa ¼ 1=2 sends
us from a metric of the form

ds2 ¼ −dXþdXþ þ 2dXþdX− þ dXidXi ð4:15Þ

to one of the form

ds2 ¼ −dYþdYþ þ dY−dY− þ dXidXi: ð4:16Þ

Both these metrics define flat spaces, yet the string spectra
are substantially different. This is because the two resulting
manifolds, despite being locally isomorphic, are globally
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different unless we define nontrivial boundary conditions
for the metric (4.15). In Eq. (4.16) Yþ is the time
coordinate, with range R, while Y− is a space coordinate
with some e.g., range 2πRY . The whole cylinder can be
embedded in R1;2 ∋ ðt; z1; z2Þ as

ðt; z1; z2Þ ¼
�
Yþ; cos

Y−

RY
; sin

Y−

RY

�
: ð4:17Þ

Under a true diffeomorphism we would have a different
embedding

ðt; z1; z2Þ ¼
�
Yþ − 2δaY−; cos

Y−

RY
; sin

Y−

RY

�
: ð4:18Þ

We can conclude that the linear transformation Yþ ¼ Xþ −
2δaX− which relates Eq. (4.16) to Eq. (4.15) is not a
diffeomorphism unless we correctly keep track of the
boundary conditions of the fields; see Fig. 1. The difference
will become even more transparent in static gauge, as we
shall see in the next section.

D. TsT-deformed geometry

If the take the view that a deformation a → ā ¼ a − δa
should be seen from the static gauge, then the background
undergoes a TsT transformation. Starting from the geom-
etry (4.1), we would like to T dualize in X−. This however
is problematic since X− is null. Fortunately this problem
disappears for any other member of our family of deformed
backgrounds. Put differently, we want to consider the TsT
transformation of a T dual of a background, but since two
of the T dualities cancel out, we are really just considering
an “sT” transformation, and after the shift we no longer
have issues with null coordinates. Indeed, if we shift our
coordinates as in Eq. (3.8) we obtain

ds2 ¼ 4ð1 − δaVÞdYþdY− − VdYþdYþ

þ 4δað2 − δaVÞdY−dY− þ dXidXi: ð4:19Þ

As long as δa is nonzero, Y− is not null. T dualizing in Y−

now gives

ds2 ¼ −4dYþdYþ þ dỸ−dỸ−

4δað2 − δaVÞ þ dXidXi;

B ¼ −
1

δa
1 − δaV
2 − δaV

dYþ ∧ dỸ−: ð4:20Þ

This is our TsT-transformed background.12 The problem in
the geometry at δa ¼ 0 reflects our inability to T dualize in
a null direction. Taking this geometry and fixing a static
gauge, by definition gives the gauge-fixed Hamiltonian
density of Eq. (4.5), which is nevertheless finite (and free)
at δa ¼ 0. In the flat-space case, where V ¼ const, we get
the flat Minkowski metric with an overall scale in front of
Yþ, Ỹ− and a constant B field. Once again this affects the
spectrum when we impose the static gauge conditions.

V. SECOND EXAMPLE: LIN-LUNIN-MALDACENA
GEOMETRIES

One of the reasons to consider TT̄ deformations is to
construct new integrable models starting from known
ones. In the context of string sigma models, the AdS5 ×
S5 type IIB superstring [71,72] is a prime example to
consider deforming. At the same time, our methods are not
restricted to integrable models. As a second illustrative
example, let us therefore consider a more general, not
generically integrable, class of string backgrounds contain-
ing AdS5×S5, where the TT̄ deformation can be neatly
accounted for: LLM geometries [73].

A. Some essential facts about LLM geometries

The geometries constructed in Ref. [73] manifestly
preserve a soð4Þ ⊕ soð4Þ ⊕ uð1Þ bosonic algebra.
Furthermore, they are required to preserve half of the
maximal amount of supercharges, i.e., 16 real super-
charges. These assumptions result in an ansatz for the
whole supergeometry [73], where the line element is

ds2 ¼ −yðeG þ e−GÞðdtþ VidxiÞ2 þ
dy2 þ dxidxi

yðeG þ e−GÞ
þ yeGdΩ3

2 þ ye−GdΩ02
3 ; ð5:1Þ

FIG. 1. The embedding of ðYþ; Y−Þ in R1;2 before and after the
shift. This submanifold corresponds to the target space geometry;
in the static gauge Yþ ∼ τ and Y− ∼ σ the string worldsheet has
the same topology. Left: Before the shift Eq. (4.17) has periodic
boundary conditions. Right: After the shift Eq. (4.18) has twisted
boundary conditions proportional to δa.

