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Abstract
The analysis of projection-free first order methods is often complicated by the presence of differ-

ent kinds of "good" and "bad" steps. In this article, we propose a unifying framework for projection-
free methods, aiming to simplify the converge analysis by getting rid of such a distinction between
steps. The main tool employed in our framework is the Short Step Chain (SSC) procedure, which
skips gradient computations in consecutive short steps until proper stopping conditions are satisfied.
This technique allows us to give a unified analysis and converge rates in the general smooth non
convex setting, as well as convergence rates under a Kurdyka-Łojasiewicz (KL) property, a setting
that, to our knowledge, has not been analyzed before for the projection-free methods under study.
In this context, we prove local convergence rates comparable to those of projected gradient methods
under the same conditions.

Our analysis relies on a sufficient slope condition, ensuring that the directions selected by the
methods have the steepest slope possible up to a constant among feasible directions. This condi-
tion is satisfied, among others, by several Frank-Wolfe (FW) variants on polytopes, and by some
projection-free methods on convex sets with smooth boundary.
Keywords: Nonconvex optimization, First-order optimization, Projection-free optimization, Frank-
Wolfe variants, Kurdyka-Łojasiewicz inequality.
AMS subject classification: 46N10, 65K05, 90C06, 90C25, 90C30

1 Introduction
Projection-free first-order methods aim to provide a valid alternative to projected gradient ap-

proaches for the constrained optimization of a smooth objective f :Rn→R, in settings where projecting
on the feasible set may be unpractical. Popular methods of this kind are the FW algorithm [17] and
its variants (see, e.g., [18], [30] and references therein), which have many applications in sparse and
structured optimization (see, e.g., [18], [22], [24], [39] and references therein).

In this paper, we present a specific algorithmic framework that can easily embed a number of
projection-free (deterministic) methods proposed in the literature. This enables us to give a unified
theoretical analysis for the methods at hand and new convergence results in the non convex case. More
specifically, the framework we propose aims to overcome an annoying issue affecting the analysis of
projection-free methods, that is the presence of "bad iterations", i.e., iterations where we cannot show
good progress. This happens when we are forced to take a short step along the search direction to
guarantee feasibility of the iterate. The number of short steps typically needs to be upper bounded in
the convergence analysis with "ad hoc" arguments (see, e.g., [18] and [30]). The main idea behind our
method is to chain several short steps by skipping gradient updates until proper stopping conditions
are met. This has the additional benefit to rule out unpractical convergence rates due to large numbers
of short steps in the analysis of the methods, like, for instance, in the PFW algorithm on the N − 1
dimensional simplex, where the best known upper bound on the number of consecutive short steps is
∗Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Italy (rinaldi@math.unipd.it)
†Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Italy (zeffiro@math.unipd.it)
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3N ! [30].
The projection-free first order methods we consider satisfy a sufficient slope condition related to the

slope along descent directions. Essentialy, for any direction dx selected by the method in x and any
direction d feasible in x we must have

−〈∇f(x), dx
‖dx‖

〉 ≥ −τ〈∇f(x), d

‖d‖
〉

for a fixed τ > 0 (independent from x and ∇f). Thus any direction selected by the method must be,
up to a fixed constant, the steepest descent direction among feasible directions. The sufficient slope
condition rules out the well known zig zagging behaviour of the classic FW method, whose directions
can be almost orthogonal to the gradient on the interior of the feasible domain, leading to a slow
convergence of O(1/k) even for smooth strongly convex objectives [14, 17, 30, 43]. We show that this
condition applies to the AFW, the PFW and the FW method with in face directions (FDFW) (see, e.g.,
[18] and [20]) on polytopes, to a retraction based approach on convex sets with smooth boundary as the
one proposed in [33], to the FDFW method on sublevel sets of smooth strongly convex functions, and
to tailored approaches over product domains.

We analyze convergence rates for non convex smooth objectives both in the general case and under the
Kurdyka-Łojasiewicz property ([3], [8], [9]; see also Section 8.2 for a review of the essential definitions).
This property holds for semialgebraic functions and more in general for functions definable in an o-
minimal class (see, e.g., [3], [8]). While there are many works on the convergence rates of proximal
subgradient type methods under KL properties (see, e.g., [3], [4], [10], [42], [44]), we are not aware of
previous analyses including projection-free methods for convex sets and smooth non convex objectives.
In the convex setting, FW variants have been analyzed on polytopes [28] and uniformly convex sets (see,
e.g., [29], [45]) under Hölderian error bound conditions, to interpolate between the well known O(1/k)
rate for general convex objectives and the faster rates for strongly convex ones proved in [19] and [30].
These Hölderian error bound conditions are equivalent to certain KL properties for convex objectives,
as proved for a more general class of error bounds in [10]. As for the smooth non convex case, in [35] a
KL property leading to linear convergence of some methods using retractions is proved for a quadratic
problem on the Stiefel manifold; in [7] the convergence of a method using orthographic retractions is
analyzed on proximally smooth surfaces under a KL property (see also Remark 8.2).

When dealing with the FW method and its variants, which represent a specific class of projection-
free first-order methods, the SSC procedure has the additional advantage that it skips the computation
of the solutions of linear programming subproblems. Different approaches to avoid computations of
those solutions have been discussed in [12] , [11] for convex optimization over polytopes. The blended
conditional gradient introduced in [12] uses projections on the convex hull of the current active set as
an alternative to pairwise or away FW steps, but its analysis still allows for short steps. Other works in
projection-free optimization (e.g. [21], [32]) rely on the classic FW method to approximately compute
the projection in accelerated projected gradient methods for convex objectives. To our knowledge this
approach, called conditional gradient sliding, has not yet been combined effectively with faster FW
variants, and it does not currently lead to any improvement on the O(1/ε) linear oracle complexity of
the FW method. Our methods using the SSC procedure instead have a complexity of O(ln1

ε ) both in
gradients and linear oracles for non convex objectives satisfying a KL property implied e.g. by the Luo
Tseng error bound [36] under some mild separability conditions for the stationary points [34, Theorem
4.1]. This error bound is known to hold in a variety of convex and non convex settings (see references
in [34]).

The structure of the paper is as follows. In Section 2, we define some notation and state some
preliminary results from convex analysis. In Section 3, we introduce a sufficient slope property for first-
order projection free methods. We define the SSC procedure in Section 4, and prove it can be applied
to generate some subgradient descent-like sequences (see, e.g., [4], [10], [36]) adapted to our particular
setting. In Section 5, we state the main convergence results. In Section 6, we show examples of methods
fitting our framework. Finally, some proofs, technical lemmas and background material can be found
in the appendix.
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2 Notation and preliminaries
We consider the following constrained optimization problem:

min{f(x) | x ∈ Ω} . (2.1)

In the rest of the article Ω is a compact and convex set, unless specified otherwise, and f ∈ C1(Ω) with
L-Lipschitz gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖ for all x,y ∈ Ω .
We define D as the diameter of Ω, ĉ= c/‖c‖ for c ∈Rn/{0} and ĉ= 0 for c= 0. For sequences we write
{xk} instead of {xk}k∈I when I is clear from the context, with I =N0 by default and [1 :m] = {1, ...,m}.
Given a function f̃ with values in R we use the notation

[η1 < f̃ < η2] = {x ∈ Rn | η1 < f̃(x)< η2}

for −∞≤ η1 < η2 ≤+∞ and we use the same notation for non strict inequalities.
For subsets C,D of Rn we define dist(C,D) as

dist(C,D) = inf{‖y−z‖ | z ∈ C, y ∈D} ,

BR(C) as the neighborhood {x ∈ Rn | dist(C,x)<R} of C of radius R and in particular BR(x) as the
open euclidean ball of radius R and center x. When C is closed and convex we define as π(C, ·) the
projection on C. If C is a cone then we denote with C∗ its polar.

We now state some elementary properties related to the tangent and the normal cones, where for
x̄ ∈ Ω we denote with TΩ(x̄) and NΩ(x̄) the tangent and the normal cone to Ω in x̄ respectively. The
next proposition (from [41], Theorem 6.9) characterizes these cones for closed convex subsets of Rn.

Proposition 2.1. Let Ω be a closed convex set. For every point x̄ ∈ Ω we have

TΩ(x̄) = cl{w | ∃λ > 0 with x̄+λw ∈ Ω} ,
int(TΩ(x̄)) = {w | ∃λ > 0 with x̄+λw ∈ int(Ω)} ,
NΩ(x̄) = TΩ(x̄)∗ = {v ∈ Rn | (v,y− x̄)≤ 0 ∀ y ∈ Ω} .

We have the following formula connecting the maximal "slope" of a linear function along feasible
directions to the tangent and the normal cone:

Proposition 2.2. If Ω is a closed convex subset of Rn, x̄ ∈ Ω then for every g ∈ Rn

max
{

0, sup
h∈Ω\{x̄}

(
g,

h− x̄
‖h− x̄‖

)}
= dist(NΩ(x̄),g) = ‖π(TΩ(x̄),g)‖ .

This property is a consequence of the Moreau-Yosida decomposition [41] and we refer the reader to
Section 8.1 in the Appendix for a detailed proof. In the rest of the article to simplify notations we often
use πx̄(g) as a shorthand for ‖π(TΩ(x̄),g)‖, so that by Proposition 2.2 first order stationarity conditions
in x̄ for the gradient −g become equivalent to πx̄(g) = 0.

3 Sufficient slope condition
Let A be a first-order optimization method defined for smooth functions on a closed subset Ω of

Rn. We assume that given first-order information (xk,∇f(xk)) the method always selects xk+1 along
a feasible descent direction, so that for (x,g) ∈ Ω×Rn we can define

A(x,g)⊂ TΩ(x)∩{y ∈ Rn | 〈g,y〉> 0}∪{0}

as the possible descent directions selected by A when x= xk, g=−∇f(xk) for some k (see Algorithm 1).
When x is first-order stationary, we set A(x,g) = {0}, otherwise we always assume 0 /∈ A(x,g).
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Algorithm 1: First-order method

Initialization. x0 ∈ Ω, k := 0.
1. If xk is stationary, then STOP
2. select a descent direction dk ∈ A(xk,−∇f(xk))
3. set xk+1 = xk+αkdk for some stepsize αk ∈ [0,αmax

k ]
4. set k := k+ 1, go to Step 1.

