On finite-by-nilpotent groups

Eloisa Detomi, Guram Donadze, Marta Morigi, and Pavel Shumyatsky

Abstract

Let $\gamma_{n}=\left[x_{1}, \ldots, x_{n}\right]$ be the nth lower central word. Denote by X_{n} the set of γ_{n}-values in a group G and suppose that there is a number m such that $\left|g^{X_{n}}\right| \leq m$ for each $g \in G$. We prove that $\gamma_{n+1}(G)$ has finite (m, n)-bounded order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.

1. Introduction

Given a group G and an element $x \in G$, we write x^{G} for the conjugacy class containing x. Of course, if the number of elements in x^{G} is finite, we have $\left|x^{G}\right|=\left[G: C_{G}(x)\right]$. A group is said to be a BFC-group if its conjugacy classes are finite and of bounded size. One of the most famous of B. H. Neumann's theorems says that in a BFC-group the commutator subgroup G^{\prime} is finite [6]. Later Wiegold showed that if $\left|x^{G}\right| \leq m$ for each $x \in G$, then the order of G^{\prime} is bounded by a number depending only on m. Moreover, Wiegold found a first explicit bound for the order of $G^{\prime}[\mathbf{1 0}]$, and the best known bound was obtained in [5] (see also [7] and [9]).

The recent articles [3] and [2] deal with groups G in which conjugacy classes containing commutators are bounded. Recall that multilinear commutator words are words which are obtained by nesting commutators, but using always different variables. More formally, the group-word $w(x)=x$ in one variable is a multilinear commutator; if u and v are multilinear commutators involving disjoint sets of variables then the word $w=[u, v]$ is a multilinear commutator, and all multilinear commutators are obtained in this way. Examples

[^0]of multilinear commutators include the familiar lower central words $\gamma_{n}\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]$ and derived words δ_{n}, on 2^{n} variables, defined recursively by
$$
\delta_{0}=x_{1}, \quad \delta_{n}=\left[\delta_{n-1}\left(x_{1}, \ldots, x_{2^{n-1}}\right), \delta_{n-1}\left(x_{2^{n-1}+1}, \ldots, x_{2^{n}}\right)\right] .
$$

We let $w(G)$ denote the verbal subgroup of G generated by all w-values. Of course, $\gamma_{n}(G)$ is the nth term of the lower central series of G while $\delta_{n}(G)=G^{(n)}$ is the nth term of the derived series.

The following theorem was established in [2].
Theorem 1.1. Let m be a positive integer and w a multilinear commutator word. Suppose that G is a group in which $\left|x^{G}\right| \leq m$ for any w-value x. Then the order of the commutator subgroup of $w(G)$ is finite and m-bounded.

Throughout the article we use the expression " (a, b, \ldots)-bounded" to mean that a quantity is finite and bounded by a certain number depending only on the parameters a, b, \ldots.

The present article grew out of the observation that a modification of the techniques developed in [3] and [2] can be used to deduce that if $\left|x^{G^{\prime}}\right| \leq m$ for each $x \in G$, then $\gamma_{3}(G)$ has finite m-bounded order. Naturally, one expects that a similar phenomenon holds for other terms of the lower central series of G. This is indeed the case.

Theorem 1.2. Let m, n be positive integers and G a group. If $\left|x^{\gamma_{n}(G)}\right| \leq m$ for any $x \in G$, then $\gamma_{n+1}(G)$ has finite (m, n)-bounded order.

Using the concept of verbal conjugacy classes, introduced in [4], one can obtain a generalization of Theorem 1.2. Let $X_{n}=X_{n}(G)$ denote the set of γ_{n}-values in a group G. It was shown in [1] that if $\left|x^{X_{n}}\right| \leq m$ for each $x \in G$, then $\left|x^{\gamma_{n}(G)}\right|$ is (m, n)-bounded. Hence, we have

Corollary 1.3. Let m, n be positive integers and G a group. If $\left|x^{X_{n}(G)}\right| \leq m$ for any $x \in G$, then $\gamma_{n+1}(G)$ has finite (m, n)-bounded order.

