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Abstract

Regression models are widely used statistical procedures, and the validation of their

assumptions plays a crucial role in the data analysis process. Unfortunately, validating

assumptions usually depends on the availability of tests tailored to the specific model

of interest. A novel Bayesian approach goodness-of-fit hypothesis testing approach

is presented for a broad class of regression models the response variable of which is

univariate and continuous. The proposed approach relies on a suitable transformation

of the response variable and a Bayesian prior induced by a predictor-dependent mixture

model. Hypothesis testing is performed via Bayes factor, the asymptotic properties of

which are discussed. The method is implemented by means of a Markov chain Monte

Carlo algorithm, and its performance is illustrated using simulated and real data sets.

Keywords: Bayes factor; Density regression; Dirichlet process mixture; Rosenblatt’s

transformation; Universal residuals

1. Introduction

Regression models are amongst the most extensively used statistical procedures.

Despite the relatively wide range of nonparametric alternatives available, parametric

regression models are the preferred modeling choice in many applications for their
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ease of interpretation and estimation. However, the specific assumptions on which

these parametric models rely are often questionable. Validating these assumptions is

necessary since misspecified models can lead to erroneous inference and conclusions.

Nonetheless, the ability to check assumptions usually depends on the availability of

ad hoc formulations tailored to test specific aspects of the model. For example, the

Shapiro-Wilk (Shapiro & Wilk, 1965) and the Jarque-Bera (Jarque & Bera, 1980) pro-

cedures test for normality and the Reset test of Ramsey (1969) assesses the linearity of

the regression function. Hidalgo et al. (2018) propose a test to check whether the lack-

of-fit comes from the incorrect parametric or nonparametric modelling of the regression

function. Peña & Slate (2006) propose a test for globally testing the four assumptions

of Gaussian linear regression models (i.e., linearity, homoskedasticity, uncorrelated-

ness, and normality). Despite addressing different aspects jointly, Peña & Slate’s test

still lacks generality as it is tailored to a specific class of models.

In this article, we aim to provide a global approach for testing the goodness-of-

fit of general regression models. To this end, we present a novel Bayesian procedure

applicable to a broad class of regression models whose response variable is univariate

and continuous. The proposed approach departs from the ideas motivating standard ap-

proaches and exploits a suitable transformation of the response variable and a Bayesian

nonparametric predictor-dependent mixture model.

There are very few Bayesian nonparametric contributions that propose general

goodness-of-fit tests and that are applicable in a wide set of situations (see Tokdar

et al. (2010) for a review). Furthermore, the majority of such works do not consider

the regression framework, but rather focus on proposing tests for predictor-independent

densities (Verdinelli & Wasserman, 1998; Berger & Guglielmi, 2001; Carota & Parmi-

giani, 1996; Robert & Rousseau, 2002; Basu & Chib, 2003; McVinish et al., 2009;

Tokdar & Martin, 2013). To our knowledge, the only works focusing on regression

models are those by Basu & Chib (2003) and Lu (2012), who compare parametric and

nonparametric models via Bayes factors. Basu & Chib (2003) introduce an algorithm

to approximate the marginal likelihood of Dirichlet process mixture models (Ferguson,

1973; Lo, 1984). Lu (2012) proposes a method to approximate a calibrated version of

the Bayes factor between a parametric model and a Dirichlet process mixture model
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alternative. Unfortunately, both of these proposals are difficult to implement when the

goal is to test the fit of several regression models, as they require the analyst to derive

or approximate the marginal likelihood of each model.

While Bayesian tests for goodness-of-fit are scarce, the frequentist literature on the

topic is quite large (see, e.g., Miller & Neill, 2016, and references therein). Frequentist

goodness-of-fit tests usually rely on either likelihood ratios or residual analysis. In the

former case, the idea is to use likelihood ratio tests to compare the model of interest

with a saturated version of it (Lindsey, 1997). Failure to detect differences between

the two models suggests the model of interest fits the data well. Frequentist goodness-

of-fit tests that rely on analysis of residuals, commonly defined as the response minus

an estimate of the corresponding conditional mean (Eubank & Spiegelman, 1990; Fan

& Huang, 2001), require a full characterization of the residuals’ distribution. Unfortu-

nately, such characterization is available only in a few cases (e.g., when the response is

normally distributed).

Brockwell (2007, 2011) proposes a more general approach for defining the resid-

uals of a regression model using Rosenblatt’s transformation (see Rosenblatt, 1952).

These residuals, referred to as universal residuals, take values in (0, 1) and, under a

correct model specification, are uniformly distributed. Universal residuals represent

a powerful tool for defining Bayesian nonparametric goodness-of-fit tests. In fact,

some Bayesian goodness-of-fit tests employ a simplified version of universal residu-

als (e.g., Verdinelli & Wasserman, 1998; Robert & Rousseau, 2002). Consistent with

these approaches, our proposal exploits the fact that, under correct model specifica-

tions, universal residuals are not only uniformly distributed but also independent from

the predictors. We propose using a Bayesian nonparametric approach to model univer-

sal residuals conditionally on predictors and look for deviations from both the unifor-

mity and independence assumptions jointly. We assess these deviations in terms of the

Bayes factor. Specifically, we use a mixture model based on predictor-dependent stick-

breaking mixtures (MacEachern, 2000; De Iorio et al., 2004; Dunson & Park, 2008;

Chung & Dunson, 2009; Jara et al., 2010; Barrientos et al., 2017). This class of models

satisfies appealing properties in terms of flexibility (Barrientos et al., 2012) and large

sample behavior (Pati et al., 2013; Norets & Pelenis, 2014).
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The rest of the paper is organized as follows. In Section 2 we describe Rosen-

blatt’s transformation and its relation to universal residuals. Then, we introduce our

Bayesian goodness-of-fit test and discuss its properties. Section 3 describes a practical

specification of our approach and discusses the related computational implementation.