We want to formulate a "sufficient slope" condition for the descent directions selected by A with
respect to the steepest slope among feasible directions. In order to do that, we define the directional
slope lower bound as

DSBA(Ω,x,g) = inf
d∈A(x,g)

〈g,d〉
πx(g)‖d‖

if 0 /∈A(x,g). Otherwise by our assumptions x is stationary for −g, πx(g) = 0 and we set DSBA(Ω,x,g) =
1. With these definitions for any x ∈ Ω, g ∈ Rn

DSBA(Ω,x,g)≤ 1 (3.1)

since if πx(g) 6= 0 then for any d feasible descent direction 〈g,d〉‖d‖ ≤ πx(g) by Proposition 2.2, and if
πx(g) = 0 by definition DSBA(Ω,x,g) = 1. Given a subset P of Ω we can finally define the slope lower
bound

SBA(Ω,P ) = inf
g∈Rn
x∈P

DSBA(Ω,x,g) = inf
g:πx(g)6=0
x∈P

DSBA(Ω,x,g) ,

where in the second equality we used that (3.1) holds with equality if πx(g) = 0. For simplicity if P = Ω
we write SBA(Ω) instead of SBA(Ω,Ω).

In Section 6, we show a few examples of methods and sets satisfying a sufficient slope condition, i.e.,
cases where the slope lower bound is strictly grater than zero.

4 First order projection free methods with SSC procedure
In this section, we briefly recall the subgradient descent sequence conditions used in the analysis

of a variety of descent methods (see, e.g., [4], [10], [36]), with a few simple adaptations to our smooth
constrained projection-free setting. We then introduce the SSC procedure, and show how it allows us
to obtain our adapted subgradient descent sequences.

4.1 Subgradient descent sequences for projection-free methods
Let f̃ :Rn→R∪{+∞} be a proper lower semicontinuous function and let ∂f̃ be its limiting subdiffer-

ential. We refer the reader to Section 8.2 of the appendix for a brief reivew of the Fréchet subdifferential
and the related KL property as defined in [3], [4]. In this work we are only interested in the case
f̃ = f + iΩ with iΩ the indicator function for Ω. We anyway notice that the abstract convergence result
we give in Section 5 holds for general lower semicontinuous functions.

Subgradient descent sequences as defined in [10] satisfy the following properties for some given
a,b > 0:

f̃(xk+1) +a‖xk+1−xk‖2 ≤ f̃(xk), (H1)
∃ wk+1 ∈ ∂f̃(xk+1) such that ‖wk+1‖ ≤ b‖xk+1−xk‖ . (H2)

Since ∂f̃(xk) is closed, condition (H2) is true iff ∂f̃(xk+1) 6= ∅ and

dist(∂f̃(xk+1),0)≤ b‖xk+1−xk‖ . (4.2)

4



In our smooth constrained setting, that is when f̃ = f + iΩ, by (8.8) we can rewrite (4.2) as

‖π(TΩ(xk+1),−∇f(xk+1))‖ ≤ b‖xk+1−xk‖ . (4.3)

However, for projection-free methods equation (4.2) and in particular (4.3) do not hold in general, even
in linear convergence settings.

(a) FW method (6.3) does a full step from the
boundary of a sphere. sk ∈ argmins∈Ω〈∇f(x),s〉.

(b) AFW method (6.2) does a short step
near the boundary of a polytope.

Figure 1

Intuitively, for these methods the first obstacle for condition (4.3) or variants is that if xk ∈ ∂Ω and
xk+1 ∈ int(Ω) with ‖π(TΩ(xk)−∇f(xk))‖� ‖∇f(xk)‖ we have, for typical choices of the stepsize (see
figure 1a):

‖xk+1−xk‖≈ ‖π(TΩ(xk),−∇f(xk))‖� ‖∇f(xk)‖≈ ‖∇f(xk+1)‖= ‖π(TΩ(xk+1),−∇f(xk+1))‖ .

This leads us to introduce the weaker condition

f̃(xk)− f̃(xk+1)≥ a

b2
dist(∂f̃(x̃k),0)2 , (H’2)

for some auxiliary point x̃k s.t. ∂f̃(x̃k) 6= ∅ and

f̃(xk+1)≤ f̃(x̃k)≤ f̃(xk)−a‖x̃k−xk‖2 . (4.4)

In particular in the setting of figure 1a a typical choice is x̃k = xk, as we shall see more formally in the
next section. In the rest of this article (H’2) always comes with (4.4) for x̃k.

As anticipated, condition (H’2) is weaker than (H2) if one is already assuming (H1). Indeed if (H1)
and (H2) hold then

f̃(xk)− f̃(xk+1)≥ a‖xk−xk+1‖2 ≥
a

b2
dist(∂f̃(xk+1),0)2 ,

where the second inequality directly follows from (H2) in the form (4.2). One can then satisfy (H’2)
and (4.4) by taking x̃k = xk+1.

In our setting, that is when f̃ = f + iΩ, we use the smooth version of (H’2):

f(xk)−f(xk+1)≥ a

b2
‖π(TΩ(x̃k),−∇f(x̃k))‖2 , (H’2a)

with analogous conditions on x̃k.
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4.2 The SSC procedure
The second (and arguably most important) issue for applying conditions such as (4.3) to projection-

free methods is the presence of short steps. Given a projection-free first-order method A, we say that
the step k is short if the stepsize αk is maximal, that is αk = αmax

k . Roughly speaking, when xk is close
enough to ∂Ω and dk points toward ∂Ω we have (see figure 1b with pk+1 = π(TΩ(xk+1),−∇f(xk+1)))

‖xk+1−xk‖= αk‖dk‖= αmax
k ‖dk‖� ‖π(TΩ(xk+1),−∇f(xk+1))‖ .

An analogous issue affects also weaker variants of (4.3), including (H’2a). In order to address this issue,
we apply the SSC procedure to first order methods (Algorithm 2). This procedure (Algorithm 3) chains
consecutive short steps, skipping updates for the gradient and possibly for related information, like
linear minimizers, until proper stopping conditions are met. After the SSC returns a candidate point
xtrk+1, the method may still choose another point in Step 4, selecting a xk+1 with a smaller objective
value than xtrk+1 and satisfying (H1):

f(xk+1)≤min(f(xtrk+1),f(xk)− L2 ‖xk+1−xk‖2) . (4.5)

The method can always take xtrk+1, since, as we prove later in this section, the following inequality holds

f(xtrk+1)≤ f(xk)− L2 ‖x
tr
k+1−xk‖2 .

Algorithm 2: First-order method with SSC

Initialization. x0 ∈ Ω, k = 0.
1. while xk is not stationary:
2. g =−∇f(xk)
3. xtrk+1 = SSC(xk,g)
4. select xk+1 ∈ Ω satisfying (4.5)
5. k = k+ 1.

Algorithm 3: SSC(x̄,g)

Initialization. y0 = x̄, j = 0.
Phase I
1. select dj ∈ A(yj ,g), α(j)

max ∈ αmax(yj ,dj)
2. if dj = 0 then:
3. return yj
Phase II
4. compute βj with (4.7)
5. let αj = min(α(j)

max,βj)
6. if αj = 0 then:
7. return yj
Phase III
8. yj+1 = yj +αjdj
9. if αj = βj then:
10. return yj+1
11. j = j+ 1, go to Step 1.

6



Given that the gradient −g is constant during the SSC, this procedure can be viewed as an application of
A for the minimization of the linearized objective fg(z) = 〈−g,z− x̄〉+f(x̄) with peculiar stepsizes and
stopping criterion. Fundamentally, these must ensure that the linearized objective is still a sufficiently
accurate approximation of f on the generated sequence, and that the directions selected are descent
directions not only for fg but also for the true objective f .

We can split the SSC into three phases. First, the SSC computes a feasible descent direction
dj ∈ A(yj ,g) if it exists, otherwise dj = 0 and the algorithm returns yj . Notice that dj = 0 iff yj is
stationary w.r.t. the approximated gradient −g. Second, the stepsize αj is computed by taking the
minimum between the maximal stepsize α(j)

max and an auxiliary stepsize βj . The maximal stepsize α(j)
max

may depend on boundary conditions but also on additional information available like the active set
in the AFW and in the PFW. In the theoretical analysis, we only need to assume termination of the
procedure and α(j)

max > 0. In particular, αj = 0 in Phase II iff βj = 0, or equivalently if dj is not feasible
from yj for the auxiliary set Ωj (see (4.6)). As we shall see later in this section, when d0 6= 0 we always
have β0 > 0, and therefore Phase II can never return y0 (which could cause an infinite loop in Algorithm
2). In the third and final phase, the new point of the SSC yj+1 = yj +αjdj is computed. Then the
procedure terminates if αj = βj , otherwise it continues without updating the gradient.

We now define the auxiliary step size βj , which allows us to retrieve the descent sequence conditions
(H1) and (H’2a). Let

Ωj = B̄‖g‖/2L(x̄+ g

2L )∩ B̄〈g,d̂j〉/L(x̄) . (4.6)

We define

βj =
{

0 if yj /∈ Ωj ,
βmax(Ωj ,yj ,dj) if yj ∈ Ωj .

(4.7)

where βmax(Ωj ,yj ,dj) = max{β ∈R≥0 | yj +βdj ∈Ωj} is the maximal feasible stepsize in the direction
dj starting from yj with respect to Ωj . Since Ωj is the intersection of two balls there is a simple closed
form expression for βj . Given that y0 = x̄ it is immediate to check that if d0 6= 0

β0 = 〈g, d̂0〉
L‖d0‖

,

which corresponds to the constant stepsize 1/L for gradient descent (when d0 = g), and where β0 > 0
since d0 6= 0 is by assumption a descent direction for −g.