Observe that Neumann's theorem can be obtained from Corollary 1.3 by specializing $n=1$. Another result which is straightforward from Corollary 1.3 is the following characterization of finite-by-nilpotent groups.

Theorem 1.4. A group G is finite-by-nilpotent if and only if there are positive integers m, n such that $\left|x^{X_{n}}\right| \leq m$ for any $x \in G$.

2. Preliminary results

Recall that in any group G the following "standard commutator identities" hold, when $x, y, z \in G$.
(1) $[x y, z]=[x, z]^{y}[y, z]$
(2) $[x, y z]=[x, z][x, y]^{z}$
(3) $\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}=1$ (Hall-Witt identity);
(4) $\left[x, y, z^{x}\right]\left[z, x, y^{z}\right]\left[y, z, x^{y}\right]=1$.

Note that the fourth identity follows from the third one. Indeed, we have

$$
\left[x^{y}, y^{-1}, z^{y}\right]\left[y^{z}, z^{-1}, x^{z}\right]\left[z^{x}, x^{-1}, y^{x}\right]=1
$$

Since $\left[x^{y}, y^{-1}\right]=[y, x]$, it follows that

$$
\left[y, x, z^{y}\right]\left[z, y, x^{z}\right]\left[x, z, y^{x}\right]=1
$$

Recall that X_{i} denote the set of γ_{i}-values in a group G.
Lemma 2.1. Let k, n be integers with $2 \leq k \leq n$ and let G be a group such that $\left[\gamma_{k}(G), \gamma_{n}(G)\right]$ is finite and $\left|x^{\gamma_{n}(G)}\right| \leq m$ for any $x \in G$. Then for every $g \in X_{n}$ we have

$$
\left|g^{\gamma_{k-1}(G)}\right| \leq m^{n-k+2}\left|\left[\gamma_{k}(G), \gamma_{n}(G)\right]\right| .
$$

Proof. Let $N=\left[\gamma_{k}(G), \gamma_{n}(G)\right]$. It is sufficient to prove that in the quotient group G / N, for every integer d with $k-1 \leq d \leq n$

$$
\left|(g N)^{\gamma_{d}(G / N)}\right| \leq m^{n-d+1} \quad \text { for every } \gamma_{n-d+1} \text {-value } g N \in G / N
$$

since this implies that $g^{\gamma_{d}(G)}$ is contained at most m^{n-d+1} cosets of N, whenever $g \in X_{n-d+1}$.

So in what follows we assume that $N=1$. The proof is by induction on $n-d$. The case $d=n$ is immediate from the hypotheses.

Let $c=n-d+1$. Choose $g \in X_{c}$ and write $g=[x, y]$ with $x \in X_{c-1}$ and $y \in G$. Let $z \in \gamma_{d}(G)$. We have

$$
\left[x, y, z^{x}\right]\left[z, x, y^{z}\right]\left[y, z, x^{y}\right]=1
$$

Note that

$$
[z, x] \in\left[\gamma_{d}(G), \gamma_{c-1}(G)\right] \leq \gamma_{d-1+c}(G)=\gamma_{n}(G)
$$

and

$$
[y, z] \in \gamma_{d+1}(G) \leq \gamma_{k}(G)
$$

whence $\left[z, x, y^{z}\right]=[z, x, y[y, z]]=[z, x, y]$. Thus,

$$
\begin{aligned}
1=\left[x, y, z^{x}\right]\left[z, x, y^{z}\right]\left[y, z, x^{y}\right] & =[x, y]^{-1}[x, y]^{z^{x}}[z, x, y]\left[y, z, x^{y}\right] \\
& =[x, y]^{-1}[x, y]^{z^{x}}\left(y^{-1}\right)^{[z, x]} y\left(\left(x^{y}\right)^{-1}\right)^{[y, z]} x^{y}
\end{aligned}
$$

It follows that

$$
[x, y]^{z^{x}}=[x, y]\left(x^{-1}\right)^{y}\left(x^{y}\right)^{[y, z]} y^{-1} y^{[z, x]} .
$$