12Put differently, if we TsT transform this, the first T duality
takes us back to Eq. (4.19), the shift then amounts to changing the
value of δa, and the second T duality brings us back to the above
background (4.20) with a different value of δa. In other words, for
generic δa Eq. (4.20) gives the TsT transformation of the T-dual
geometry of the plane wave. It just happens to degenerate at
δa ¼ 0, the point of would-be null T duality.

TT̄ DEFORMATIONS AS … PHYS. REV. D 101, 066022 (2020)

066022-9



where the potential V1ðy; x1; x2Þ, V2ðy; x1; x2Þ as well as
the function Gðy; x1; x2Þ are fixed in terms of a single
function zðy; x1; x2Þ:

z ¼ 1

2

e2G − 1

e2G þ 1
; y∂yVi ¼ ϵij∂jz;

yð∂iVj − ∂jViÞ ¼ ϵij∂yz: ð5:2Þ

Moreover, the y dependence in zðy; xiÞ is fixed by a
Laplace-like equation and that on the plane y ¼ 0 the
function is piecewise constant, zð0; xiÞ ¼ � 1

2
. Using this, it

is possible to consider a vast class of geometries, including
pp-wave ones.
Geometries with additional rotation symmetry.—For our

purposes it is convenient to restrict ourselves to geometries
that possess one further uð1Þ isometry, corresponding to
rotations in the ðx1; x2Þ plane. Calling ðr;φÞ the radial
and angular coordinates in that plane, the metric (5.1)
simplifies and

ds2 ¼ −yðeG þ e−GÞðdtþ VφdφÞ2 þ
dy2 þ dr2 þ r2dφ2

yðeG þ e−GÞ
þ yeGdΩ3

2 þ ye−GdΩ02
3 ; ð5:3Þ

and now G and Vφ ¼ −r sinφV1 þ r cosφV2 depend only
on ðy; rÞ. Furthermore, on the y ¼ 0 plane zð0; rÞ is given
by rings where values of z ¼ � 1

2
alternate. The general

solution for zðy; rÞ is then [73]

zðy; rÞ ¼ ð−1ÞM
2

þ
XM
i¼0

ð−1Þiþ1ζðy; r; riÞ; ð5:4Þ

with

ζðy; r; riÞ ¼
1

2

�
r2 − r2i þ y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ r2i þ y2Þ2 − 4r2i r
2

p − 1

�
: ð5:5Þ

Indeed ζð0; r; riÞ ¼ ðsgn½r2 − r2i � − 1Þ=2, so that zð0; rÞ
asymptotes to ð−1ÞM at large r and is always −1=2 at
r ¼ 0.13 We can also solve the equation (5.2) for Vφ to find

Vφðy; rÞ ¼ ψφðrÞ þ
XM
i¼1

ð−1Þiþ1vðy; r; riÞ; ð5:6Þ

with

vðy; r; riÞ ¼ −
1

2

�
r2 þ y2 þ r2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ y2 þ r2i Þ2 − 4r2i r
2

p − 1

�
: ð5:7Þ

This solution differs from the one in Ref. [73] by the
function ψφðrÞ which, looking back at Eq. (5.2), must be y
independent and should yield an irrotational vector field
ðψ1;ψ2Þ in the ðx1; x2Þ plane. If we require Vφ to be well
defined at r ¼ 0 and r ¼ ∞, it must be that ψφðrÞ ¼ 0.
Undeformed AdS5 × S5—. Among the many LLM

geometries, we can recover undeformed AdS5 × S5 by
simply setting M ¼ 0, ψðrÞ ¼ 0, and performing the
change of variables [73]

y ¼ r0 sin θ sinh ρ; r ¼ r0 cos θ cosh ρ φ ¼ ϕ − t:

