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A CHARACTERIZATION OF JACOBIANS
BY THE EXISTENCE OF PICARD BUNDLES

A. C. LÓPEZ MARTÍN - E. C. MISTRETTA - D. SÁNCHEZ GÓMEZ

Based on the Matsusaka-Ran criterion we give a criterion to char-
acterize when a principal polarized abelian variety is a Jacobian by the
existence of Picard bundles.
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Introduction

The problem of determining when an abelian variety is the Jacobian of a curve
has been studied by many people along the years. Generalizing the classical
criterion of Matsusaka, Ran gives in [11] a characterization of Jacobians by the
existence of curves with minimal cohomology class in the abelian variety. This
criterion is nowadays known as the Matsusaka-Ran criterion.
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More recently, G. Pareschi and M. Popa use the theory of Fourier-Mukai
transforms as a useful tool in the study of the existence of subvarieties of a prin-
cipal polarized abelian variety with minimal cohomology class. In this sense,
they prove in [10] a cohomological criterion which claims that if (A,Θ) is an
indecomposable principal polarized abelian variety and C is a geometrically
non-degenerated reduced equidimensional curve in A, such that the ideal sheaf
IC(Θ) satisfies a Generic Vanishing property, then (A,Θ) is the Jacobian of C
and C has minimal cohomology class. In the same paper they conjecture that if
the Index Theorem with index 0 holds for IC(2Θ), with respect to the Fourier-
Mukai transform defined by the Poincaré bundle, then C has minimal cohomol-
ogy class. Consequently, using the Matsusaka-Ran criterion, this would give a
different cohomogical criterion for detecting Jacobians.

In this paper, we show the existence of such curves of minimal class using
Picard bundles.

Picard bundles were introduced by Schwarzenberger in [12] and have been
used by many authors in the study of the geometry of abelian varieties (c.f [4],
[2]). Mukai studied Picard bundles by means of Fourier-Mukai transforms in
(c.f. [6]). We extend his definition of Picard bundles in order to consider
Fourier-Mukai transforms of any line bundle, and study some properties of these
sheaves in Proposition 2.4.

The fact that the locus of Jacobians is detected by the presence of Picard
bundles appears in Kempf’s work (cf. [4] and [5]). He shows that the projec-
tive bundle associated to a Picard bundle is the symmetric product of the curve,
and that deformations of Picard bundles are Picard bundles (this is proved in-
dependently by Mukai). He shows furthermore that the deformations of Jaco-
bians carrying a deformation of the symmetric power of the curve (as a pro-
jective bundle on the Jacobian) are exactly those coming from deformations of
the curve. In this way, the presence of Picard bundles characterizes Jacobians
among p.p.a.v.’s.

With the use of Fourier-Mukai transform and vanishing properties, we carry
out this description of the Jacobian locus explicitely, determining those prop-
erties of Picard bundles that allow to detect Jacobians. Moreover the Fourier-
Mukai techniques give a quick and clean way to recover known results about
Picard bundles.

Our main result is the following:
Theorem. Let (A,Θ) be an indecomposable p.p.a.v. of dimension g. If there

exists a WITg sheaf F on A with Chern classes ci(F ) = (−1)i θ i

i!
, then (A,Θ)

is a Jacobian and a direct summand of F is a Picard bundle.
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1. Fourier-Mukai transforms for abelian varieties

In this section, we recall some of the terminology of Fourier-Mukai functors
and the results that we will need in the rest of the paper.

Let A be an abelian variety of dimension g and Â = Pic0(A) the dual abelian
variety. Â represents the Picard functor, so there exists a universal line bundle
P on A× Â, called the Poincaré bundle. Thus, if α ∈ Â corresponds to the line
bundle L on A, one has

Pα := P|A×{α} 'L .

Analogously, if x ∈ A, we denote Px := P|{x}×Â . The Poincaré bundle can be

normalised by the condition that P|{0}×Â is the trivial line bundle on Â. Denote

πA : A× Â → A and πÂ : A× Â → Â the natural projections.
The following result was proved by Mukai.