Since $x^{y} \in X_{c-1}$ and $[y, z] \in \gamma_{d+1}(G)$, by induction

$$
\left|\left\{\left(x^{y}\right)^{[y, z]} \mid z \in \gamma_{d}(G)\right\}\right| \leq m^{n-d-1+1}
$$

Moreover, $[z, x] \in \gamma_{n}(G)$ an so $\left|\left\{y^{[z, x]} \mid z \in \gamma_{d}(G)\right\}\right| \leq m$. Thus,

$$
\left|\left\{[x, y]^{z^{x}} \mid z \in \gamma_{d}(G)\right\}\right|=\left|\left\{[x, y]^{z} \mid z \in \gamma_{d}(G)\right\}\right| \leq m m^{n-d}=m^{n-d+1}
$$

as claimed.
Let H be a group generated by a set X such that $X=X^{-1}$. Given an element $g \in H$, we write $l_{X}(g)$ for the minimal number l with the property that g can be written as a product of l elements of X. Clearly, $l_{X}(g)=0$ if and only if $g=1$. We call $l_{X}(g)$ the length of g with respect to X. The following result is Lemma 2.1 in [3].

Lemma 2.2. Let H be a group generated by a set $X=X^{-1}$ and let K be a subgroup of finite index m in H. Then each coset $K b$ contains an element g such that $l_{X}(g) \leq m-1$.

In the sequel the above lemma will be used in the situation where $H=\gamma_{n}(G)$ and $X=X_{n}$ is the set of γ_{n}-values in G. Therefore we will write $l(g)$ to denote the smallest number such that the element $g \in \gamma_{n}(G)$ can be written as a product of as many γ_{n}-values.

Recall that if G is a group, $a \in G$ and H is a subgroup of G, then [H, a] denotes the subgroup of G generated by all commutators of the form $[h, a]$, where $h \in H$. It is well-known that $[H, a]$ is normalized by a and H.

Lemma 2.3. Let $k, m, n \geq 2$ and let G be a group in which $\left|x^{\gamma_{n}(G)}\right| \leq$ m for any $x \in G$. Suppose that $\left[\gamma_{k}(G), \gamma_{n}(G)\right]$ is finite. Then for every $x \in \gamma_{k-1}(G)$ the order of $\left[\gamma_{n}(G), x\right]$ is bounded in terms of m, n and $\left|\left[\gamma_{k}(G), \gamma_{n}(G)\right]\right|$ only.

Proof. By Neumann's theorem $\gamma_{n}(G)^{\prime}$ has m-bounded order, so the statement is true for $k \geq n+1$. Therefore we deal with the case $k \leq n$. Without loss of generality we can assume that $\left[\gamma_{k}(G), \gamma_{n}(G)\right]=$ 1.

Let $x \in \gamma_{k-1}(G)$. Since $\left|x^{\gamma_{n}(G)}\right| \leq m$, the index of $C_{\gamma_{n}(G)}(x)$ in $\gamma_{n}(G)$ is at most m and by Lemma 2.2 we can choose elements $y_{1}, \ldots, y_{m} \in X_{n}$ such that $l\left(y_{i}\right) \leq m-1$ and $\left[\gamma_{n}(G), x\right]$ is generated by the commutators $\left[y_{i}, x\right]$. For each $i=1, \ldots, m$ write $y_{i}=y_{i 1} \cdots y_{i m-1}$, where $y_{i j} \in X_{n}$. The standard commutator identities show that $\left[y_{i}, x\right]$ can be written
as a product of conjugates in $\gamma_{n}(G)$ of the commutators $\left[y_{i j}, x\right]$. Since $\left[y_{i j}, x\right] \in \gamma_{k}(G)$, for any $z \in \gamma_{n}(G)$ we have that

$$
\left[\left[y_{i j}, x\right], z\right] \in\left[\gamma_{k}(G), \gamma_{n}(G)\right]=1
$$