ð5:8Þ
This gives the line element of AdS5 × S5 in global
coordinates

ds2 ¼ r0½−cosh2ρ dt2 þ dρ2 þ sinh2ρ dΩ3
2 þ cos2θ dϕ2

þ dθ2 þ sin2θ dΩ02
3 �: ð5:9Þ

B. Deforming the LLM geometries

It is natural to ask whether the deformation discussed
above can be applied to an LLM geometry to obtain a
geometry of the same type. We may address this question in
the direct geometry or in the T-dual one. Here it is most
illustrative to work in terms of the direct geometry, where
we consider the shift (3.8).14 The shift deformation makes
sense in the case where we have an uð1Þ⊕2 symmetry on
top of the soð4Þ⊕2, because (a combination of) the two
uð1Þ directions will play the role of the shift symmetries
X� appearing in the light-cone gauge fixing. Moreover, by
construction, the shift deformation preserves the full
soð4Þ⊕2 ⊕ uð1Þ⊕2 symmetry. For AdS5 × S5, it clearly
will also preserve the suð2j2Þ⊕2 (centrally extended)
symmetry which is manifest after gauge fixing [35]. It is
actually relatively straightforward to reverse engineer what
the shift of Sec. III is in the LLM language. Since the shift
does not affect the angular part of the line element, it is
reasonable to look for a transformation affecting Vφ only.
Consider the redefinition

Vφðy; x1; x2Þ ↦ Vφðy; x1; x2Þ þ α: ð5:10Þ
In Cartesian components this amounts to Vi ↦ Vi þ αψ i
with ψ i ¼ ϵij∂j log r. This is clearly irrotational wherever it
is defined, and yields a new solution of the LLM con-
straints. To compare with the shift transformation discussed
in Eq. (3.8) it is convenient to introduce light-cone
coordinates. As evidenced by Eq. (5.8), ϕ is already a
light-cone coordinate, and in our notation of Eq. (2.6),
φ ¼ 2X− while t ¼ Xþ − X−. Hence the line element (5.3)
becomes

13This is a slightly different normalization with respect to
Ref. [73], as we will be interested in changing the large-r
behavior later on.

14We illustrate the dual TsT deformation of AdSn × Sn in the
conclusions.
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ds2 ¼ −yðeG þ e−GÞðdXþ þ ð2Vφ − 1ÞdX−Þ2

þ dy2 þ dr2 þ 4r2ðdX−Þ2
yðeG þ e−GÞ þ…; ð5:11Þ

where the ellipsis denotes the angular part of the line
element, which is unchanged. We can see that the
modification

Vφ ↦ Vφ þ α is equivalent to Xþ ↦ Xþ þ 2δaX−

for α ¼ δa; ð5:12Þ

while leaving X− unchanged. This is precisely the defor-
mation of Eq. (3.8). This is completely general, holding for
any LLM geometry with an additional uð1Þ symmetry.

VI. CONCLUSIONS AND OUTLOOK

The uniform light-cone gauge formalism for string
theory [32–34] allows one to readily construct TT̄
deformations of various models [11,24,36,37]. This starts
by uplifting the original model to a reparametrization-
invariant model in two higher dimensions, and then
gauge fixing appropriately. In this paper we asked what
happens to this uplifted geometry under a TT̄ deforma-
tion, i.e., what the TT̄ deformation of a gauge-fixed
(string) sigma model means at the level of the target
space geometry. Operatively, we tune the would-be gauge
parameter in the worldsheet Lagrangian only, and not in
the identification of conserved charges or volume R of
the model. The effect of this deformation is subtle from
the point of view of the original geometry for our light-
cone gauge picture, but becomes more transparent when
taking a T-dual point of view [45], where we exchange
light-cone gauge for static gauge fixing. In the T-dual
frame, a TT̄ deformation affects the local geometry
directly, taking the form of a TsT transformation.15