The second ball appearing in the definition of Ωj does not depend on j and can be rewritten as

B̄‖g‖/2L

(
x̄+ g

2L

)
= {z ∈ Rn | L‖z− x̄‖2−〈z− x̄,g〉 ≤ 0} . (4.8)

Then for any z ∈ B̄‖g‖/2L
(
x̄+ g

2L
)
we have

f(z)≤ f(x̄)−〈g,z− x̄〉+ L

2 ‖z− x̄‖
2 ≤ f(x̄)− L2 ‖x̄−z‖

2 , (4.9)

where the first inequality is the standard descent lemma and the second follows from (4.8). Let now
B̄ = B̄‖g‖/2L(xk + g

2L ). Since y0 = xk ∈ B̄, and if yj ∈ B̄ then yj+1 ∈ B̄ by definition of βj ≥ αj , by
induction we obtain yj ∈ B̄ for every j ∈ {0, ...,T}. Therefore thanks to (4.9) for every j ∈ {0, ...,T} we
have the sufficient decrease condition

f(yj)≤ f(xk)− L2 ‖xk−yj‖
2 . (4.10)

We now show how the condition yj+1 ∈ Ωj ⊂ B̄〈g,d̂j〉/L(x̄) guarantees that the true objective f is
monotone decreasing during the SSC.

7



Lemma 4.1. Assume yj ∈ B̄〈g,d̂j〉/L(x̄). Then for every β ∈ [0,βj ] we have

d

dβ
f(yj +βdj)≤ 0 ,

and thus in particular f(yj +βjdj)≤ f(yj).

Proof. We have

d

dβ
f(yj +βdj) = ‖dj‖〈∇f(yj +βdj), d̂j〉

=‖dj‖〈(∇f(yj +βdj) +g)−g, d̂j〉= ‖dj‖(〈∇f(yj +βdj) + r, d̂j〉−〈g, d̂j〉)
≤‖dj‖(L‖x̄−yj−βdj‖−〈g, d̂j〉)≤ 0 ,

where we used g =−∇f(x̄) and the Lipschitzianity of ∇f in the first inequality and

yj +βdj ∈ B̄〈g,d̂j〉/L(x̄)

in the second.

We can now prove the descent sequence conditions (H1) and (H’2a) for a sequence {xk} generated
by Algorithm 2.

Proposition 4.1. Let τ = SBA(Ω)> 0. Assume the SSC is given in input (xk,g) and let xtrk+1 be the
output. Then

f(xk)−f(xtrk+1)≥ L

2 ‖xk−x
tr
k+1‖2 , (4.11)

‖xk−xtrk+1‖ ≥K‖π(TΩ(x̃k),−∇f(x̃k))‖ . (4.12)

for some x̃k such that f(xtrk+1)≤ f(x̃k)≤ f(xk)− L
2 ‖xk− x̃k‖

2 and for K = τ/(L(1+τ)). Furthermore,
conditions (H1) and (H’2a) are satisfied with b=K and a= L/2.

Proof. Let Bj = B̄〈g,d̂j〉/L(xk) and let T be such that xtrk+1 = yT .
Inequality (4.10) applied with j = T gives (4.11). Moreover, by taking x̃k = yT̃ for some T̃ ∈ {0, ...,T}
the conditions

f(xtrk+1)≤ f(x̃k)≤ f(xk)− L2 ‖xk− x̃k‖
2 (4.13)

are satisfied by Lemma 4.1 and (4.10).
Let now pj = ‖π(TΩ(yj),−∇f(yj))‖ and p̃j = ‖π(TΩ(yj),g)‖= ‖π(TΩ(yj),−∇f(xk))‖. We have

|pj− p̃j |= |‖π(TΩ(yj),−∇f(yj))‖−‖π(TΩ(yj),−∇f(xk))‖|
≤ ‖−∇f(yj) +∇f(xk)‖ ≤ L‖yj−xk‖ ,

(4.14)

where we used the 1-Lipschitzianity of the projections on convex sets in the first inequality. We now
distinguish four cases according to how the SSC terminates.
Case 1: T = 0 or dT = 0. Since there are no descent directions xtrk+1 = yT must be stationary for the
gradient g. Equivalently, p̃T = ‖π(TΩ(xtrk+1),g)‖= 0. We can now write

‖xtrk+1−xk‖ ≥
1
L

(|pT − p̃T |) = pT
L
>KpT ,

where we used (4.14) in the first inequality and p̃T = 0 in the equality. We now prove that if T = 0
then necessarily d0 = 0. This is clear if y0 is stationary for −g. Otherwise d0 6= 0 is a feasible descent
direction, so that α(0)

max > 0 and also β0 > 0. But then α0 > 0 and the SSC can’t terminate in Phase I

8



or Phase II, in contradiction with T = 0.
Before examining the remaining cases we remark that if the SSC terminates in Phase III then αT−1 =
βT−1 must be maximal w.r.t. the conditions yT ∈ BT−1 or yT ∈ B̄, which imply yT ∈ ∂BT−1 (case 3)
and yT ∈ ∂B̄ (case 4) respectively. On the other hand if αT = 0 then necessarily yT ∈ int(ΩT )c. In this
case we cannot have yT ∈ ∂B̄, otherwise the SSC would terminate in Phase III of the previous cycle.
Therefore necessarily yT ∈ int(BT )c (Case 2).
Case 2: yT ∈ int(BT )c. We can rewrite the condition as

〈g, d̂T 〉 ≤ L‖yT −xk‖ . (4.15)

Thus
pT ≤ p̃T +L‖yT −xk‖ ≤

1
τ
〈g, d̂T 〉+L‖yT −xk‖ ≤

(
L

τ
+L

)
‖yT −xk‖ , (4.16)

where the first inequality follows from (4.14), the second from 〈g,d̂T 〉
p̃T

≥DSBA(Ω,yT ,g)≥ SBA(Ω) = τ ,
and the third from (4.15). Then x̃k = xtrk+1 = yT satisfies the desired conditions.
Case 3: yT = yT−1 +βT−1dT−1 and yT ∈ ∂BT−1. Then from yT−1 ∈BT−1 it follows

L‖yT−1−xk‖ ≤ 〈g, d̂T−1〉 , (4.17)

and yT ∈ ∂BT−1 implies
〈g, d̂T−1〉= L‖yT −xk‖ . (4.18)

Combining (4.17) with (4.18) we obtain

L‖yT−1−xk‖ ≤ L‖yT −xk‖ . (4.19)

Thus
pT−1 ≤ p̃T−1 +L‖yT−1−xk‖ ≤

1
τ
〈g, d̂T−1〉+L‖yT−1−xk‖ ≤

(
L

τ
+L

)
‖yT −xk‖ ,

where we used (4.18), (4.19) in the last inequality and the rest follows reasoning as for (4.16). In
particular we can take x̃k = yT−1.
Case 4: yT = yT−1 +βT−1dT−1 and yT ∈ ∂B̄.
By the characterization of B̄ in (4.8) the condition xtrk+1 = yT ∈ B̄ can be rewritten as

L‖xtrk+1−xk‖2−〈g,xtrk+1−xk〉= 0 . (4.20)

For every j ∈ {0, ...,T} we have

xtrk+1 = yj +
T−1∑
i=j

αidi . (4.21)

We now want to prove that for every j ∈ {0, ...,T}

‖xtrk+1−xk‖ ≥ ‖yj−xk‖ . (4.22)

Indeed, we have

L‖xtrk+1−xk‖2 = 〈g,xtrk+1−xk〉= 〈g,yj−xk〉+
T−1∑
i=j

αi〈g,di〉

≥ 〈g,yj−xk〉 ≥ L‖yj−xk‖2 ,
where we used (4.20) in the first equality, (4.21) in the second, 〈g,dj〉 ≥ 0 for every j in the first inequality
and yj ∈ B̄ in the second inequality.
We also have

〈g,xtrk+1−xk〉
‖xtrk+1−xk‖

=
〈g,
∑T−1
j=0 αjdj〉

‖
∑T−1
j=0 αjdj‖

≥
〈g,
∑T−1
j=0 αjdj〉∑T−1

j=0 αj‖dj‖

≥min
{
〈g,dj〉
‖dj‖

| 0≤ j ≤ T −1
}
.

(4.23)
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Thus for T̃ ∈ argmin
{
〈g,dj〉
‖dj‖

| 0≤ j ≤ T −1
}

〈g, d̂T̃ 〉 ≤
〈g,xtrk+1−xk〉
‖xtrk+1−xk‖

= L‖xtrk+1−xk‖ , (4.24)

where we used (4.23) in the first inequality and (4.20) in the second.
We finally have

pT̃ ≤ p̃T̃ +L‖yT̃ −xk‖ ≤
1
τ
〈g, d̂T̃ 〉+L‖yT̃ −xk‖ ≤

(
L

τ
+L

)
‖xtrk+1−xk‖ ,

where we used (4.22), (4.24) in the last inequality and the rest follows reasoning as for (4.16). In
particular x̃k = yT̃ satisfies the desired properties.
It remains to prove that xk+1 satisfies (H1) and (H’2a). The first condition (H1) clearly holds by (4.5).
As for (H’2a), we have

f(xk)−f(xk+1)≥ f(xk−f(xtrk+1)≥ L

2 ‖xk−x
tr
k+1‖2 ≥

2K2

L
‖π(TΩ(x̃k),−∇f(x̃k))‖2 ,

where the first inequality follows from (4.5), the second from (4.11), and the third from (4.12). Finally,
since f(xk+1)≤ f(xtrk+1), by (4.13) the conditions (4.4) on x̃k are satisfied.

As an immediate corollary we have convergence to the set of stationary points with a rate of O( 1√
k

)
for the norm of the projected gradient π(TΩ(x̃i),−∇f(x̃i)). While the norm of the projected gradient
may not be available, by (4.11) we have the readily available upper bound ‖xk−xtrk+1‖/K, which has
an analogous convergence rate.

Corollary 4.1. Under the assumptions of Proposition 4.1, {f(xk)} is decreasing, f(xk)→ f∗ ∈ R and
the limit points of {xk} are stationary. Furthermore, for any sequence {x̃k} satisfying (4.12),

min
0≤i≤k

‖π(TΩ(x̃i),−∇f(x̃i))‖ ≤ min
0≤i≤k

‖xtri+1−xi‖
K

≤

√
2(f(x0)− f̃)
K2L(k+ 1) . (4.25)

Proof. The sequence {f(xk)} is decreasing by (4.5) and (4.11) . Thus by compactness f(xk)→ f̃ ∈ R
and in particular f(xk)−f(xk+1)→ 0. Since f(xtrk+1)−f(xk)≤ f(xk)−f(xk+1) we also have f(xtrk+1)−
f(xk)→ 0 and by (4.11) xtrk+1−xk→ 0. Let {xk(i)}→ x̃∗ be any convergent subsequence of {xk}. For
{x̃k} chosen as in the proof of Proposition 4.1 we have ‖x̃k−xk‖ ≤ ‖xtrk −xk‖ because x̃k = yT = xtrk
in case 1 and case 2, by (4.19) in case 3, and by (4.22) in case 4. Therefore

‖x̃k(i)−xk(i)‖ ≤ ‖xk(i)−xtrk(i)+1‖→ 0 .