Theorem 1.1. [6] The integral functor Φ : Db(A)−→ Db(Â) defined by P

Φ(E •) := RπÂ∗(πA
∗(E •)⊗P)

is a Fourier-Mukai transform, that is, an equivalence of categories. Its quasi-
inverse is the integral functor defined by P∗[g] where P∗ denotes the dual of
P .

Let us denote by Φ̂ : Db(Â) −→ Db(A) the integral functor defined by P∗.
A straightforward consequence are the following isomorphisms:

Φ◦ Φ̂ ' IdDb(Â)[−g] and Φ̂◦Φ ' IdDb(A)[−g]

Remark 1.2. In his original paper [6], Mukai considers instead of Φ̂ the integral
functor S : Db(Â) −→ Db(A) defined by P . The relation between the two
functors is given by

S ' Φ̂◦ (−1Â)∗ .

For simplicity, we shall write Φ j(F •) to denote the j-th cohomology sheaf
of the complex Φ(F •), and the same for the functor Φ̂.
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Definition 1.3. A coherent sheaf F on A is WITi with respect to Φ (WITi-Φ for
short) if Φ j(F ) = 0 for all j 6= i, or equivalently if there exists a sheaf F̂ on Â
such that Φ(F ) ' F̂ [−i]. The sheaf F̂ is called the Fourier-Mukai transform
of F with respect to Φ. When in addition F̂ is locally free, we say that F is
ITi with respect to Φ.

We have analogous definitions of WIT and IT with respect the dual Fourier-
Mukai functor Φ̂.

The following proposition collects some properties of this special kind of
sheaves.

Proposition 1.4. Let F be a coherent sheaf on A. Then, the following holds:

1. F is ITi-Φ if and only if H j(A,F ⊗Pα) = 0 for all j 6= i and for all
α ∈ Â.

2. F is IT0-Φ if and only if F is WIT0-Φ.

3. If F is WITi-Φ, then F̂ is WITg−i-Φ̂ and ̂̂
F 'F .

4. If F is WITg-Φ, then it is a locally free sheaf.

5. If F is an ample line bundle, then it is IT0-Φ.

Proof. Since P is a locally free sheaf, 1) and 2) follow in a straightforward way
from Grauert’s cohomology and base change theorem. Part 3) follows from the
isomorphism Φ̂◦Φ' [−g] and part 4) is a consequence of 3) and the definition
of IT. Part 5) is a consequence of the fact that ample line bundles on abelian
varieties have no higher cohomology (see for instance [8, III.16]) and 1).

The relationship between the Chern characters of a WIT sheaf and those of
its Fourier-Mukai transform is given by the following formula.
Mukai’s formula([7, Corollary 1.18]): If E is a WIT j-Φ sheaf, then

chi(Ê ) = (−1)i+ jPD(chg−i(E )) (1)

where PD denotes the Poincaré duality isomorphism.

Definition 1.5. A principally polarized abelian variety (p.p.a.v. for short) is an
abelian variety A endowed with an ample line bundle L such that χ(L ) = 1.

Remark 1.6. If A is an abelian variety and we denote by τx the translation
morphism by a point x ∈ X , recall that A is a p.p.a.v. if and only if there exists
an ample line bundle L on A such that the morphism φL : A → Â defined as
φL (x) = τ∗x L ⊗L −1 is an isomorphism. Moreover, by Proposition 1.4, the
polarization L is IT0, and it satisfies

φ
∗
L (L̂ )'L −1 . (2)
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2. Picard Bundles on Jacobians

In this section we define Picard bundles via Fourier-Mukai transforms, and de-
termine those properties of theirs allowing us to characterize Jacobians among
p.p.a.v.’s.