Illustrations of our proposal based on simulated and real data sets are provided in Sec-

tion 4. Section 5 summarizes our findings and provides some directions for future

work. All the proofs of our results are reported in the Appendix.

2. Goodness-of-fit test for regression

We consider a regression setting where Yi ∈ Y is the response variable andXi ∈ X

is a vector of p predictors with Y ⊆ R and X ⊆ Rp, i = 1, . . . , n. Let {(yi, xi)}ni=1 be a

collection of independent response and predictor values, realization of {(Yi, Xi)}ni=1.

Let F = {Fx(·) : x ∈ X} be the unknown true data generating mechanism, where

Fx(·) denotes the cumulative distribution function of the response variable given the

predictors, i.e., Yi|Xi = xi
ind∼ Fxi , for i = 1, . . . , n. Assuming F0 = {F0,x(·) : x ∈

X} to be a set of known conditional distribution functions, we consider the problem

of testing whether F0 corresponds to the true conditional data generating mechanism.

Specifically, we want to test

H0 : F = F0, H1 : F ∈ {F0}c , (1)

where {F0}c = FX\F0 and FX is the infinite dimensional set of all possible con-

ditional data generating models of the form {F̃x(·) : x ∈ X}. We aim to propose a

Bayesian nonparametric procedure that controls the prior probability on the null hy-

pothesis H0 and computes its posterior probability. Thus, we can perform Bayesian

hypothesis testing via Bayes factor,

BFn =
π (H0|{(yi, xi)}ni=1)

π (H1|{(yi, xi)}ni=1)
× π (H1)

π (H0)
, (2)

where π is a prior distribution on FX and π (·|{(yi, xi)}ni=1) is the corresponding pos-

terior distribution.
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Our proposal relies on the concept of universal residuals. The next subsections re-

view this concept, explain how universal residuals help to re-formulate (1), and present

the proposed method along with some large-sample guarantees.

2.1. Rosenblatt’s transformation and universal residuals

The building block of our procedure is Rosenblatt’s transformation of the random

vector Z = (Z1, . . . , Zk)T , namely RG(z1, . . . , zk) = (r1, . . . , rk) where

r1 = prG(Z1 ≤ z1), rj = prG(Zj ≤ zj |Z1 = z1, . . . , Zj−1 = zj−1), (3)

with prG(·) the probability underG, the absolute continuous distribution of the random

Z. As a result, RG(Z) is a random vector of independent random variables that are

uniformly distributed (Rosenblatt, 1952). Based on the principles behind this trans-

formation, we can define and study an analogous transformation for regression data,

which is formalized in the next proposition.

Proposition 1. Let (Y,X) be a random vector where Y and X denote the real-valued

response and predictors, respectively. If Y |X = x ∼ Gx, then

U = GX(Y ), (4)

is uniformly distributed on [0, 1] and is independent from X .

The proof of this proposition is straightforward and relies on the fact that, for every

x ∈ X, the probability of the event GX(Y ) < u conditional on X = x is given by

prGx
(Gx(Y ) < u) = u. Brockwell (2007) uses part of Proposition 1 to define a

goodness-of-fit test for univariate regression models. For a given data set {(yi, xi)}ni=1

and model of interest F0, Brockwell first defines the universal residuals ui by means

of the transformation in (4), that is, ui = F0,xi
(yi). Under this author’s proposal,

testing the goodness-of-fit of F0 is equivalent to testing the uniformity of {Ui}ni=1

based on {ui}ni=1. While an important contribution, Brockwell’s approach only focuses

on testing uniformity and does not provide any insight regarding the independence

between the universal residuals and predictors. This independence condition, however,

is a key aspect that should be verified in all applications. By testing the independence
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condition, we can determine whether all the information associated with the response

that is contained in the predictors has been fully incorporated in the model. Our claim

is that verifying the goodness-of-fit of F0 based on universal residuals requires jointly

assessing deviations from uniformity and independence as opposed to only assessing

uniformity.

To give the intuition of this, consider the following example. Assume that F0,xi

is the true conditional cumulative distribution function of Yi given Xi = xi, for i =

1, . . . , n. Let Q0 be the bivariate distribution function of (Y,X) and define Q1(y) =

prQ0
(Y ≤ y) and Q2(y|x) = prQ0

(Y ≤ y|X = x). Under this specification and

using Brockwell’s approach, we would assess whether F∗ = {F ∗x (·) : x ∈ X} with

F ∗x (y) = Q1(Q−1
2 (F0,x(y)|x)) is the true data generating process simply by testing

the uniformity of (U1, . . . , Un)T , where Ui = F ∗xi
(Yi). Since F ∗x is not the true data

generating process but the vector (U1, . . . , Un)T is uniformly distributed, it is clear that

by using Brockwell’s strategy, the type II error in testing (1) will remain high regardless

of the sample size.

This example leads us to question the uniqueness of F0 when defining universal

residuals through (4) that are uniformly distributed and independent of the predictors.

The following theorem addresses this issue.

Theorem 1. Let (Y,X) be a random vector defined on a probability space (Ω,A, P )

and let µX(·) = P [Y ∈ Y, X ∈ ·], where Y is the response variable and X is a vector

of predictors. Let F0,x and F ∗0,x be conditional cumulative distribution functions such

that U = F0,X(Y ) and U∗ = F ∗0,X(Y ) are uniformly distributed and are independent

of X . Then F0,X = F ∗0,X almost surely µX .