Furthermore, ‖π(TΩ(x̃k(i)),−∇f(x̃k(i))))‖ ≤
‖xk(i)−x

tr
k(i)+1‖

K → 0 again by Proposition 4.1, so that
x̃k(i)→ x̃∗ with ‖π(TΩ(x̃k(i)),−∇f(x̃k(i)))‖→ 0. Then ‖π(TΩ(x̃∗),−∇f(x̃∗))‖= 0 and x̃∗ is stationary.

The first inequality in (4.25) follows directly from (4.12). As for the second, we have

k+ 1
K2 ( min

0≤i≤k
‖xtri+1−xi‖)2 = k+ 1

K2 min
0≤i≤k

‖xtri+1−xi‖2

≤ 1
K2

k∑
i=0
‖xi−xtri+1‖2 ≤

2
LK2

k∑
i=0

(f(xi+1)−f(xi))≤
2(f(x0)− f̃)

LK2 ,

where we used (4.11) together with (4.5) in the second inequality, f(xi)→ f̃ decreasing in the second
and (4.25) follows by rearranging.
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Remark 4.1. The proof of Proposition gives an easy way to retrieve x̃k. In particular it shows that
one can take x̃k = yT̃ with T̃ = T in case 1 and case 2, T̃ = T −1 in case 3 and

T̃ ∈ argmin{〈g, d̂i〉 | i ∈ [0 : T ]}

in case 4.

Remark 4.2. For any d ∈ A(x̃k,−∇f(x̃k)) we have

〈−∇f(x̃k), d̂〉 ≤ ‖π(TΩ(x̃i),−∇f(x̃i))‖ ≤
〈−∇f(x̃k), d̂〉

τ
,

where the first inequality follows from Proposition 2.2 and the second by the assumption on SBA(Ω).
Therefore at the price of computing −∇f(x̃k) and a related descent directions d we have upper and
lower bounds separated by a factor of τ for ‖π(TΩ(x̃i),−∇f(x̃i))‖.

5 Convergence properties
In this section, we use the descent sequence properties proved in the previous section in combination

with a KL property for smooth functions to obtain convergence rates with respect to the objectives and
the tail length of the iterate sequence. First, we give an abstract convergence lemma for proper lower
semicontinuous functions. We then apply this lemma in combination with Proposition 4.1 to prove
convergence rates for Algorithm 2 under finite termination of the SSC, and thus in particular for the
examples discussed in Section 6.

For the abstract lemma with respect to the foundational work [4] we only have the weaker condition
(H’2) instead of (H2), where the proof of the convergence lemma [4, Lemma 2.6] relies on the stronger
condition. We therefore present a different proof technique in Section 8.3 of the appendix based on
Karamata’s inequality ([25], [27]).

Before stating the main convergence result we need to introduce a one dimensional worst case
sequence related to the desingularizing function ϕ, which we use bound the error on the objective. With
respect to the (different) worst case sequence introduced in [10] we do not require neither the moderate
behavior hypothesis on ϕ nor (ϕ′)−1 to be Lipschitz regular.

Let α : [0,η)→ R>0 ∪{∞} be a continuous monotone non increasing function finite in (0,η). For
t ∈ [0,η) we define

σα(t) = max
{
s ∈ [0, t] | 1

α(s)2 ≤ t−s
}
,

with the convention max(∅) = 0. Since s+ 1/α(s)2 is continuous and strictly increasing if{
s ∈ [0, t] | 1

α(s)2 ≤ t−s
}

is non empty then it has a maximum and

t−σα(t) = 1
α(σα(t))2 . (5.1)

Otherwise
t−σα(t) = t≤ 1

α(σα(t))2 = 1
α(0)2 . (5.2)

Let σ(k)
α be equal to σα applied k times, with the convention σ

(0)
α (t) = t. Then the worst sequence

related to an initial error f0 ∈ [0,η) is {σ(k)
α (f0)}. Given that by continuity α is upper bounded in every

interval [ε,η) with ε > 0, we have the limit

lim
k→∞

σ
(k)
α (f0)→ 0 (5.3)
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for every f0 ∈ [0,η).
We can now state the main convergence result for proper lower semicontinuous functions.

Proposition 5.1. Let f̃ : Rn→ R∪{∞} be a proper l.s.c. function satisfying the KL inequality w.r.t.
x∗ in Bδ(x∗)∩ [f̃(x∗)< f̃ < η]. Let then {xk} be a sequence satisfying (H1) and (H’2) such that

f̃(x∗)≤ f̃(x0)< η , (5.4)
xk ∈Bδ(x∗)⇒ f̃(xk+1)≥ f̃(x∗) . (5.5)

Let α(t) = b√
a
ϕ′(t). Assume also that

b

a
ϕ(f̃(x0)− f̃(x∗)) + 2

√
f̃(x0)− f̃(x∗)−σα(f̃(x0)− f̃(x∗))

a
+‖x0−x∗‖< δ . (5.6)

Then Bδ(x∗)⊃ {xk}→ x̃∗ with f(x̃∗)≤ f(x∗), and

f̃(xk)− f̃(x∗)≤σ(k)
α (f̃(x0)− f̃(x∗)) , (5.7)

‖xk− x̃∗‖ ≤
∞∑
i=k
‖xi−xi+1‖ ≤

b

a
ϕ(f̃(xk)− f̃(x∗)) + 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a
. (5.8)

Condition (5.6) is a slight refinement of [4, condition (4)]. It implies of course x0 ∈Bδ(x∗), and the
additional terms on the LHS are sufficient to ensure {xk},{x̃k} ⊂Bδ(x∗). It is not difficult to see from
the proofs that it can be replaced with {xk},{x̃k} ⊂ Bδ(x∗). When the desingularizing function is of
the form ϕ(t) = M

θ t
θ with θ ∈ (0, 1

2 ] we obtain more explicit convergence rates on the length and the
objective gap. For convex functions this KL property is equivalent to Hölderian error bounds, as proved
more in general in [10, Theorem 5].

Corollary 5.1. Under the assumptions of Proposition 5.1, let ϕ(t) = M
θ t

θ for some θ ∈ (0, 1
2 ]. Then

f̃(xk)− f̃(x∗) =
{
O(1/k

1
1−2θ ) for 0< θ < 1

2 ,

O((1 + a
b2M2 )−k) for θ = 1

2 .
(5.9)

Moreover
∞∑
i=k
‖xi−xi+1‖=

{
O(1/k

θ
1−2θ ) for 0< θ < 1

2 ,

O((1 + a
b2M2 )− k2 ) for θ = 1

2 .
(5.10)

Finally, the implicit constants can be taken as functions of M,θ,a,b,η, and in particular independent
from x0.

The proofs of Proposition 5.1 and Corollary 5.1 are included in Section 8.3.
As a corollary of Proposition 5.1, by Proposition 4.1 we have the following results on the convergence

rates of Algorithm 2:

Corollary 5.2. Let us consider Problem (2.1) with f ∈C1(Ω) satisfying the KL inequality w.r.t. x∗ ∈Ω
in Bδ(x∗)∩ [f(x∗) < f < η]. Assume that {xk} is generated by Algorithm 2, and that the method A in
the SSC satisfies the following conditions:

• the SSC procedure always terminates in a finite number of steps;

• SBA(Ω) = τ > 0.

Assume that (5.4), (5.5) and (5.6) hold with a= L
2 and b= τ/(L(1 + τ)). Then the sequence converges

to a stationary point and the convergence rates (5.7) and (5.8) hold.
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Proof. Under our general assumptions on A by Proposition 4.1 the sequence {xk} satisfies (H1) and
(H’2) in the form (H’2a). It then suffices to apply Proposition 5.1 to f̃ = f+iΩ to obtain the convergence
rates (5.7), (5.8). Finally, x̃∗ is stationary by Corollary 4.1 and f(x̃∗) = f(x∗) by continuity.

Remark 5.1. If xk+1 = xtrk+1 in Algorithm 2 the property (5.5) holds in particular when x∗ is a global
minimum in the connected component C0 containing xk of the sublevel set [−∞< f ≤ f(xk)]. Indeed
xtrk+1 cannot be outside C0 since

xtrk+1 ∈B ‖g‖
2L

(xk+ g

2L )⊂ C0 ,

where g =−∇f(xk) and B ‖g‖
2L

(xk+ g
2L )⊂ C0 because it is connected and contained in

[−∞< f ≤ f(xk)]

by (4.9).

6 Analysis of some projection-free first-order methods
Here, we report some relevant examples of projection-free first-order methods and show that those

methods satisfy the assumptions given in Corollary 5.2. More specifically, we show finiteness of the SSC
procedure and that a sufficient slope condition is satisfied when the method is applied over a specific
class of feasible sets. The reported examples include the AFW, PFW, FDFW on polytopes, the FDFW
on sublevel sets of strongly convex smooth functions, a method based on orthographic retractions for
convex sets with smooth boundary, as well as combination of these methods on product domains. At
the end of the section we show how to apply our framework together with a KL property of (non convex)
quadratic programming problems to obtain an asymptotic linear convergence rate for some FW variants.

Before giving the examples we prove a broad SSC finite termination criterion, showing that the
procedure ends when using a first order method with mild convergence properties for linear objectives.

Lemma 6.1. Assume that the method Ā applied to any linear function Lg(x) =−〈g,x〉 and with every
stepsize maximal always generates a (possibly finite) sequence {yj} such that

liminf πyj (g) = 0 . (6.1)

Then the SSC with the method Ā always terminates in a finite number of steps.

Proof. Assume by contradiction that the SSC generates an infinite sequence {yj}. In this case the
method Ā applied in the SSC with gradient −g always does maximal steps, since the SSC terminates
as soon as αj < α

(j)
max so that αj = βj . Let pj = πyj (g). Then by (6.1) we can take {j(k)} subsequence

of indexes such that pj(k)→ 0. We claim that yj(k)→ y0, in contradiction with the strict monotonicity
of j→ 〈g,yj〉. Indeed we have

‖yj(k)−y0‖ ≤
〈d̂j(k),g〉

L
≤
pj(k)
L
→ 0 ,

by definition of Ωj(k) in the first inequality and by Proposition 2.2 in the second.