Let C be a smooth curve of genus g ≥ 2 and consider Jd(C) the Picard
scheme parametrizing line bundles of degree d on C. This is a fine moduli
space. Denote by Pd the universal Poincaré line bundle on the direct product
C× Jd(C) and p : C× Jd(C) → C and q : C× Jd(C) → Jd(C) the projections.
Fixing a point x0 ∈ C, it is normalized by imposing Pd |{x0}×Jd

' OJd . The
higher direct images Riq∗(Pd) of Pd on Jd(C) are known in the literature as
degree d Picard sheaves.

Let us show how Picard sheaves can be seen in terms of the Fourier-Mukai
transform. Let J0(C) = J(C) be the Jacobian of C, that is, the abelian variety
that parametrizes the line bundles on C with degree zero. The Riemann theta
divisor Θ is a natural polarization on J(C) that defines a structure of principally
polarized abelian variety of dimension g on J(C). By Remark 1.6, this gives a
natural identification between J(C) and its dual abelian variety Ĵ(C). With this
identification, if we denote by

a : C ↪→ J(C)

the Abel morphism, the normalized Poincaré bundle P0 is precisely the restric-
tion (a× 1)∗P of the universal line bundle P on J(C)× J(C). On the other
hand, the line bundle Pd ⊗ p∗OC(−dx0) defines an isomorphism

λd : Jd(C)∼→J(C)

and by normalization of the Poincaré sheaves that we have considered, one has
isomorphisms

Pd ' (1×λd)∗P0⊗ p∗OC(dx0) .

Using the base-change and the projection formulas, the Picard sheaf Riq∗(Pd)
is

Riq∗(Pd)' λ
∗
d Φ

i(a∗OC(dx0)) .

Considering that all Jacobians are already identified and although the last
isomorphism is no longer true for an arbitrary line bundle L of degree d, the
above discussion justifies the following definition of Picard sheaves.

Definition 2.1. Let L be a line bundle on C of degree d. The sheaves Φi(a∗L)
are called the degree d Picard sheaves.
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Remark 2.2. The use of Fourier-Mukai transforms in the study of Picard bun-
dles is originally due to Mukai [6]. In this paper, he just considers the Picard
sheaf Fd = Φ1(a∗OC(dx0)) corresponding to the line bundle OC(dx0).

Remark 2.3. Let ∆ : Db(J(C)) → Db(J(C)) be the dualizing functor defined
by ∆(F •) = RH om(F •,OJ(C))[g]. From Grothendieck duality, there is an
isomorphism of functors

∆◦Φ ' ((−1)∗ ◦Φ◦∆)[g] .

Taking into account that if L is a line bundle on C, its derived dual is ∆(a∗L)'
a∗(L∗⊗ωC)[1] where ωC is dualizing sheaf of C, one has an isomorphism

RH om((Φ(a∗L),OJ(C))))' (−1)∗Φ(a∗(L∗⊗ωC))[1] . (3)

which, in some cases, gives a duality relation between degree d and degree
2g−2−d Picard bundles.

Applying the theory of Fourier-Mukai transforms, we get some properties of
Picard sheaves that we summarize in the following proposition (cf. Theorem 4.2
and Proposition 4.3 in [6], properties of Picard sheaves as defined by Mukai).

Proposition 2.4. The following holds:

1. Φi(a∗L) are zero for i 6= 0,1.

2. For d < 0, Φ0(a∗L) = 0 and Φ1(a∗L) is a simple locally free sheaf of rank
g−d−1. There is an isomorphism

Φ
1(a∗L)' (−1)∗H om((Φ0(a∗(L∗⊗ωC)),OJ(C))) .

3. For 0 ≤ d < g−1, Φ1(a∗L) is supported on J(C).

4. For g−1 ≤ d < 2g−1, Φ0(a∗L) and Φ1(a∗L) are both non-zero.

5. For d ≥ 2g− 1, Φ0(a∗L) is a simple locally free sheaf of rank d + 1− g
and Φ1(a∗L) = 0. There is an isomorphism

Φ
0(a∗L)' (−1)∗H om(Φ1(a∗(L∗⊗ωC)),OJ(C)) .