This TsT picture then also gives a natural interpretation
to the TT̄ CDD factor as a Drinfeld-Reshetikhin twist of
the S matrix; this is particularly transparent thanks to the
static-gauge identification of target-space charges with
worldsheet momentum and energy. Computationally, for
the purpose of generating deformed Lagrangians, this
static-gauge approach is equivalent to the uniform light-
cone gauge treatment of Refs. [11,24,36,37]; conceptually
however, we feel that it further clarifies why TT̄
deformations are so intimately related to gauge-fixed
sigma models, and may help further uncover some of
the features of this important class of deformations. Let
us remark that our discussion of TT̄ deformations can be
quite straightforwardly extended to TJ̄ and JT̄ deforma-
tions, as well as to more general deformations along the

lines of Ref. [36]. We briefly comment on this in the
Appendix.
It would be interesting to extend our approach to include

fermions and to consider supergeometries. First steps have
been taken while investigating the relation between TT̄ and
supersymmetry, as well as in Ref. [36] for more general
theories. However, a complete analysis of such a setup,
including the role of κ symmetry, has not yet been
performed. It would also be interesting to extend
this analysis to the nonrelativistic deformations of
Refs. [38–44], which can indeed be understood in the
framework of light-cone gauge [37], and further explore its
relation with null dipole-deformed CFT [74,75], which can
indeed be understood in AdS=CFT by means of TsT
transformations involving light-cone directions.
Another especially interesting case is that of integrable

string sigma models. Here, the TT̄ CDD factor can be
readily taken into account in their Bethe ansatz. As we
saw, in the special case of flat space, the TT̄ deformation
can trivialize the S matrix. In general, however, the S
matrix will remain nontrivial, and be nontrivially modi-
fied. This is certainly the case for all integrable string
backgrounds involving Ramond-Ramond fluxes, where
the form of the light-cone symmetry algebra fixes the S
matrix to be nondiagonal.16 Still, it would be interesting
to study the corresponding deformations of (the T duals
of) such integrable backgrounds, as at least we have good
control over the spectral problem. In this paper we have
considered two classes of backgrounds: pp-wave geom-
etries, which are integrable, and LLM geometries, which
are not generally integrable, with the important exception
of AdS5 × S5. In both cases we derived explicit expres-
sions for the deformed backgrounds. In particular, for
AdS5 × S5, we have described a “shifted” geometry which
would yield a TT̄ deformation of Beisert’s S matrix. It is
presently not clear what interpretation this would have in
the gauge-theory dual.
One could also study deformed AdS backgrounds in the

T-dual frame, by means of a TsT transformation rather
than a shift. As an illustration, for AdS2 × S2 in global
coordinates

ds2 ¼ −ð1þ ρ2Þdt2 þ dρ2

1þ ρ2
þ ð1 − r2Þdϕ2 þ dr2

1 − r2
;

ð6:1Þ

with isometry coordinates t and ϕ as input for the light-
cone coordinates, the dual deformed geometry takes the
form

15In this paper we only discussed NSNS backgrounds explic-
itly, but RR fields can of course be added and TsT transformed.

16The relationship between light-cone symmetry algebra and
the integrable S matrix was originally worked out for AdS5 × S5
in Refs. [57,76].
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ds2 ¼ −ð1 − r2Þð1þ ρ2ÞdYþdYþ þ 1
4
dỸ−dỸ−

1 − r2 þ 2δað1 − r2Þ − δa2ðr2 þ ρ2Þ

þ dρ2

1þ ρ2
þ dr2

1 − r2
;

B ¼ −
1 − r2 − δaðr2 þ ρ2Þ

1 − r2 þ 2δað1 − r2Þ − δa2ðr2 þ ρ2Þ dY
þ ∧ dỸ−;

ð6:2Þ

where we deform away from a ¼ 0.17 As the TT̄ deforma-
tion preserves integrability, it would be interesting to
combine it with other integrable deformations of strings,
such as Yang-Baxter deformations [77–79]. These, as a
nice contrast, contain TsT transformations of the direct (as
opposed to T-dual) geometry [80]; see also Refs. [81–83].
Integrable AdS3 backgrounds have some particularly