Theorem 1 implies that if F∗0 6= F0 with F0,x = F ∗0,x for every x in a set X0 ⊆ X

such that µX(X0) = 1, then we have to assume that F∗0 and F0 are indistinguishable.

Remark 1. Similarly, we can define universal residuals when the predictors corre-

spond to a fixed design. More precisely, we assume that the distribution function of

the response is indexed by the values of the design and use this distribution function

to compute the universal residuals. In this case, instead of testing for independence

between the residuals and predictors, we test that the distribution of the residuals (also
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indexed by predictors) is the same at any value of the design. Although there is a con-

ceptual difference between random and fixed designs, there is no operational difference

when testing goodness-of-fit with the proposed procedure.

We use the universal residuals to re-write the hypotheses (1) as

H0 : Ui ∼ Unif(0, 1) and Ui ⊥⊥ Xi, H1 : Ui 6∼ Unif(0, 1) or Ui 6⊥⊥ Xi,

where Ui ⊥⊥ Xi denotes that Ui and Xi are independent. Note that we are not required

to work with universal residuals that take values on (0, 1). For example, for practical

reasons we may map them to the real line using the inverse of the standard Gaussian

distribution function, say Φ−1. Consistent with this choice, and with an abuse of nota-

tion we can re-define universal residuals as

Ui = Φ−1(F0,Xi
(Yi)). (5)

Although it is not strictly necessary, we prefer to re-write the hypotheses in (1) as,

H0 : Ui ∼ N(0, 1) and Ui ⊥⊥ Xi, H1 : Ui 6∼ N(0, 1) or Ui 6⊥⊥ Xi, (6)

where N(m, s) stands for the normal distribution with mean m and variance s. Here-

after, we will use the universal residuals defined in (5) and focus on testing the hy-

potheses stated in (6).

2.2. Bayesian nonparametric testing

Consistent with the discussion of Section 2.1, we test the hypotheses in (1) by ex-

amining whether the distribution of Ui | Xi = xi is a standard Gaussian distribution.

To this end, we utilize a flexible Bayesian approach that estimates the conditional den-

sity of Ui given Xi = xi while assigning positive prior probability to the standard

Gaussian model (i.e., the null hypothesis). More precisely, the Bayesian approach fo-

cuses on the definition of a prior probability π with large support on P (R)
X and such

that π(H0) > 0, where P (R)
X is the space of all predictor-dependent probability

measures defined on (R,B(R)) with continuous probability density function and B(R)

being the Borel σ-algebra.
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We define the prior π as the probability distribution induced by a stochastic process

of the form F = {Fx : x ∈ X}, where Fx(·) is a probability distribution with density

defined by the mixture

fx(u) =

∞∑
h=1

wh
1

σh
φ

(
u− κh(x)

σh

)
, (7)

wh are random weights summing to one, and θh = (κh, σh) ∼ P0 independently. The

random weights are defined by means of a stick-breaking process (Sethuraman, 1994;

Ishwaran & James, 2001), i.e., wh = Vh
∏
l<h(1− Vl), with Vh ∼ Beta(ah, bh). The

base probability measure P0 has support onKX×R+, withKX the space of all X→ R

functions, and will rely on the assumption that κh and σh are independent.

The family F belongs to the class of predictor-dependent nonparametric mixture

models commonly used in regression analysis (MacEachern, 2000; De Iorio et al.,

2004; Dunson & Park, 2008; Chung & Dunson, 2009; Jara et al., 2010; Barrientos

et al., 2017). These predictor-dependent models satisfy appealing properties in terms

of flexibility (Barrientos et al., 2012) and large sample behavior (Pati et al., 2013).

The standard definition of Bayesian predictor-dependent mixture models assigns

zero prior probability to the null hypothesis, which in turn implies the calculation of

the Bayes factor is impossible. We now discuss how we modify the distribution of

{θh}h≥1 such that the prior induced by (7) assigns positive mass to H0. Under model

(7), the null hypothesis is satisfied when the parameter θh is equal to θ0 = (0, 1) for all

h, i.e., fx(u) = φ(u). We allow θh = θ0, for all h, by introducing a binary variable ν

that is equal to one with positive prior probability πH0
and by assuming the following

hierarchical structure for the component-specific parameter,

{(κh, σh) | ν = 1} ∼ δθ0 , {(κh, σh) | ν = 0} ∼ P0,

where δa is the Dirac measure. Under this formulation, θh = (κh, σh) can be either all

equal to the specific value θ0 = (0, 1) or all different (as long as P0 is a nonatomic mea-

sure). Assuming prior distributions that assign point masses at some or all component

specific parameters is a common approach in many other contexts, such as variable se-

lection (Dunson et al., 2008; Yang, 2012; Barcella et al., 2016; Gutiérrez et al., 2018),
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multiple testing (Bogdan et al., 2008; Do et al., 2005; Kim et al., 2009; Guindani et al.,

2009), or functional clustering (Canale et al., 2017).

The prior measure π onP (R)
X is then identified by πH0

, P0, and the stick-breaking

process’ sequence of parameters (ah, bh). Under this formulation, we can express the

Bayes factor as

BFn =

∏n
i=1 φ(ui)∫

H1

∏n
i=1 fxi

(ui)π(dF)
=
π(ν = 1|{(ui, xi)}ni=1)

π(ν = 0|{(ui, xi)}ni=1)
× π(ν = 0)

π(ν = 1)
, (8)

which turns out to be computationally manageable.