Proof. The first part is because the support of L has dimension 1. If d < 0, from
Grauert’s cohomology and base-change theorem Φ0(a∗L) = 0 and Φ1(a∗L) is
a locally free sheaf of rank g− d− 1. Since Φ is an equivalence of categories
and L is simple, Φ(a∗L)[1] = Φ1(a∗L) is simple as well. Analogously, one gets
the corresponding statements in 5). In both cases, the duality relation between
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degree d and degree 2g−2−d Picard bundles is a consequence of the equation
(3). Let us show 3). By cohomology and base-change, one has that Φ1(a∗L)α '
H1(C,L⊗Pα) which, being L⊗Pα of degree d, is non-zero for every α ∈ J(C)
because χ(L⊗Pα) < 0 by Riemman-Roch theorem. Now we prove 4). By the
equation (3), there is an isomorphism

Φ
0(a∗L)' (−1)∗H om−1((Φ(a∗(L∗⊗ωC)),OJ(C))) .

From 3), the sheaf Φ1(a∗(L∗⊗ωC)) is supported on J(C), and then

H om0(Φ1(a∗(L∗⊗ωC)),OJ(C)))

is non-zero. From the spectral sequence for local homomorphims

E p,q
2 = H omp(Φ−q(a∗(L∗⊗ωC)),OJ(C)))⇒

E p+q
∞ = H omp+q(Φ(a∗(L∗⊗ωC)),OJ(C))) .

and the above isomorphism we easily conclude that Φ0(a∗L) is non-zero. Fi-
nally, to show that Φ1(a∗L) is also non-zero, consider the line bundle L⊗
OC(−dx0), where x0 is the point of C that we have fixed to normalize the
Poincaré bundle. This is a line bundle of degree zero and then L⊗OC(−dx0)'
Pα for some α ∈ J(C). By Theorem 4.2 in [6], there is a point κ ∈ J(C) in the
support of the sheaf Φ1(OC(dx0)). Using again cohomology and base-change,
one obtains that

H1(C,OC(dx0)⊗Pκ)' H1(C,L⊗Pκ−α)

is non-zero. Hence, the point κ −α belongs to the support of Φ1(a∗L) and we
have the result.

We will use the following

Lemma 2.5. Let E be a vector bundle on a smooth variety X. The following
are equivalent:

a) ch j(E ) = 0 for all j ≥ 2.

b) ci(E ) =
c1(E )i

i!
for all i.

Proof. By definition the total Chern class of E is

ct(E ) = c0(E )+ c1(E )t + c2(E )t2 + · · ·+ cr(E )tr =
r

∏
i=1

(1+ait)
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and the Chern character is

ch(E ) =
r

∑
i=1

eait = ∑

(
1+ait +

(ait)2

2!
+ · · ·

)
= r + ch1(E )t + · · ·

So, if ci(E ) =
c1(E )i

i!
we get that ct(E ) = ec1(E )t . Then

c1(E )t = log(ct(E )) = ∑ log(1+ait) =

=∑(ait−
(ait)2

2
+

(ait)3

3
+ · · ·) =

=ch1(E )t− ch2(E )t2 +2ch3(E )t3−3ch4(E )t4 + · · ·

Hence ch j(E ) = 0 for any j ≥ 2.
Conversely, if we assume that ch j(E ) = 0 for all j ≥ 2, then one obtains

log(
r

∏
i=1

(1+ait)) = c1(E )t

which implies the condition b).

Consider now the line bundle L = OC(2Θ) ∈ J2g(C). By the proposition
above, the Picard sheaf Φ0(a∗OC(2Θ)) = ̂a∗OC(2Θ) is a vector bundle on J(C).