Therefore $\left[y_{i}, x\right]$ can be written as a product of the commutators $\left[y_{i j}, x\right]$.
Let $T=\left\langle x, y_{i j} \mid 1 \leq i, j \leq m\right\rangle$. It is clear that $\left[\gamma_{n}(G), x\right] \leq T^{\prime}$ and so it is sufficient to show that T^{\prime} has finite (m, n)-bounded order. Observe that $T \leq \gamma_{k-1}(G)$. By Lemma 2.1, $C_{\gamma_{k-1}(G)}\left(y_{i j}\right)$ has $(m, n)-$ bounded index in $\gamma_{k-1}(G)$. It follows that $C_{T}\left(\left\{y_{i j} \mid 1 \leq i, j \leq m\right\}\right)$ has (m, n)-bounded index in T. Moreover, $T \leq\langle x\rangle \gamma_{n}(G)$ and $\left|x^{\gamma_{n}(G)}\right| \leq m$, whence $\left|T: C_{T}(x)\right| \leq m$. Therefore the centre of T has (m, n)-bounded index in T. Thus, Schur's theorem $[8,10.1 .4]$ tells us that T^{\prime} has finite (m, n)-bounded order, as required.

The next lemma can be seen as a development related to Lemma 2.4 in [3] and Lemma 4.5 in [10]. It plays a central role in our arguments.

Lemma 2.4. Let $k, n \geq 2$. Assume that $\left|x^{\gamma_{n}(G)}\right| \leq m$ for any $x \in G$. Suppose that $\left[\gamma_{k}(G), \gamma_{n}(G)\right]$ is finite. Then the order of $\left[\gamma_{k-1}(G), \gamma_{n}(G)\right]$ is bounded in terms of m, n and $\left|\left[\gamma_{k}(G), \gamma_{n}(G)\right]\right|$ only.

Proof. Without loss of generality we can assume that $\left[\gamma_{k}(G), \gamma_{n}(G)\right]=$ 1. Let $W=\gamma_{n}(G)$. Choose an element $a \in X_{k-1}$ such that the number of conjugates of a in W is maximal possible, that is, $r=\left|a^{W}\right| \geq\left|g^{W}\right|$ for all $g \in X_{k-1}$.

By Lemma 2.2 we can choose $b_{1}, \ldots, b_{r} \in W$ such that $l\left(b_{i}\right) \leq$ $m-1$ and $a^{W}=\left\{a^{b_{i}} \mid i=1, \ldots, r\right\}$. Let $K=\gamma_{k-1}(G)$. Set $M=$ $\left(C_{K}\left(\left\langle b_{1}, \ldots, b_{r}\right\rangle\right)\right)_{K}$ (i.e. M is the intersection of all K-conjugates of $C_{K}\left(\left\langle b_{1}, \ldots, b_{r}\right\rangle\right)$. Since $l\left(b_{i}\right) \leq m-1$ and, by Lemma 2.1, $C_{K}(x)$ has (m, n)-bounded index in K for each $x \in X_{n}$, observe that the centralizer $C_{K}\left(\left\langle b_{1}, \ldots, b_{r}\right\rangle\right)$ has (m, n)-bounded index in K. So also M has (m, n) bounded index in K.

Let $v \in M$. Note that $(v a)^{b_{i}}=v a^{b_{i}}$ for each $i=1, \ldots, r$. Therefore the elements $v a^{b_{i}}$ form the conjugacy class $(v a)^{W}$ because they are all different and their number is the allowed maximum. So, for an arbitrary element $h \in W$ there exists $b \in\left\{b_{1}, \ldots, b_{r}\right\}$ such that $(v a)^{h}=$ $v a^{b}$ and hence $v^{h} a^{h}=v a^{b}$. Therefore $[h, v]=v^{-h} v=a^{h} a^{-b}$ and so $[h, v]^{a}=a^{-1} a^{h} a^{-b} a=[a, h][b, a] \in[W, a]$. Thus $[W, v]^{a} \leq[W, a]$ and so $[W, M] \leq[W, a]$.