A desirable specification of π implies that BFn remains consistent as the sample

size increases. The following theorem provides sufficient conditions on πH0
, P0, and

(ah, bh) that lead to consistency

Theorem 2. Let Vh ∼ Be(1, bh), πH0
∈ (0, 1), and ({bh}h≥1, P0) be defined as in

Theorem 6.1 of Pati et al. (2013). Then BFn → ∞ as n → ∞ under H0. Moreover,

under H1, BFn → 0 as n → ∞ if the proposed data-generating mechanism belongs

to the class of elements of P (R)
X \P0 characterized by conditions A1-A5 in Pati et al.

(2013).

Remark 2. In most real applications, users would be unable to propose a F0 without

using an estimation procedure. In fact, users will have to deal with families of condi-

tional distributions FΓ = {Fγ,x(·), x ∈ X, γ ∈ Γ}, indexed by a parameter space Γ.

The approach described so far, however, assumes that the family of conditional distri-

butions to be tested is fully specified. For this reason, when testing ifFΓ is the true data

generating family, we apply our procedure to F0 = {Fγ̂,x(·), x ∈ X, }, where γ̂ is an

estimator of γ. Our conjecture is that if F0 is specified with a reasonable and consis-

tent estimator of γ (e.g., using a maximum likelihood estimator), the Bayes factor will

remain consistent. Section 3 provides empirical evidence in favor of this conjecture. A

more formal and fully Bayesian approach would also assign a prior distribution to γ

and obtain the joint posterior distribution of γ and the parameters in model (7) follow-

ing the proposal of Verdinelli & Wasserman (1998). Unfortunately, this fully Bayesian

approach leads to identifiability issues and would require specific Markov chain Monte

Carlo (MCMC) implementations depending on the parametric structure of FΓ. Hence,
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such an approach would limit the applicability of our proposal.

Remark 3. In Section 2.1, we show that the hypotheses of interest can equivalently

focus on either the normality or uniformity of the universal residuals. Testing either one

of these assumptions must produce same or similar results as long as the underlying

modeling approaches share similar properties. For example, if we adapt the prior

proposed in Barrientos et al. (2017) to test uniformity, we would expect to observe

similar results. These similarities might depend on whether the sample size is large

enough or the sampling strategies offer the same level of accuracy.

3. Prior specification and computational details

To apply our method we first need to specify prior distributions for all the unknown

parameters. In this section we describe our default choice of prior. The prior π on

P (R)
X is induced through a simplified version of (7), where

fx(u) =

H∑
h=1

wh
1

σh
φ

(
u− κh(x)

σh

)
, (9)

wh = Vh
∏
l<h(1 − Vl), Vh ∼ Beta(1, α) for h = 1, . . . ,H − 1, VH = 1, and

H is a conservative upper bound used to truncate the mixture to a finite number of

components. We specify κh(x) as

κh(xi) =

p1∑
j=1

ηhj(xi,j) + (xdi )
Tφdh, ηhj(·) =

L∑
l=1

φhjlBl(·),

where xi,j , j = 1, . . . , p1, denotes continuous predictors and xdi denotes a vector hav-

ing the p2 binary predictors. The function ηhj is defined using regression splines with

Bl, a B-spline basis, and φhjl, a basis coefficient. The vector φdh denotes the coeffi-

cients for the binary predictors. This construction induces a linear smoother. Hence,

we can rewrite κh(xi) as κh(xi) = x̃Ti βh, where x̃i is a vector containing all the basis

expansions of the continuous predictors and the binary variables, and βh is the vector

of coefficients with suitable dimension p.

In our simulations, we use the simplest version of a cubic B-spline defined with

zero knots. We specify the distribution for the atoms (βh, σh) with a latent variable ν
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that equals one if β1 = · · · = βH = 0 and σ1 = · · · = σH = 1, and zero otherwise,

where 0 denotes a vector with all components equal to zero.

Consistent with Section 2.2, we let

σ2
h = 1× 11{ν=1} + σ2∗

h 11{ν=0} and βh = 0× 11{ν=1} + β∗h11{ν=0},

with σ2∗
h ∼ InvGamma(1.5, 0.5) and β∗h|σ2

h, gh ∼ Np(0, σ
2
hgh(x̃T x̃)−1), where x̃ =

(x̃1, . . . , x̃n)T denotes the design matrix. We also consider a conditional distribution

for gh|ν given by

gh|ν = 1 ∼ InvGamma((p+ 1)/2, nh/2), gh|ν = 0 ∼ InvGamma(1/2, nh/2),

where nh = n × E[wh] + 1 and E[wh] denotes the prior mean of wh. The prior

for β∗h is known as the g-prior (Zellner, 1986), a prior commonly used in model se-

lection. The g-prior shrinks towards zero as h increases and E[wh] decreases. We

complete the prior specification by assuming ν ∼ Bernoulli(πH0
), πH0

= 0.5, and

α ∼ Gamma(0.25, 0.25). The truncation level H is fixed at 50. Under this specifica-

tion, model (9) represents a practical approximation of model (7). Note that H = 50

can be safely considered a conservative choice as underH0 we expect that a single mix-

ture component (i.e. H = 1) should be sufficient. Larger values of H and moderate

changes of the hyperparameters lead to similar results (not reported here) as model (9)

is fitted to the universal residuals that, by definition, are somehow “standardized.” Our

empirical experiments suggest that this specific choice is stable and leads to consistent

conclusions across different scenarios.

In the following section, posterior summaries are obtained from 1,000 draws from

the posterior distribution of the parameters using the MCMC algorithm described in

the Supplemental Material with a burn-in period of 5,000 iterations and thinning of 10.