The aim of this section is to show some of the properties that this Picard
bundle has:

Proposition 2.6. If F = ̂a∗OC(2Θ), then

1. F is a quotient of ̂OJ(C)(2Θ).

2. F is WITg-Φ̂.

3. ci(F ) = (−1)i θ i

i!
.

4. F is simple.

Proof. Let us consider the exact sequence

0 −→IC(2Θ)−→ OJ(C)(2Θ)−→ a∗OC(2Θ)−→ 0 (4)

Since Θ is an ample divisor, the line bundle OJ(C)(2Θ)⊗Pα is also ample for
any α ∈ J(C). Thus, by applying the vanishing results for ample line bundles
on an abelian variety (see for instance [8, III.16]), we get that

H i(J(C),OJ(C)(2Θ)⊗Pα) = 0 for all i > 0 and all α ∈ J(C)
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and, by Proposition 1.4, one concludes that OJ(C)(2Θ) is IT0-Φ. On the other
hand, Theorem 4.1 in [9] proves that the sheaf IC(2Θ) is IT0-Φ as well.

By applying the Fourier-Mukai transform Φ to exact sequence (4) we then
obtain

0 −→ ÎC(2Θ)−→ ̂OJ(C)(2Θ)−→ ̂a∗OC(2Θ)−→ 0 (5)

The next step is to compute the Chern classes of ̂a∗OC(2Θ). In fact, this com-
putation is originally due to Schwarzenberger [12]. Here we deduce it using the
Fourier-Mukai transform.
The Chern characters of a∗OC(2Θ) can be obtained using the Grothendieck Rie-
mann Roch theorem for the Abel morphism C

a
↪→ J(C)

ch(a∗OC(2Θ)) · td(J(C)) = a∗(ch(OC(2Θ|C)) · td(C))

Remember that C has minimal cohomology class, that is,

[C] =
θ g−1

(g−1)!

and the Todd class of J(C) is trivial because it is an abelian variety. Then, one
gets

ch j(a∗OC(2Θ)) =


0 j < g−1

θ g−1

(g−1)!
j = g−1

g+1 j = g

(6)

By applying Mukai’s formula (1) we may compute the Chern characters of
Fourier-Mukai transform of a∗OC(2Θ). Thus we get

ch j( ̂a∗OC(2Θ)) =


g+1 j = 0
−Θ j = 1
0 j > 1

(7)

Using Equation (7) and Lemma 2.5, one obtains that

ci( ̂a∗OC(2Θ)) = (−1)i θ i

i!
(8)

Finally, notice that the sheaf F is simple because

HomD(J(C))( ̂a∗OC(2Θ), ̂a∗OC(2Θ))' HomC(OC(2Θ),OC(2Θ)) ,

in particular, it is an indecomposable sheaf.
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3. A Characterization of Jacobians via Picard Bundles

In this section we shall use the Matsusaka-Ran criterion to prove that the exis-
tence of a sheaf satisfying properties 2) and 3) of the Picard bundle in Proposi-
tion 2.6 is enough to ensure that an indecomposable p.p.a.v. is the Jacobian of
a curve. Let us introduce some necessary notions and recall the Matsusaka-Ran
criterion.

Let C be an irreducible, or more generally connected, curve on an abelian
variety A. Some translate of C generates (group-theoretically) an abelian subva-
riety of A which we denote by 〈C〉 and we call the abelian subvariety generated
by C.

Definition 3.1. A connected curve C on an abelian variety A is said to generate
A, if 〈C〉 = A. More generally, an effective algebraic 1-cycle ∑niCi on A, with
ni > 0 for all ni, generates A, if the union of the curves Ci generates A.

The following is the statement of the Matsusaka-Ran criterion [1, Theorem
11.8.1] (see also [11, Theorem 3]).