6.1 PFW, AFW, FDFW directions
The AFW and PFW depend from a set of "elementary atoms" A such that Ω = conv(A). Given A,

for a base point x ∈ Ω we can define

Sx = {S ⊂A | x is a proper convex combination of all the elements in S} ,
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the family of possible active sets for x. In the rest of the article A is always clear from the context and
for simplicity we write PFW, AFW instead of PFWA, AFWA. For x ∈ Ω, S ∈ Sx, dPFW is a PFW
direction with respect to the active set S and gradient −g iff

dPFW = s− q with s ∈ argmaxs∈Ω〈s,g〉 and q ∈ argminq∈S〈q,g〉 .

Similarly, given x ∈Ω, S ∈ Sx, dAFW is an AFW direction with respect to the active set S and gradient
−g iff

dAFW ∈ argmax{〈g,d〉 | d ∈ {dFW,x− q}} with q ∈ argminq∈S〈q,g〉 , (6.2)

where dFW is a classic Frank Wolfe direction

dFW = s−x with s ∈ argmaxs∈Ω〈s,g〉 . (6.3)

If the FW method is applied to a linear objective Lg(x) = −〈g,x〉 it clearly terminates after at most
one maximal step, with y1 ∈ argminx∈ΩLg(x). As for the AFW or the PFW, they generate a sequence
of active sets {S(j)} with yj proper convex combination of the elements in S(j). After a FW step or a
PFW step the linear minimizer sj is always in the active set, and we assume that no other point can be
added at the step j. In particular, S(j+1) ⊂ S(j)∪{sj}. Now on the one hand, all the linear minimizers
added to the active set can’t be dropped from the active set, since the gradient doesn’t change. On the
other hand, after every maximal away or PFW step the element qj corresponding to the away direction
is dropped from the active set. Furthermore, as the FW method also the AFW terminates after a
maximal FW step. Then the AFW and the PFW applied to linear objectives terminate in at most
|S(0)| steps. Applying Lemma 6.1 to obtain finite SSC termination we have the following:

Proposition 6.1. For the FW, the PFW and the AFW applied to a linear objective the number of
maximal steps is bounded, provided that no points beside linear minimizers are added to the active set.
In particular, under this assumption for these methods the SSC terminates.

The FDFW from [18] relies only on the current point x and the current gradient −g to choose a
descent direction and, unlike the AFW and the PFW, does not need to keep track of the active set.
This method makes use of a linear minimization oracle

LMOC(−g) ∈ argminx∈C〈−g,x〉 ,

for C varying among the faces of Ω. Let F(x) be the minimal face of Ω containing x. The in face
direction is defined as

dA = xk−xA with xA ∈ argmin{〈g,y〉 | y ∈ F(x)} .

The selection criterion is then analogous to the one used by the AFW:

dFD ∈ argmax{〈g,d〉 | d ∈ {dA,dFW}} . (6.4)

For the FDFW we assume that the maximal stepsize is given by feasibility conditions as in [18]:

αmax(x,d) = max{α ∈ R≥0 | x+αd ∈ Ω} . (6.5)

Then after a maximal in face step from yj we have dimF(yj+1) < dimF(yj) because yj+1 lies on the
boundary of F(yj). Whence there can only be a finite number of consecutive such steps. Furthermore,
we’ve seen that after a maximal FW step every method applied to a linear objective terminates. Applying
Lemma 6.1 to obtain finite SSC termination we have the following:

Proposition 6.2. The FDFW on any compact and convex set Ω does at most dim(Ω) + 1 consecutive
maximal steps. In particular, for this method the SSC terminates.
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We write SBFD,DSBFD instead of SBFDFW,DSBFDFW in the rest of the paper.
When Ω is a polytope and |A| <∞ the sufficient slope conditions hold for the directions we in-

troduced. Before stating a lower bound for SBA(Ω) in this setting we need to recall the definition of
pyramidal width PWidth(A) as it was given in [30]. We refer the reader to [40] for a discussion of
various properties of this parameter.

For a given g ∈ Rn \{0} the pyramidal directional width is defined as

PdirW(A,g,x) = min
S∈Sx

max
a∈A
s∈S

〈 g
‖g‖

,a−s〉 , (6.6)

and the pyramidal width is defined as

PWidth(A) = min
F∈faces(conv(A)),x∈F
g∈cone(F−x)\{0}

PdirW(F ∩A,g,x) .

Here we use one key property of PWidth(A) which relates it to the slope along the PFW direction. We
have the following lower bound (see [30, equation (12)])

〈g,dPFW〉
〈g, ê〉

≥ PWidth(A)> 0 , (6.7)

where e is any direction in Ω−{x}= TΩ(x) which is also a descent direction1 for −g. Another relevant
property is that by (6.6) we have that PWidth(A) is monotone decreasing in A, so that if V (Ω) is the
set of vertexes of Ω we always have PWidth(A)≤ PWidth(V (Ω)).

Proposition 6.3. Let diam(Ω) =D. Then

SBPFW(Ω)≥ PWidth(A)
D

,

SBAFW(Ω)≥ PWidth(A)
2D ,

SBFD(Ω)≥ PWidth(V (Ω))
2D .

(6.8)

Proof. Let g be such that πx(g) 6= 0. Then there exists descent directions for −g feasible for Ω from x,
and

0< max
e∈Ω−{x}

〈g, ê〉 ,

so that
min

e∈Ω−{x},
〈g,ê〉>0

1
〈g, ê〉

= 1
maxe∈Ω−{x}〈g, ê〉

= 1
suph∈Ω\{x̄}

(
g, h−x̄
‖h−x̄‖

) = 1
‖π(TΩ(x),g)‖ , (6.9)

where we used Proposition 2.2 in the last equality. Thanks to (6.9) taking the min on all the feasible
descent directions e in the LHS of (6.7) we obtain

〈g,dPFW〉
‖π(TΩ(x),g)‖ ≥ PWidth(A) .

We now have

DSBPFW(Ω,x,g) = inf
dPFW∈PFW(x,g)

〈g,dPFW〉
‖dPFW‖‖π(TΩ(x),g)‖ ≥

〈g,dPFW〉
D‖π(TΩ(x),g)‖ ≥

PWidth(A)
D

.

1In [30] the direction e is defined as a possible error direction e = x∗−x, where x∗ is an optimal point of a convex
objective f with ∇f(x) = −g. However, this definition is equivalent to ours. Indeed if e = x∗−x then by convexity it
must be a feasible descent direction for −g. Conversely, every feasible descent direction is always an error direction as
defined above for some choice of f , i.e. consider f(y) = 1

2 〈y−x∗,Q(y−x∗)〉 with Q positive definite such that ∇f(x) =
Q(x−x∗) =−g.
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and the first part of (6.8) follows by taking the inf on the LHS for x ∈ Ω and g such that πx(g) 6= 0.
Inequality (6.8) for the AFW method is a corollary since

〈g,dAFW〉 ≥ 1
2 〈g,d

PFW〉 ,

as it follows immediately from the definitions (see also [30, equation (6)]).
For the FDFW, first observe that for any S ∈ Sx:

〈g,dFW +dA〉= max{〈g,s− q〉 | s ∈ Ω, q ∈ F(x)} ≥max{〈g,s− q〉 | s ∈ Ω, q ∈ S}
=〈g,dPFW〉 ,

(6.10)

where we used F(x)⊃ S in the inequality and the last equality follows immediately from the definition
of dPFW. We then have

DSBFD(Ω,x,g) = 〈g,dFD〉
πx(g)‖dFD‖

≥ 〈g,d
FW +dA〉

2Dπx(g) ≥ 〈g,dPFW〉
2πx(g)‖dFD‖

≥ PWidth(A)
2D , (6.11)

where the first inequality follows from the choice criterion (6.4) together with ‖dFD‖≤D, we used (6.10)
in the second inequality, and (6.7) in the third. The thesis follows by taking the inf on x and g in the
LHS and the sup on A in the RHS.

6.2 FW and FDFW on sublevel sets of strongly convex smooth functions
In spite of the zig-zagging behaviour discussed in the introduction, in any fixed point of a polytope

the FW directions do satisfy the sufficient slope condition, e.g. by Proposition 6.3 since they are selected
by the AFW and the PFW when the active set is a singleton. This property can be extended (uniformly)
to the boundaries of sublevel sets of smooth strongly convex functions. As a consequence, using that
the FDFW selects FW directions on the boundary of strictly convex sets, we also obtain a global slope
bound for this method.

Proposition 6.4. Let h :Rn→R be µh-strongly convex and with Lh-Lipschitz gradient, a>minx∈Rn h(x),
Ω = {x ∈ Rn | h(x)≤ a}. Then:

SBFW(Ω,∂Ω)≥ uh
2Lh

, (6.12)

SBFDFW(Ω)≥ uh
2Lh

. (6.13)

Proof. Since for every x ∈ ∂Ω
NΩ(x̄) = cone({∇h(x)}) ,

we can apply Lemma 8.1 with J(x) =∇h(x). We obtain

SBFW(Ω,∂Ω)≥ inf
h(y)=h(x̄)=a

x̄ 6=y

〈∇h(y),y− x̄〉
‖∇h(x̄)−∇h(y)‖‖y− x̄‖ . (6.14)

First, by Lh-smoothness we have:

‖∇h(x̄)−∇h(y)‖ ≤ Lh‖x̄−y‖ . (6.15)

Second, by µh strong convexity

〈∇h(y),y− x̄〉 ≥ h(x̄)−h(y) + µh
2 ‖y− x̄‖

2 = µh
2 ‖y− x̄‖

2 , (6.16)
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where we used h(y) = h(x̄) = a in the equality. The first part of the thesis follows applying (6.15) and
(6.16) to the RHS of (6.14).
By strong convexity for every y ∈ ∂Ω

µh
2 ‖y−x

∗‖2 ≤ h(y)−h∗ = a−h∗ ,

and therefore ‖y−x∗‖ ≤
√

2(a−h∗)/µh. This clearly implies

D ≤ 2
√

2(a−h∗)/µh . (6.17)

Analogously, by Lh smoothness for every y ∈ ∂Ω

Lh
2 ‖y−x

∗‖2 ≥ h(x)−h∗ = a−h∗ , (6.18)

and therefore ‖y−x∗‖ ≥
√

2(a−h∗)/Lh. We can now give a slope bound for x ∈ int(Ω):

DSBFD(Ω,x,g)≥ 〈g,d
FW +dA〉

2Dπx(g) = 〈ĝ,d
FW +dA〉
2D ≥ 1

4

√
µh

2(a−h∗) max
s,q∈Ω

〈ĝ, s− q〉

≥1
4

√
µh

2(a−h∗)2

√
2(a−h∗)

Lh
= 1

2

√
µh
Lh
≥ µh

2Lh
,

(6.19)

where we used (6.11) in the first inequality, πx(g) = ‖g‖ in the first equality, (6.17) in the second
inequality, x∗±

√
2(a−h∗)/Lhĝ ∈ Ω by (6.18) in the third inequality, and µh/Lh ≤ 1 in the last one.