In running the MCMC procedure for a finite number of iterations, it is possible that

the posterior probability for the null equals one. When this happens, we could set the

Bayes factors equal to infinity. However, this would make any graphical illustration

unfeasible. Instead, we subtract a random uniform noise between 0 and 0.001 to such

probabilities, resulting in finite Bayes factors. The proposed approach is summarized

in Algorithm 1.
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Step 0: Provide the following inputs,

data: {(yi, xi)}ni=1;

conditional model under H0: {Fx(·) : x ∈ X};

posterior sample size: N ;

Step 1: Compute the universal residuals

ui ← Φ(Fxi(yi)), for i = 1, . . . , n;

Step 2: Fit model (7) to {(ui, xi)}ni=1 via MCMC and obtain N posterior draws

Step 3: Approximate the posterior probability of H0

πH0|− ← 1
N

∑N
t=1 ν

(t);

Step 4: Approximate the Bayes factor

BFn ←
πH0|−

(1−πH0|−) ×
(1−πH0

)

πH0
;

Algorithm 1: Step by step procedure for the proposed Bayesian goodness-of-fit test.

The notation ν(t) stands for the t-th draw of the parameter ν.

4. Illustrations

In this section, we illustrate the use of the proposed procedure by means of different

simulated and real data sets. Throughout this section, we use the term “residual” (un-

accompanied by other terms) with its more classical meaning, i.e. observed response

minus predicted response.

4.1. Synthetic data

To illustrate the performance of our approach and to provide a fair comparison with

different competing methods under different model assumptions we conduct a simula-

tion study, simulating synthetic data from different scenarios described later. For each

of scenario, we consider three sample sizes, namely n = 100, 250, and 500, and

simulate ten predictors (five continuous and five discrete) using the same mechanism.

Specifically, let xi = (1, xi,1, . . . , xi,10)T , where xi,1 ∼ N(0, 1), (xi,2, xi,3, xi,4, xi,5) ∼

N(0,Σx), Σx = {σj,j′}, cov(xi,j , xi,j′) = 0.7|j−j
′|, and xi,j ∼ Bernoulli(0.5),

j = 6, . . . , 10. We generate N = 100 sets of predictors so that there are one hundred
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simulated data replicates for each scenario and sample size.

We evaluate the performance of our procedure under four scenarios. In the first

scenario, universal residuals are simulated from N(0, 1), i.e., we assume thatH0 holds.

A second scenario considers the most common multiple linear regression, i.e., cases

when the response is equal to a linear combination of the predictors plus error. The

third and fourth scenarios deal with beta and gamma regressions, respectively. For

scenarios two, three, and four, we test the goodness-of-fit for models that are correctly

and incorrectly specified.

For the first scenario, let M0,0 be the model that simulates ui ∼ N(0, 1). When

testing H0, we expect high Bayes factors to provide strong evidence in favor of the

null hypotheses. This is indeed what we see from the boxplots in panel (a) of Fig-

ure 1. These boxplots represent the distribution of the N Bayes factors for H0 when

the universal residuals are simulated fromM0,0 for different sample sizes.

In the second scenario, we simulate data from the following models

M1,0 = {Fxi(·) : yi ∼ N(xTi β, σ
2)},

M1,1 = {Fxi
(·) : yi ∼ N(xTi β + .4[5 exp(xi,1) + 4 exp(xi,2) + . . .+ exp(xi,5)], σ2)},

M1,2 = {Fxi
(·) : yi = xTi β + εi, εi ∼ 0.25N(0, 4) + 0.5N(0, 1) + 0.25N(0, 0.25)},

fixing β to a vector of ones and σ2 = 1. Then, we test the goodness-of-fit for the

simplest specification, i.e.,

H0 : F = {Fxi
(·) : yi ∼ N(xTi β, σ

2)},

where both the regression coefficients β and the error variance σ2 are estimated via

maximum likelihood from the simulated data. M1,1 represents a scenario where the

conditional mean is “almost” linear while M1,2 represents the correct specification

of the mean function with a misspecified distribution of errors. Panel (b) of Figure 1

reports the distributions of the Bayes factors in these different situations.
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Figure 1: Monte Carlo distribution of the N Bayes factors in the simulation study as a function of the sample

size; panel (a) represents H0 : F = M0,0, panel (b) H0 : F = M1,0, panel (c) H0 : F = M2,0, and

panel (d) H0 : F = M3,0. In each panel, the y-axis is in log10 scale.

In the third scenario, simulated data are generated from the models

M2,0 = {Fxi
(·) : yi ∼ Beta(µiγ, (1− µi)γ), µi = (1 + exp(−xTi β))−1},

M2,1 = {Fxi(·) : yi ∼ Beta(µiγi, (1− µi)γi), µi = (1 + exp(−mi))
−1,

γi = exp(m̃i),mi = 2− 0.15xTi 1p+1, m̃i = 1 + xi,1 + xi,10}

14



where, for M2,0, we let β = (1.85,−0.15, . . . ,−0.15)T and γ = 1.5. We test the

goodness-of-fit for modelM2,0 (i.e., H0 : F = M2,0) estimating its parameters via

maximum likelihood from the simulated data. ModelM2,0 is then correctly specified

while modelM2,1 requires adding predictors to the precision parameter. Panel (c) of

Figure 1 shows the distributions of the corresponding Bayes factors.

Finally, for the fourth scenario, we consider a gamma regression and simulate data

according to the following models

M3,0 = {Fxi(·) : yi ∼ Gamma(µi, γi/µi), µi = exp(xTi β̃1), γi = exp(xTi β̃2)}

M3,1 = {Fxi
(·) : yi ∼ Gamma(µi, γi/µi), µi = exp(1 +mi),

γi = exp(−5 + m̃i),mi = 0.2xi,1 + 3xi,10 + exp(1 + xi,2),

m̃i = 0.1xTi 1p+1 + exp(0.3(xi,2 + 3))},

where, forM3,0, we let β̃1 = (1, 0.2, 0, . . . , 0, 3) and β̃2 = (−4.9, 0.1, . . . , 0.1). We

then test the goodness-of-fit of model M3,0 estimating its parameters via maximum

likelihood. Panel (d) of Figure 1 reports the results.