interesting features. They can be supported by a mixture
of Ramond-Ramond (RR) and Neveu-Schwarz–Neveu-
Schwarz (NSNS) fluxes (see Ref. [84] for a review of
integrability in this setup), and the kinematics depends both
on the RR strength h and the NSNS strength k. When no RR
fluxes are present, h ¼ 0 and k ∈ N is the level of the
slð2Þ ⊕ suð2Þ supersymmetric Wess-Zumino-Witten
(WZW) model, giving a chiral model even after gauge
fixing. In this case the perturbative worldsheet S matrix is
proportional to the identity, and takes a universal form
dependent on the chirality, but not the masses, of the
scattered particles [27,70]. This allows to solve for the
spectrum in closed form [24,25,27], similarly to flat space as
discussed in Sec. IV B. However, unlike flat space, the
scattering cannot be completely trivialized by a TT̄ defor-
mation.18 Interestingly, for this theory it also possible to
consider a TT̄ deformation of the dual conformal field
theory. It was proposed [21,22] that these too can be studied
on the worldsheet, namely that a TT̄ deformation on the
boundary should correspond to a JJ̄ deformation on the
worldsheet (which can be then analyzed by worldsheet-CFT
tools). Such JJ̄ deformations can also be understood as TsT
transformations [85]. This scenario can be generalized to
nonrelativistic JT̄ deformations, and in that case too
deformations of the dual CFT2 can be interpreted as TsT
transformations [86,87].19 This points to the fact that in pure-
NSNS AdS3=CFT2, a rich interplay arises between defor-
mations on the worldsheet and in the two-dimensional dual,

which is yet to be explored. We hope to revisit some of these
questions in the near future.
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APPENDIX: TJ̄, JT̄, AND TsT

In the main text we discuss the geometric interpretation
of TT̄ deformations as TsT transformations in the T-dual
frame. It is natural to ask whether a similar interpretation
exists for deformations of TJ̄ and JT̄ types. This is indeed
the case, even though only a limited number of such
deformations have a simple geometric interpretation in a
given T-dual frame.
In order to be able to consider generalized deformations

we need to assume that our background has a further uð1Þ
isometry commuting with two light-cone isometries. Let us
fix coordinates such that this extra isometry acts as a shift
in X1. This direction can now be mixed into TsT trans-
formations. In general, given m commuting isometries we
can consider mðm − 1Þ=2 independent TsT transforma-
tions, giving us three with isometries in Xþ; X̃− and X1.
For concreteness let us consider a TsT transformation

in ðX̃−; X1Þ. Since we are doing a TsT transformation
starting from the static-gauge frame, from the point of view
of the light-cone-gauge description we are doing an sT
transformation, shifting X1 → X1 þ αX−, and T dualizing
X− → X̃−. This shift in the original geometry is precisely
what corresponds to the canonical transformation giving a
JTμ deformation with μ ¼ σ, the spatial direction on the
worldsheet. Indeed, as discussed in Ref. [37], cf. point 3 in
Sec. II B, this canonical transformation is

X1 → X1 − a1−X−; X− → X−; p1 → p1;

p− → p− þ a1−p1: ðA1Þ

17Unlike the pp-wave example of the last section, here we
generically never encounter a null direction in the T duality. Of
course we can see the problem reappear by taking r, ρ → 0 and
taking δa ¼ −1=2.

18This is because in this case p1ωðp2Þ − p2ωðp1Þ ≠ �2p1p2,
nor does it vanish for same-chirality scattering; this is crucial to
reproduce the spectrally flowed sectors of the WZW description
(see Refs. [25,27]).

19See the Appendix for a discussion of JT̄ deformations on the
worldsheet of the gauge-fixed theory.
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For α ¼ −a1− this agrees exactly with our shift; the
shift in momenta follows directly from the shift of
coordinates. To complete the picture we just perform
one more T duality in X̃−, which takes us back to the
static-gauge picture.
In the main text we see that a TsT in ðX̃−; XþÞ gives the

TT̄ deformation, and we just discussed that one in ðX̃−; X1Þ
gives a JTσ deformation. The last option is a TsT in
ðX1; XþÞ, which is similarly easily seen to correspond to
the JTτ deformation as given in Ref. [37]. Of course it is
possible to take (linear) combinations of the JTμ as well as

TT̄ deformations. In general J can be any (not necessarily
chiral) conserved uð1Þ current.
Various further deformations can be realized via canoni-

cal transformations in the light-cone gauge-fixing picture of
Ref. [37], and many of them can be obviously cast as TsT
transformations. However, these would not all be TsT
transformations in our natural T-dual frame for the TT̄
deformation. For example, the J̃Tμ, μ ¼ τ, deformation of
Ref. [37] can be naturally viewed as a TsT transformation
in ðX̃1; XþÞ, i.e., it can be viewed as a TsT transformation
in a geometry where we have first T dualized in X1.
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