But on the boundary the FDFW selects FW directions so that (6.12) holds also for the FDFW, and in
particular (6.13) follows by combining (6.12) with (6.19) for points on the interior.

Remark 6.1. The slope bound (6.13) clearly holds for any method selecting FW directions on the
boundary and other directions on the interior satisfying the sufficient slope condition for µh/2Lh (e.g.
the negative gradient).

6.3 Orthographic retractions for convex sets with smooth boundary
In this section we show an example of how the SSC can be employed effectively to deal with short

steps also in non linearly constrained settings. More specifically, we consider here the case of Ω compact,
convex, full dimensional and with smooth boundary of class C1 (e.g., the unitary ball w.r.t. ‖ ·‖p, with
p ∈ (1,∞)). In this case for x ∈ ∂Ω we can define J(x) as the outward pointing normal and TxΩ as the
tangent hyperplane to ∂Ω in x. For x ∈ ∂Ω, u ∈ TxΩ, we then define P (x,u) as the first intersection
between Ω and {x+u}+ line(−J(x)). By smoothness P (x,u) is always defined for ‖u‖ small enough.
This transformation is called an orthographic retraction, and can be easily extended to manifolds with
arbitrary codimension. Orthographic retractions are widely used in manifold optimization for manifolds
of class at least C2 (see e.g. [1], [2], [26], [46]), in which case it can be proved that they are differentiable
retractions [1]. In the codimension 1 case orthographic retractions were used in [7] for optimization
over proximally smooth surfaces, and in [33] for optimization on sublevel sets of convex functions with
Lipschitz gradient. In these works the additional regularity assumptions ensure that the manifold is
sufficiently flat so that steps with length proportional to ‖gΩ(x)‖ are effective. Here we do not need
additional regularity assumptions, thanks to the SSC which allows our method to choose shorter steps
while skipping gradient computations.

For g ∈ Rn we denote with gJ (x) and gΩ(x) the components of g along J(x) and TxΩ, so that
g = gJ (x) + gΩ(x), with ‖gΩ(x)‖ = πx(g). We can finally define the Short Orthographic Retractions
(SOR) method directions SOR(x,g) simply as g if g ∈ int(TΩ(x)), and using orthographic projections
when (x,g) is in

T̄ (Ω) = {(x,g) ∈ ∂Ω×Rn | g /∈ int(TΩ(x))∪NΩ(x)} .
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(a) Projection on TxΩ and orthographic projection
from TxΩ.

(b) The directions in SOR(x,g) point in the arc
between x and P (ν̄) =P (x, ν̄(x,g)gΩ(x)) for τ̄ = 1

2 .

Figure 2

More precisely, in this case we define

SOR(x,g) = {P (x,λgΩ(x)) | λ ∈ (0, ν̄(x,g)]} ,

where ν̄(x,g)> 0 is a proper "shrinking coefficient", ensuring that the orthographic projection is taken
close to x enough to satisfy the usual slope condition for a fixed τ̄ ∈ (0,1):

ν̄(x,g) = sup
{
λ ∈ R≥0 |

〈g,P (x,λgΩ(x))−x〉
πx(g)‖P (x,λgΩ(x))−x‖ ≥ τ̄

}
. (6.20)

By smoothness we have ν̄(x,g) > 0 whenever (x,g) ∈ T̄ (Ω). It is also immediate to check from the
definition that for λ̄ > 0 we have λ̄ν̄(x, λ̄g) = ν̄(x,g) = ν̄(x, ĝ)/‖g‖. We now prove the anticipated slope
lower bound:

Proposition 6.5. In the setting introduced above SBSOR(Ω)≥ τ̄ .

Proof. When g ∈ int(TΩ(x)) we obviously have DSBSOR(Ω,x,g) = 1> τ̄ since SOR(x,g) = {g}. By the
definition of ν̄ if (x,g) ∈ T̄ (Ω) then P (x, ν̄(x,g)gΩ(x̄)) ∈ ∂Ω and (see also figure 2b)

v = P (x, ν̄(x,g)gΩ(x))−x ∈ int(TΩ(x)) .

In particular P (x,λν̄(x,g)gΩ(x)) is in conv({x+λν̄(x,g)gΩ(x),x+λv}) strictly below x+λv for every
λ ∈ (0,1). Therefore, for vλ = P (x,λν̄(x,g)gΩ(x))−x

〈g,vλ〉
πx(g)‖vλ‖

>
〈g,v〉

πx(g)‖v‖ ≥ τ̄ , (6.21)

where the second inequality follows by the inequality in the definition (6.20) of ν̄(x,g). The equation
above directly implies the desired bound

DSBSOR(Ω,x,g) = inf
λ∈(0,1]

〈g,vλ〉
πx(g)‖vλ‖

= 〈g,v〉
πx(g)‖v‖ ≥ τ̄ .

and taking into account the previous case we can conclude SBSOR(Ω)≥ τ̄ .
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By definition of SOR(x,g) we only need a lower bound on ν̄(x,u) to compute a direction d ∈
SOR(x,g). While in practice such bounds can be obtained with an adaptive strategy, for sublevel
sets simple lower bounds depending from a smoothness modulus are sometimes available (see Proposi-
tion 8.2 and Remark 8.1 in the appendix for some examples). The general principle in this case is that
for every x ∈ ∂Ω a "simple" smooth full dimensional convex set B̄(x) 3 x (e.g. a ball) is contained in Ω,
with the same tangent hyperplane in x. We can therefore bound ν̄ with the shrinking coefficient relative
to B̄(x), which is much easier to control.

The SOR method directions are well suited for the SSC, given that they satisfy the sufficient slope
condition, but in general they are too short to ensure descent sequence like conditions in a single step.
Still, even with the SSC some lower bound on the norm of the directions chosen is needed to obtain
finite termination results. In other words, it is necessary to "throw away" the shortest directions selected
by the SOR. Here for simplicity we consider the method

SOR(Ω,x,g) = {P (x,λgΩ(x)) | min(ν̂, ν̂ν̄(x,g))≤ λ≤ ν̄(x,g)} ,

where ν̂ ∈ (0,1] is a fixed constant in the rest of the paper. It is clear that

SBSOR(Ω)≥ SBSOR(Ω)≥ τ̄ ,

given that the directions selected by the SOR are a subset of the ones selected by the SOR. In the next
lemma we prove that also for the SOR we have convergence for linear objectives, and in particular finite
SSC termination thanks to Lemma 6.1.

Lemma 6.2. If the method SOR applied to the linear function Lg(x) = −〈g,x〉 generates a sequence
{yj} with stepsizes maximal w.r.t. boundary conditions (as in (6.5)), then

limπyj (g) = 0 . (6.22)

In particular, the SSC with the SOR always terminates in a finite number of steps.

Proof. We just need to prove (6.22) since thanks to Lemma 6.1 finite SSC termination immediately
follows. Furthermore, if the sequence is finite, terminating in a stationary point for −g, (6.22) is
obvious, so that from now on we always assume that {yj} is an infinite sequence. Let

I = {j ∈ N0 | (yj ,g) ∈ T̄ (Ω)} ,

and let {λj}j∈I be such that dj = P (yj ,λjgΩ(yj))−yj . We first claim that if the sequence doesn’t stop
in a stationary point then N ⊂ I. To start with, since the stepsizes must always be maximal, yj ∈ ∂Ω
for every j ≥ 1. Now if g ∈ int(TΩ(yj)) and also g ∈ int(TΩ(yj+1)) = int(TΩ(yj +αjg)) then necessarily
int(Ω) 3 yj +αjg = yj+1, a contradiction. On the other hand if (yj ,g) ∈ T̄ (Ω) then yj +dj ∈ ∂Ω with
yj +dj−λJ(x) /∈ Ω for every λ > 0. Then by convexity it is easy to see

yj +αjdj +λ1gΩ(Ω) +λ2J(x) /∈ Ω

for every λ2 ≥ 0,λ1 > 0, and thus in particular

yj+1 +λg = yj +αjdj +λgΩ(yj) +λ‖gJ (yj)‖J(x) /∈ Ω

for every λ > 0. Equivalently, g /∈ int(TΩ(yj+1)) as desired.
Let {yj(k)}→ ȳ be a convergent subsequence of {yj}, and assume by contradiction

lim
k→∞

πyj(k)(g) = πȳ(g) 6= 0 ,
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so that (ȳ, g) ∈ T̄ (Ω) and ν̄(ȳ, g)> 0. The sequence fj = 〈g,yj〉 is strictly decreasing with limit f̄ ∈R by
compactness. In particular we have

〈g,y1〉− f̄ =
∞∑
j=1
〈g,yj−yj+1〉 ≥

∞∑
k=1
〈g,yj(k)−yj(k+1)〉

≥
∞∑
k=1
〈g,P (yj(k),λj(k)gΩ(yj(k)))−yj(k)〉 ≥ τ̄

∞∑
k=1
‖P (yj(k),λj(k)gΩ(yj(k)))−yj(k)‖πyj(k)(g)

≥τ̄
∞∑
k=1

λj(k)πyj(k)(g)2 ≥ τ̄ ν̂
∞∑
k=1

πyj(k)(g)2 min(ν̄(yj(k),g),1) ,

(6.23)

where we used αj(k) = αmax
j(k) ≥ 1 in the second inequality, SBSOR(Ω)≥ τ̄ in the third one,

‖P (yj(k),λjgΩ(yj(k)))−yj(k)‖ ≥ λjπyj(k)(g)

in the fourth one, and λj ≥min(ν̂ν̄(yj(k),g), ν̂) in the last one. By construction πyj(k)(g) converges to
πȳ(g) 6= 0, and therefore (6.23) implies ν̄(yj(k),g)→ 0, since the last sum is bounded by the LHS. But
by the lower semicontinuity property proved in Lemma 8.2 this is in contradiction with ν̄(ȳ, g)> 0.