As expected, when the model is correctly specified, the Bayes factor increases as

n increases. Conversely, when the model is incorrectly specified, the Bayes factor

decreases as n increases. This behavior provides empirical evidence in favor of the

Bayes factor’s consistency provided in Theorem 2 and aligns with the conjecture in

Remark 2.

The Bayes factors obtained in the first scenario (i.e., without a plug-in estimate) are

slightly smaller than those obtained in the remaining scenarios. This is unsurprising

because in those scenarios H0 is partially specified by the data, which might increase

the evidence in favor of this hypothesis.

The comparison of the proposed Bayesian test with frequentist competitors is not

straightforward as the Bayes factor is intrinsically different from the idea of p-values.

However, if the goal is to reach a decision, we can decide to reject the null hypothesis

if the Bayes factor is below a given threshold or the p-value is below a significance

level. We can then assess the performance of these rules using the frequentist operating

characteristics. To this end, we consider competitors that can test assumptions on the
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universal residuals. For Brockwell’s proposal, we test the normality of the residuals

through Kolmogorov-Smirnov and Shapiro-Wilk tests. Another strategy is to regress

the residuals on the predictors using a linear model with normal errors and then check

the corresponding underlying assumptions. This strategy is implemented using the

global procedure proposed by Peña & Slate (2006), which tests the four assumptions

(linearity, homoscedasticity, uncorrelatedness, normality) of the linear model while

accounting for multiple testing. We also use this global approach to assess goodness

of fit when the underlying proposed model for the original data is linear with normal

errors (as in the second scenario). Notice that, as in our proposal, these competitors

involve a parameter estimation step for all but the first scenario. We decide to reject

H0 if the Bayes factor < 1, or the p-value < 0.05.

For each simulation scenario, we compute the type I or type II errors (depending on

whetherH0 is true or false) simply counting the number of false rejections/acceptances

over the N = 100 simulated data sets. Table 1 reports the results labeled as BNP for

our proposal, and BKS and BSW for the Kolmogorov-Smirnov and Shapiro-Wilk tests,

respectively, under Brockwell’s strategy. The table also reports GV1 and GV2 for the

global validation test of Peña & Slate (2006) applied to the universal residuals and to

the original data, respectively. As already discussed, the procedure proposed by Peña &

Slate (2006) is designed for models similar to those considered in the second scenario.

Nonetheless, using the results in Section 2.1 and the strategy described in the previous

paragraph, we can apply the global validation test to a broader class of models, e.g., to

gamma and beta regression models.

Type I error becomes smaller as the sample size increases for all scenarios, with

our proposed approach reporting errors comparable or smaller than the competitors.

Regarding the type II error, the performance of the proposed test is comparable or

better than the frequentist tests in most situations. As an exception, the type II error

of the proposed procedure is higher when testing M10 and, particularly, using the

approach of Peña & Slate (2006) with small sample sizes. This is unsurprising since

the approach of Peña & Slate (2006) is specifically tailored to testM10.

The results in Table 1 clearly depend on the specific value of thresholds used to

reject the null (in this case, Bayes factor < 1 or p-value < 0.05). To assess the robust-
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Table 1: Type I, and Type II errors for N = 100 replicates; first and second columns denote

the data generating process and the model under H0, respectively; column BNP denotes the

decisions based on rejecting H0 when the Bayes factor is < 1; columns BKS, BSW, GV1, and

GV2 report the results of the frequentist tests and denote the decisions based on rejecting H0

when the p-value is < 0.05

Type I errors Type II errors

Truth H0 n BNP BKS BSW GV1 GV2 BNP BKS BSW GV1 GV2

100 .02 .06 .07 .07 - - - - - -

M00 M00 250 .00 .04 .05 .05 - - - - - -

500 .00 .03 .06 .06 - - - - - -

M10 M10

100 .00 .00 .01 .06 .04 - - - - -

250 .00 .00 .06 .05 .06 - - - - -

500 .00 .00 .05 .05 .02 - - - - -

M11 M10

100 - - - - - .38 .93 .35 .21 .03

250 - - - - - .16 .60 .04 .02 .00

500 - - - - - .01 .28 .00 .00 .00

M12 M10

100 - - - - - .16 .87 .13 .15 .17

250 - - - - - .00 .20 .00 .00 .00

500 - - - - - .01 .00 .00 .00 .00

M20 M20

100 .00 .01 .05 .06 - - - - - -

250 .00 .00 .08 .06 - - - - - -

500 .00 .02 .06 .03 - - - - - -

M21 M20

100 - - - - - .57 .94 .69 .72 -

250 - - - - - .10 .62 .34 .41 -

500 - - - - - .03 .27 .16 .14 -

M30 M30

100 .00 .00 .03 .03 - - - - - -

250 .00 .01 .04 .04 - - - - - -

500 .00 .02 .03 .04 - - - - - -

M31 M30

100 - - - - - .00 .08 .39 .04 -

250 - - - - - .00 .00 .08 .00 -

500 - - - - - .00 .01 .01 .00 -
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Figure 2: Smoothed ROC curves for the three scenarios having null M10 (linear regression), M20, (gamma

regression) and M30 (beta regression); BNP curves display the results obtained using the Bayes factor.

ness of the considered procedures to variations of the threshold choice, Figure 2 reports

the receiver operating characteristic (ROC) curves for the three scenarios having null

M10,M20, and M30. To obtain these ROC curves, we combine samples that have

the same H0 and label them according to whether H0 is indeed true or not. Then, for
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different thresholds, we calculate the specificity (correct acceptances of H0) and sensi-

tivity (correct rejections of H0) using the posterior probability of H0 and the p-values,

respectively. These ROC curves are consistent with the results highlighted in Table 1

and show that our procedure’s performance is uniformly better or comparable to that

of Brockwell’s strategy. This empirical evidence supports the need to assess not only

normality but also independence. The ROC curves also show that, as expected, our

procedure is outperformed by Peña & Slate’s method when testing M10 and having

small sample sizes.