Theorem 3.2 (Criterion of Matsusaka-Ran). Suppose (A,Θ) is a polarized abe-

lian variety of dimension g and C =
r

∑
i=1

niCi is an effective 1-cycle generating A

with [C] ·Θ = g. Then ni = 1 for all 1 ≤ i ≤ r, the curves Ci are smooth, and
(A,Θ) is isomorphic to the product of the canonically polarized Jacobians of
the C′

is:
(A,Θ)' (J(C1),Θ1)×·· ·× (J(Cr),Θr)

In particular, if C is an irreducible curve generating A with [C] ·Θ = g, then C
is smooth and (A,Θ) is the Jacobian of C.

Thus, the criterion that characterizes Jacobians by the existence of Picard
bundles is the following

Theorem 3.3. Let (A,Θ) be an indecomposable p.p.a.v. of dimension g. Sup-
pose that there exists a sheaf F on A that satisfies the following conditions:

1. F is WITg-Φ̂.

2. ci(F ) = (−1)i θ i

i!
.

Then there exists a smooth curve C in A such that (A,Θ)' (J(C),Θ). Moreover,
if the sheaf F is indecomposable, then it is a simple degree rk(F ) + g− 1
Picard bundle with rk(F )≥ g.
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Proof. Consider F̂ the Fourier-Mukai transform of F . Set Z = supp(F̂ ) the
support of F̂ and i : Z ↪→ A the natural inclusion. Then, F̂ ' i∗G for some
sheaf G on Z.

We recall that a WITg sheaf is locally free (Proposition 1.4). Using Lemma
2.5 and Mukai’s formula (1), we compute the components of the Chern character
of F̂ getting that

ch j(F̂ ) =


0 j < g−1

θ g−1

(g−1)!
j = g−1

rk(F ) j = g

(9)

This proves that Z is a subscheme of codimension g−1. Define now the 1-cycle

Z1(F̂ ) = ∑
dimV=1

lV (F̂ )[V ]

where the sum is over all 1-dimensional subvarieties in Z and lV (F̂ ) is the
length of the stalk of F̂ .

As a consequence of Grothendieck-Riemman-Roch theorem (c.f. [3, Theo-
rem 18.3, Example 18.3.11]), it is known that

ch(F̂ ) = Z1(F̂ )+higher degree terms .

Hence the effective 1-cycle Z1(F̂ ) on A satisfies

Z1(F̂ ) =
θ g−1

(g−1)!

This implies that this 1-cycle generates A, by Corollary II.2, Corollary II.3 and
Lemma II.10 in [11]. Finally, since (A,Θ) is indecomposable, and

[Z] =
θ g−1

(g−1)!
,

then Z is irreducible via the Poincaré duality. The Matsusaka-Ran criterion
allows us to conclude that the abelian variety (A,Θ) is the Jacobian of a smooth
curve, which proves the first part of the theorem.

Assume now that the sheaf F is indecomposable. According to the previous
discussion, the support Z = CtW , where C is the smooth curve and W is a 0-
dimensional closed subscheme. Since F̂ ' i∗G is also indecomposable, then
Z = C, the inclusion i is ±a : C ↪→ J(C), where a is the Abel morphism, and G
is a torsion free sheaf on C. By applying Grothendieck-Riemman-Roch theorem
to F̂ ' i∗G , we get

i∗(rk(G )) =
θ g−1

(g−1)!
and i∗(c1(G )− 1

2
rk(G )KC) = rk(F )
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KC being a canonical divisor of C. Thus, i = a and G is a line bundle on C of
degree rk(F )+g−1. From Proposition 1.4 a∗G is IT0-Φ and then F is simple
and rk(F )≥ g by Proposition 2.4.

Remark 3.4. The same proof shows that when (A,Θ) is decomposable, it is
isomorphic to the direct product of the Jacobians of the irreducible components
of Z1(F̂ ).

Remark 3.5. When F is not indecomposable, we can show by the same ar-
gument that it is the direct sum of a Picard bundle (the transform of F̂|C) and
a vector bundle obtained as a chain of extensions of degree 0 line bundles (the
transform of F̂|W ).
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ANA C. LÓPEZ MARTÍN
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