Remark 6.2. If instead of P we have a retraction R(x,u), defined in a neighborhood U of ∂Ω×{0} ⊂
T∂Ω, such that

R(x,tu) = x+ tu+o(t) , (6.24)

then we can always define a shrinking coefficient ν̄R analogous to ν̄ and a method AR analogous to the
SOR. The essential property needed to have finite termination is that for xj→ x̄ such that (x̄,g)∈ T̄ (Ω)
and dj ∈ AR(xj ,g)

liminf
j→∞

‖dj‖ 6= 0 .

This is satisfied by the SOR thanks to Lemma 8.2 and can be satisfied by analogous variants e.g. if the
remainder o(t) in (6.24) is uniform for x,u varying in U .

6.4 Directions on product domains
Assume that the feasible set is block separable, that is Ω = Ω(1)× ...×Ω(m) with Ω(i) ⊂Rni compact

and convex for 1≤ i≤m. The next proposition states that we can select directions with positive slope
bound for Ω by properly weighting directions selected by algorithms with positive slope bound in each
of the factors. For a block vector x ∈ Rn = Rn1 × ...×Rnm we denote with x(i) ∈ Rni the component
corresponding to the i−th block, so that x= (x(1), ...,x(m)).

Proposition 6.6. For Ω defined as above and 1≤ i≤m. let Ai be such that SBAi(Ω(i)) = τi > 0, and
let τ∗ = min1≤i≤m τi.

1. Assume that d ∈ A(x,g) if and only if for every i ∈ [1 :m] we have

d(i) = wiĉi, with ci ∈ Ai(x(i),g(i)), wi = 〈g, ĉi〉 . (6.25)

Then SBA(Ω) = τ∗.

2. Assume that d ∈ A(x,g) if and only if for every i ∈ [1 :m] we have

d(i) = wiĉi, with ci ∈ Ai(x(i),g(i)), wi ≥ 0 (6.26)

for a weight vector w ∈ Rm \{0} such that

argmaxi∈[1:m]wi∩argmaxi∈[1:m]〈g, ĉi〉 6= ∅ .
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Then SBA(Ω)≥ τ∗

m .

Proof. For Ω product of closed convex sets the normal cone is the product of the normal cones of the
factors (see e.g. [5, Table 4.3])

NΩ(x) =NΩ(1)(x(1))× ...×NΩ(m)(x(m)) . (6.27)

As a consequence of (6.27) for g ∈ Rn

dist(g,NΩ(x)) =

√√√√ m∑
i=1

dist(g(i),NΩ(i)(x(i)))2 . (6.28)

For d ∈ A(x,g) we have

‖d‖=

√√√√ m∑
i=1
‖d(i)‖2 =

√√√√ m∑
i=1

w2
i (6.29)

and

〈g,d〉=
m∑
i=1
〈g(i),d(i)〉=

m∑
i=1

wi〈g(i), ĉi〉 , (6.30)

with ci ∈ Ai(x(i),g(i)) for 1≤ i≤m.
Let πix(g) = ‖π(TΩ(i)(x(i)),g(i))‖. Then we get

πx(g) =

√√√√ m∑
i=1

πix(g)2 ≤ 1
τ∗

√√√√ m∑
i=1
〈g(i), ĉi〉2 (6.31)

by applying Proposition 2.2 to the RHS of (6.28) in the equality, and using

〈g(i), ĉi〉 ≥DSBAi(Ω(i),x(i),g(i))πix(g)≥ SBAi(Ω(i))πix(g) = τiπ
i
x(g)≥ τ∗πix(g)

in the inequality.
1. For d ∈ A(x,g) as in (6.25) we have

〈g,d〉
πx(g)‖d‖ =

∑m
i=1〈g(i), ĉi〉2√∑m

i=1π
i
x(g)2

√∑m
i=1〈g(i), ĉi〉2

=

√∑m
i=1〈g(i), ĉi〉2√∑m
i=1π

i
x(g)2

≥ τ∗ ,

where we used (6.31), (6.29) and (6.30) in the first equality, and the second part of (6.31) in the
inequality. Then

DSBA(Ω,x,g) = inf
d∈A(x,d)

〈g,d〉
πx(g)‖d‖ ≥ τ

∗ ,

and the lower bound SBA(Ω)≥ τ∗ follows by taking the inf on x,g.
Let m̄ such that τm̄ = τ∗. It is immediate to obtain the opposite inequality SBA(Ω)≤ τ∗ by considering
the block gradients of the form g = (0, ...,g(m̄), ...,0) with all zeros outside the block m̄, where for every
such g we have

DSBA(Ω,x,g) = DSBAm̄(Ω(m̄),x(m̄),g(m̄)) ,

by the definition of A.
2. Let l ∈ argmaxi∈[1:m]wi∩argmaxi∈[1:m]〈g, ĉi〉. Then for d ∈ A(x,g) as in (6.25)

〈g,d〉
πx(g)‖d‖ =

∑m
i=1wi〈g(i), ĉi〉√∑m

i=1π
i
x(g)2

√∑m
i=1w

2
i

≥ 1√
m

〈g(l), ĉl〉√∑m
i=1π

i
x(g)2

≥ τ∗√
m

〈g(l), ĉl〉√∑m
i=1〈g(i), ĉi〉2

≥ τ∗

m
,
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where we used (6.29) and (6.30) in the first equality, l ∈ argmaxi∈[1:m]wi in the first inequality, (6.31)
in the second inequality, and l ∈ argmaxi∈[1:m]〈g, ĉi〉 in the last one.

The directions given in (6.25) have components normalized and then multiplied by the slopes in the
corresponding blocks. Thus in particular A does longer steps in the blocks with greater slope, which
seems a rather intuitive way to obtain direction satisfying the sufficient slope condition. As an example,
consider the case of a product of simplices

Ω = ∆n1−1× ...×∆nm−1 ,

relevant e.g. for structural SVMs optimization [31] and suitable for projection-free methods. Given
x ∈ Ω, g ∈ Rn it can be readily seen that the direction computed by the standard PFW is of the form
d(i) = es(i)−eq(i) for i ∈ [1 :m], with s(i) ∈ argmaxj∈[1:ni]〈g(i),ej〉 and q(i) depending on the active set.
Meanwhile, the direction suggested by Proposition 6.25 when applying the PFW to every block is of
the form d(i) = wid̂

PFWi for i ∈ [1 :m], with wi = 〈g(i), d̂
PFWi〉 and dPFWi ∈ PFW(x(i),g(i)).

We now state a termination result for the SSC procedure on product domains. Essentially, while
finite termination holds for a reasonable choice of the maximal stepsize even for products of blocks with
the AFW or the PFW, the blocks with the FDFW or the SOR must be dealt with one at a time. The
result in particular implies finite termination of the SSC for the SOR.

Proposition 6.7. Let A be as in (6.26), with Ai the AFW, the PFW, the FDFW or the SOR for
i ∈ [1 :m], and let I ⊂ [1 :m] the set of blocks with the FDFW or the SOR. Assume that during the SSC
only linear minimizers are added to the active sets in blocks with the AFW or the PFW. If

• for every maximal step of A in the SSC a maximal step is done in Ai for some i ∈ [1 :m],

• whenever a maximal step is done by Al with l ∈ I then the directions in the other blocks in I are
0 and

l ∈ argmaxi∈[1:m]〈ĉi,g(i)〉 ,

then the SSC terminates.

Proof. Assume by contradiction that the SSC generates an infinite sequence {yj}, leading to an infinite
sequence of maximal steps. For every i ∈ Ic by Proposition 6.1 the method A(i) can do limited number
of maximal steps (consecutive or not). Then for j ≥ l̄ large enough every maximal step must take place
in a block in I. By assumption then the blocks in I must be changed one at a time and with maximal
steps, so that each Ai for i ∈ I does consecutive maximal steps in its block. In particular, for some l ∈ I
infinite consecutive maximal steps are done in the l−th block. Since the FDFW can do a finite number
of consecutive maximal steps, necessarily Al must be the SOR. Let now yji = (yj)(i), dji = (dj)(i) and
pji = πyji(g(i)). Let j(k) be the subsequence of indexes corresponding to maximal steps in the l−th
block. Then pj(k)l→ 0 by Lemma 6.2. Whence pj(k)→ 0, since

pj(k) ≤
1
τ∗

√√√√ m∑
i=1
〈d̂j(k)i,g(i)〉2 ≤

√
m

τ∗
〈d̂j(k)l,g(l)〉 ≤

√
m

τ∗
pj(k)l ,

where we used (6.31) in the first inequality, l ∈ argmaxi∈[1:m]〈d̂j(k)i,g(i)〉 in the second, and Proposition
2.2 in the third one. We therefore have all the hypotheses to apply Lemma 6.1.

We notice that the assumption on the maximal steps can be satisfied by simply taking αmax as
the minimum among the maximal stepsizes in the blocks. As for the second assumption, it is always
compatible with (6.26), where e.g. both are satisfied by directions with only one weight different from
0, located in a block with maximal slope.
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6.5 Linear convergence for quadratic objectives on polytopes with FW vari-
ants

In this section, we first prove that a uniform KL property together with the usual slope condition
on A imply an asymptotic linear convergence rate for a sequence generated by Algorithm 2. This result
together with a KL property of quadratic programming problems proved in [16] and then more in general
in [34] imply, in turn, asymptotic linear convergence rates for several FW variants.