We conclude this section briefly discussing the specific choice discussed in Section

3 for what concerns the conservative upper bound H . We found that the a posteriori

mixture concentrates 99% of the total mass among its first 45 components in each of

the cases analyzed in this section, indicating the specific choice of H = 50 is robust.

4.2. Mandible length data

As a first illustration of our method on real data, we consider a simple data set

concerning fetal growth that was first introduced by Chitty et al. (1993) and available

in the R package lmtest. The data set contains the ultrasonographic measurements of

mandible length in n = 158 fetuses along with the gestational age (in weeks) at which

the measurement was taken. We attempt to model the well-known positive relationship

between mandible length and gestational age. We first fit a linear model with log-

length as response and gestational age as predictor with homoskedastic Gaussian errors.

We use a maximum likelihood approach. While the logarithmic transformation of the

response variable clearly stabilizes its variability, the analysis of residuals (reported

in panel (a) of Figure 3) shows that the simple linear relation between log-length and

gestational age is not sufficient to fully describe the relationship. After computing the

universal residuals based on the estimated parameters, the proposed goodness-of-fit

procedure reports a Bayes factor of 0, suggesting misspecification issues.

A second more realistic model assumes a quadratic relation between log-length and

gestational age. Specifically, we include the squared gestational age as an additional

predictor. Panel (b) of Figure 3 displays the residuals. The figure does not show signs

of misspecification. Consistent with this, our procedure reports a Bayes factor of 59.6,
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which can be interpreted as strong evidence in favor of the second model specification

according to the Bayes factor’s classification by Kass & Raftery (1995).

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−0.4

−0.2

0.0

0.2

2.5 3.0 3.5 4.0

fitted

re
si

du
al

s

(a)

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.3

−0.2

−0.1

0.0

0.1

0.2

2.6 3.0 3.4

fitted

re
si

du
al

s

(b)

Figure 3: Scatterplots of the residuals against fitted values along with nonparametric smoothing (continuous

line) for the (a) linear regression model including only a linear term for the gestational age and (b) linear

regression model including linear and quadratic terms for the gestational age for the Mandible length data

set.

4.3. Australian Institute of Sport data

We consider now a data set comprising a sample of 202 Australian athletes who

trained at the Australian Institute of Sport. For each athlete, 13 variables are recorded,

but here we limit the analysis on modeling the (log) plasma ferritin concentration,

henceforth log-Fe, as a function of the lean body mass (LBM) index and body mass

index (BMI). The data set is available in the R package sn. Simple exploratory data

analyses reveal mild linear relations between log-Fe and both BMI and LBM. Hence,

as a first model, we fit a Gaussian linear regression assuming

logFe = α+ β1 × BMI + β2 × LBM + ε, ε ∼ N(0, σ2). (10)

Panel (a) of Figure 4 presents the kernel density estimate of the residuals, obtained

by fitting model (10) via maximum likelihood. Although the kernel density estimates

show mild left skewness, the fitted (Gaussian) residuals’ density (represented by the
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dashed line) suggests a suitable fit. The goodness of fit is confirmed by the proposed

method which returns a Bayes factor of 73, implying strong evidence in favor of the

Gaussian assumption following the classification by Kass & Raftery (1995).

The mild skewness of the residuals in this first regression model, however, moti-

vates further investigations. A possible extension consists in going beyond the normal-

ity assumption of the error terms by assuming a skew distribution of the error terms.

A straightforward solution consists of assuming a skew-normal (Azzalini, 1985) dis-

tribution being a good compromise between mathematical tractability and flexibility in

modeling the skewness but other parametric families may lead to similar conclusions.

Consistent with this, we fit the following model

logFe = α+ β1 × BMI + β2 × LBM + η, η ∼ SN(0, ω2, α), (11)

where SN(ξ, ω2, α) denotes a skew-normal distribution with location ξ, scale ω2, and

shape α. Panel (b) of Figure 4 presents the kernel density estimates of the residuals

obtained through model (11) via maximum likelihood. The mild skewness is now

estimated and the newer formulation seems to provide a slightly better fit to the data

at hand. This is confirmed by the Bayes factor of 124, which is higher than that under

model (10) and provides stronger evidence in favor of the skew-normal assumption.
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Figure 4: Kernel density estimates (continuous lines) of the residuals and corresponding estimated Gaussian

density (dashed lines) for (a) the Gaussian regression model and (b) the skew-normal regression model for

the Australian Institute of Sport data set.
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4.4. Children reading accuracy and dyslexia data

We now replicate the analysis of the children reading accuracy data set of Smith-

son & Verkuilen (2006) conducted by Cribari-Neto & Zeileis (2010) to illustrate the

beta regression package betareg. The goal is to investigate whether dyslexia, a

dummy variable separating a dyslexic and a control group of children, contributes to

explaining children’s reading accuracy (accuracy), a continuous score in the open

unit interval, while controlling for a nonverbal intelligence quotient index (IQ). Fig-

ure 5 shows that the data are clearly asymmetric and heteroskedastic, particularly in

the control group. Despite this, and consistent with Smithson & Verkuilen (2006), we

first fit a Gaussian regression model using the logit transformation of accuracy as the

response variable to account for the fact that accuracy ranges from 0 to 1. Specifically,

we fit the model

logit(accuracy) = β0 +β1×IQ+β2×dyslexia+β3×(IQ:dyslexia)+ ε,

(12)

where the coefficient β3 accounts for the interaction between the two regressors and

ε ∼ N(0, σ2). It is not surprising that the model provides a poor fit to the data. The

poor fit is confirmed when applying our procedure: we obtained a Bayes factor of 4.58.