Let x_{1}, \ldots, x_{s} be a set of coset representatives of M in K. As $\left[W, x_{i}\right]$ is normalized by W for each i, it follows that

$$
[W, K] \leq\left[W, x_{1}\right] \cdots\left[W, x_{s}\right][W, M] \leq\left[W, x_{1}\right] \cdots\left[W, x_{s}\right][W, a] .
$$

Since s is (m, n)-bounded and by Lemma 2.3 the orders of all subgroups [W, x_{i}] and $[W, a]$ are bounded in terms of m and n only, the result follows.

Proof of Theorem 1.2. Let G be a group in which $\left|x^{\gamma_{n}(G)}\right| \leq m$ for any $x \in G$. We need to show that $\gamma_{n+1}(G)$ has finite (m, n)-bounded order. We will show that the order of $\left[\gamma_{k}(G), \gamma_{n}(G)\right]$ is finite and (m, n) bounded for $k=n, n-1, \ldots, 1$. This is sufficient for our purposes since $\left[\gamma_{1}(G), \gamma_{n}(G)\right]=\gamma_{n+1}(G)$. We argue by backward induction on k. The case $k=n$ is immediate from Neumann's theorem so we assume that $k \leq n-1$ and the order of $\left[\gamma_{k+1}(G), \gamma_{n}(G)\right]$ is finite and (m, n)-bounded. Lemma 2.4 now shows that also the order of $\left[\gamma_{k}(G), \gamma_{n}(G)\right]$ is finite and (m, n)-bounded, as required.

Proof of Corollary 1.3. Let G be a group in which $\left|x^{X_{n}(G)}\right| \leq$ m for any $x \in G$. We wish to show that $\gamma_{n+1}(G)$ has finite (m, n) bounded order. Theorem 1.2 of $[\mathbf{1}]$ tells us that $\left|x^{\gamma_{n}(G)}\right|$ is (m, n) bounded. The result is now immediate from Theorem 1.2.

Proof of Theorem 1.4. In view of Corollary 1.3 the theorem is self-evident since a group G is finite-by-nilpotent if and only if some term of the lower central series of G is finite.

References

[1] S. Brazil, A. Krasilnikov and P. Shumyatsky, Groups with bounded verbal conjugacy classes, J. Group Theory 9 (2006), 127-137.
[2] E. Detomi, M. Morigi, P. Shumyatsky, BFC-theorems for higher commutator subgroups, Q. J. Math., doi: 10.1093/qmath/hay068.
[3] G. Dierings, P. Shumyatsky, Groups with Boundedly Finite Conjugacy Classes of Commutators, Q. J. Math., 69 (2018), 1047-1051, doi: 10.1093/qmath/hay014.
[4] S. Franciosi, F. de Giovanni and P. Shumyatsky, On groups with finite verbal conjugacy classes, Houston J. Math. 28 (2002), 683-689.
[5] R. M. Guralnick, A. Maroti, Average dimension of fixed point spaces with applications, J. Algebra, 226 (2011), 298-308.
[6] B. H. Neumann, Groups covered by permutable subsets. J. London Math. Soc. 29, (1954). 236-248.
[7] P. M. Neumann, M.R. Vaughan-Lee, An essay on BFC groups, Proc. Lond. Math. Soc. 35 (1977), 213-237.
[8] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[9] D. Segal, A. Shalev, On groups with bounded conjugacy classes, Quart. J. Math. Oxford 50 (1999), 505-516.
[10] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. Roy. Soc. London Ser. A 238 (1957), 389-401.

Dipartimento di Ingegneria dell'Informazione - DEI, Università di Padova, Via G. Gradenigo 6/B, 35121 Padova, Italy

E-mail address: eloisa.detomi@unipd.it
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil and Institute of Cybernetics of the Georgian Technical University, Sandro Euli Str. 5, 0186, Tbilisi, Georgia

E-mail address: gdonad@gmail.com
Dipartimento di Matematica, Universitì di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

E-mail address: marta.morigi@unibo.it
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil

E-mail address: pavel2040@gmail.com

[^0]: 2010 Mathematics Subject Classification. 20E45; 20F12; 20 F 24.
 Key words and phrases. Conjugacy classes, commutators.
 The first and third authors are members of INDAM. The fourth author was supported by CNPq-Brazil.