Given the poor performance of model (12), Smithson & Verkuilen (2006) suggest to

fitting a more appropriate beta regression model. As in Cribari-Neto & Zeileis (2010),

we let

accuracy ∼ Be(µφ, (1− µ)φ)

logit(µ) = β0 + β1 × IQ + β2 × dyslexia + β3 × (IQ:dyslexia)(13)

log(φ) = γ0 + γ1 × IQ + γ2 × dyslexia,

where the parameter µ represents the expectation of accuracy and φ its precision.

While the beta regression fit does not differ from the normal regression fit for the group

with dyslexia, the fit is much better for the control group. This improvement is con-

firmed by our goodness of fit approach, which returns a Bayes factor of 43.44 (thus

providing strong evidence in favor of H0).
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Figure 5: Reading skills and dyslexia data (Smithson & Verkuilen, 2006): Linearly transformed reading

accuracy by IQ score and dyslexia status (control, orange vs. dyslexic, blue). Fitted curves correspond to

beta regression (solid) and normal linear regression with logit-transformed dependent variable (dashed).

5. Discussion

We present a novel Bayesian approach to test goodness-of-fit of regression mod-

els via the Bayes factor. The approach can be applied to models with univariate and

continuous response. The implementation of the proposed method is not specific to

the regression model and only requires predictors and universal residuals as input. As

discussed in Section 2.2, our proposal has desirable asymptotic properties; simulation

studies and the real data analyses reported in Section 3 show that the procedure per-

forms well in different scenarios.

Future research is needed to study the asymptotic properties of the Bayes factor

when the proposed F0 is defined through an estimation procedure as discussed in Re-

mark 2. Furthermore, extensions of the proposed procedure to more general regression

models, such as those with a multivariate response, are subject to ongoing research.
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Appendix

Proof of Theorem 1. Let λ(·) = uµX(·), where u ∈ [0, 1]. Then, λ is absolutely

continuous with respect to µX and, by the Lebesgue decomposition theorem,

λ(A) =

∫
A

Tdµ,

where T is unique up to sets of µX -measure zero. It follows that T = u almost surely

µX . The assumption of uniformity and independence implies that,

pr [X ∈ A,U ≤ u] = pr [X ∈ A]× pr[U ≤ u] = uµX(A) = λ(A).

On the other hand, one has that

pr [X ∈ A,U ≤ u] = pr
[
X ∈ A, Y ≤ F−1

0,X (u)
]
,

= E
[
I{X∈A}I{U∗≤F∗0,X(F−1

0,X(u))}
]
,

= E
[
E
[
I{X∈A}I{U∗≤F∗0,X(F−1

0,X(u))} | X
]]
,

= E
[
I{X∈A}E

[
I{U∗≤F∗0,X(F−1

0,X(u))} | X1
]]
,

= E
[
I{X∈A}F ∗0,X

(
F−1

0,X (u)
)]

=

∫
A

F ∗0,X

(
F−1

0,X (u)
)
dµX .

Hence,

λ(A) =

∫
A

udµ =

∫
A

F ∗0,X

(
F−1

0,X (u)
)
dµ,

which implies that F0,X

(
F ∗−1

0,X (u)
)

= u almost surely µX , i.e. F0,X(u) = F ∗0,X(u)

almost surely µX .

Proof of Theorem 2. We prove consistency using Theorem 1 and 3 in Dass & Lee

(2004). Dass & Lee (2004) provide results in the single-density context. However,
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our proposed test is framed within a conditional/regression context. For this reason,

we apply Dass & Lee’s theorems assuming that the element of interest is the joint dis-

tribution m(u, x) = fx(u)λ(x), where λ(x) is the unknown but fixed distribution of

the predictors. Under this assumption, one has that

BF∗n =

∫
H0

∏n
i=1m(ui, xi)π(dm)∫

H1

∏n
i=1m(ui, xi)π(dm)

=

∏n
i=1 φ(ui)λ(xi)∫

H1

∏n
i=1 fxi(ui)λ(xi)π(dF)

=

∏n
i=1 φ(ui)∫

H1

∏n
i=1 fxi(ui)π(dF)

.

Therefore, the Bayes factor for H0 versus H1 remains the same as in (8), i.e., BF∗n and

BFn have the same limits.

Since πH0
∈ (0, 1), and by Theorem 1 in Dass & Lee (2004), we have that

BF∗n → ∞ as n → ∞ when F0 is the true conditional data-generating mechanism.

The elements in P (R)
X satisfying conditions A1-A5 in Pati et al. (2013) characterize

the Kullback–Leibler support of G. Putting together the assumptions on α and (κh, σh),

Theorem 3 in Dass & Lee (2004), and Theorem 6.1 in Pati et al. (2013), we have that

BF∗n → 0 as n → ∞ when F0 is not the true conditional data-generating mechanism

and satisfies conditions A1-A5.

Supplementary Material

The supplementary material contains a description of the MCMC algorithm used

in Section 3. The R code with the implementation of this algorithm is also available

online at https://git.io/fj15t.
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