Proposition 6.8. Let us consider the set X of stationary points of Problem (2.1). Assume that every
point x∗ ∈ X satisfies the KL inequality in Bδ(x∗)(x∗)∩ [f(x∗) < f < η(x∗)] for ϕx∗(t) = 2Mx∗t

1
2 and

suitable δ(x∗)> 0, η(x∗)> f(x∗).
Let {zk} be a sequence generated by Algorithm 2, with the method A in the SSC satisfying the

following:

• the SSC procedure always terminates in a finite number of steps;

• SBA(Ω) = τ > 0.

Then zk→ x̃∗ ∈ X at an asymptotic rate

‖zk− x̃∗‖=O

((
1 + a

b2M2

)− k2)
,

where a= L/2, b= τ/(L(1 + τ)), and M is a constant depending on Ω,f, but not z0.

Proof. By continuity for every x∗ ∈X we can define δ̂(x∗) ∈ (0, δ(x∗)) so that conditions (5.4) and (5.6)
hold for every x0 ∈ Bδ̂(x∗)(x

∗)∩ [f(x∗) < f ]. By compactness we can then take a finite subset X ∗ of
stationary points such that ⋃

x̃∈X∗
Bδ̂(x̃)(x̃)⊃X .

Furthermore, by Corollary 4.1 the sequence {f(zk)} is decreasing and converges to f∗ ∈ R, and {zk}
converges to X . Then for some k̄ large enough and some x∗ ∈ X ∗ such that f(x∗) = f∗ we must have
zk̄ ∈ Bδ̂(x∗)(x

∗) . Given that f(zk) is decreasing and converges to f̃∗, also the assumption (5.5) is
satisfied for {xk}= {zk̄+k}. By Corollary 5.2 applied to {xk}= {zk̄+k} we obtain

{xk}→ x̃∗ ∈Bδ̂(x∗)(x
∗)∩X ,

with

‖xk− x̃∗‖=O

((
1 + a

b2M2
x∗

)− k2)
(6.32)

by Corollary 5.1, where the implicit constant can be taken independent from zk̄. To conclude,

‖zk− x̃∗‖=O

(1 + a

b2M2
x∗

)− k−k̄2

=O

((
1 + a

b2M2
x∗

)− k2)
=O

((
1 + a

b2M2

)− k2)

for M = max{Mx̃ | x̃ ∈ X ∗} independent from z0, where we used (6.32) in the first equality.

We can now easily prove the result for quadratic programming problems with compact domain.

Corollary 6.1. The conclusion of Proposition 6.8 holds in particular if f(x) = 1
2x

ᵀQx− bᵀx, Ω is a
polytope, and the method A used in the SSC is the AFW, the PFW or the FDFW, with no points beside
linear minimizers added in the active set during the SSC for the AFW and the PFW.
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Proof. By [34, Corollary 5.2] the KL property needed is satisfied in particular when f is quadratic
and Ω is a polytope. Moreover, when A is the AFW, the PFW or the FDFW and Ω = conv(A) with
|A| < +∞ is a polytope then SBA(Ω) > 0 by Proposition 6.3. In this setting we have also the finite
termination property by Proposition 6.1 and Proposition 6.2. Therefore we have all the hypotheses to
apply Proposition 6.8.

Remark 6.3. If for every x ∈ X there exists δ such that f(y) = f(x) for every y ∈ X ∩Bδ(x) then by
[34, Theorem 4.1] the condition of Proposition 6.8 is implied by the Luo Tseng error bound. When
instead the condition does not hold, i.e. we do not have the same desingularizing function for every
stationary point (even up to a constant), we can of course still give local results. As an example, if A
is the FDFW or the SOR, then by applying Algorithm 2 to the trust region subproblem and using the
KL property proved in [23] we can obtain local converge rates around global minimizers. Specifically,
we obtain the O(1/k2) rate given in Corollary 5.1 for θ = 1/4 in the (rather technical) critical case
condition [23, equation (24)], and the linear rate given in Corollary 5.1 for θ = 1/2 otherwise.

7 Conclusions
Projection-free first-order methods rely on the choice of good feasible descent directions, for which

there needs to be a trade-off between slope and maximal stepsize. To adress this issue we proposed the
SSC procedure, which allowed us to give a unified analysis for non convex objectives of several methods
satisfying a sufficient slope condition. With this analysis we proved convergence rates independent
from the number of short steps, and showed how our SSC procedure easily adapts to different choices
of descent directions. Finally, our work is the first to analyze projection-free methods on the class of
smooth non convex objectives satisfying KL inequalities.

Future research directions include generalizing our framework to constrained stochastic optimization,
as well as applications for the solution of real-world data science problems.

8 Appendix
8.1 Proofs for some elementary properties

We need the following result to prove Proposition 2.2:

Proposition 8.1. Let C be a closed convex cone. For every y ∈ Rn

dist(C∗,y) = sup
c∈C
〈ĉ, y〉 .

As stated in [13] this is an immediate consequence of the Moreau-Yosida decomposition:

y = π(C,y) +π(C∗,y) .

Proposition 2.2. We first prove that

sup
h∈Ω/{x̄}

(
g,

h− x̄
‖h− x̄‖

)
= sup
h∈TΩ(x̄)\{0}

(g, ĥ) . (8.1)

Let h ∈ TΩ(x̄) \ {0}. Then there exists sequences {λi} and {hi} in R>0 and Ω respectively such that
λi(hi− x̄)→ h. In particular ‖λi(hi− x̄)‖ → ‖h‖ so that we also have λi(hi− x̄)/‖λi(hi− x̄)‖ = (hi−
x̄)/‖hi− x̄‖→ ĥ. Hence

cl
({

h− x̄
‖h− x̄‖

| h ∈ Ω\{0}
})

= {ĥ | h ∈ TΩ(x̄)/{0}} ,
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and (8.1) follows immediately by the continuity of (g, ·).
Since NΩ(x̄) = TΩ(x̄)∗ the first equality is exactly the one of Proposition 8.1 if g /∈ NΩ(x̄), and it is
trivial since both terms are clearly 0 if g ∈NΩ(x̄).
It remains to prove

dist(NΩ(x̄),g) = ‖π(TΩ(x̄),g)‖ ,

which is true by the Moreau - Yosida decomposition.

In the next lemma we lower bound SBFW(Ω,∂Ω) in terms of a relatively more manageable expression
in the strictly convex smooth case.

Lemma 8.1. Let Ω be a strictly convex smooth subset of Rn, and let J : ∂Ω→ Rn be such that J(x̄) ∈
NΩ(x̄)\{0} for every x̄ ∈ ∂Ω (so that in particular NΩ(x̄) = cone(J(x̄))). Then

SBFW(Ω,∂Ω)≥ inf
y,x̄∈∂Ω
x̄ 6=y

〈J(y),y− x̄〉
‖J(x̄)−J(y)‖‖y− x̄‖ .

Proof. Given x̄ ∈ Ω, g ∈ Rn \NΩ(x̄), by strict convexity g = γJ(y) for some γ > 0 and

{y}= argmaxx∈Ω〈g,x〉 .

In particular, FW(x̄,g) = y−x. Therefore

DSBFW(Ω, x̄,g) = 〈g,y− x̄〉
πx̄(g)‖y− x̄‖ = 〈J(y),y− x̄〉

πx̄(J(y))‖y− x̄‖ ≥
〈J(y),y− x̄〉

‖J(x̄)−J(y)‖‖y− x̄‖ ,

where we used g = kJ(y) in the second equality and NΩ(x̄) = cone(J(x̄)) in the inequality. The lemma
follows taking the inf in g and x̄, where for g varying in Rn \NΩ(x̄) the point y varies in all ∂Ω\ x̄ by
strict convexity.

We now prove a lower semicontinuity property for the shrinking coefficient ν̄ introduced for ortho-
graphic projections on convex sets with smooth boundary in Section 6.3.

Lemma 8.2. Let Ω be a full dimensional convex set with C1 regular boundary, {xj} ⊂ ∂Ω be convergent
to x. Let g ∈ Rn such that {(xj ,g)} ⊂ T̄ (Ω) and (x,g) ∈ T̄ (Ω). Then

liminf ν̄(xj ,g)≥ ν̄(x,g) .

Proof. Fix λ ∈ (0,1), and let v = P (x, ν̄(x,g)gΩ(x))−x, vλ = P (x,λν̄(x,g)gΩ(x))−x. Recall from the
proof of Proposition 6.5 that x+vλ is in conv(x+λν̄(x,g)gΩ(x),x+λv) minus x+λv ∈ int(Ω). Therefore,
for some ελ > 0

x+vλ+γJ(x) ∈
{
int(Ω) if γ ∈ (0,ελ) ,
Ωc if γ < 0 .

(8.2)

Since J(xj)→ J(x), gΩ(xj)→ gΩ(x) by smoothness, thanks to (8.2) we have

P (xj ,λν̄(x,g)gΩ(xj))→ P (x,λν̄(x,g)gΩ(x)) = x+vλ .

Thus
〈P (xj ,λν(x,g)gΩ(xj))−xj ,g〉

πxj (g)‖P (xj ,λν(x,g)gΩ(xj))−xj‖
→ 〈vλ,g〉

πx(g)‖vλ‖
,

and for j large enough by (6.21) the LHS must be greater than τ̄ . In particular, ν̄(xj ,gΩ(xj))≥ λν(x,g).
The thesis follows since λ ∈ (0,1) is arbitrary.

We conclude this section by giving a practical example of lower bound for the shrinking coefficient
ν̄ introduced in Section 6.3.
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Proposition 8.2. Let h be a uniformly smooth convex function with minimum h∗, compact set of
minimizers X and with Lh-Lipschitz gradient. If given a > h∗ the sublevel set Ω = {x | h(x) ≤ a} is
compact, and τ̄ = 1/2 then

ν̄(x,g)≥ ‖∇h(x)‖
‖g‖Lh

(8.3)

for every (x,g) ∈ T̄ (Ω).

Proof. Fix x̄ ∈ ∂Ω so that h(x̄) = a, and let h̄ = ‖∇h(x̄)‖/L. By the standard descent Lemma for any
y ∈ Rn

h(y)≤ h(x̄) + 〈∇h(x̄),y− x̄〉+ L

2 ‖y−x‖
2 ,

and in particular B̄(x̄) = cl(Bx̄−∇h(x̄)/L(h̄)) ⊂ Ω. Let now PB̄(x̄) be the orthographic retraction on
B̄(x̄), and for g such that (x̄,g) ∈ T̄ (Ω), let ḡ = ‖g‖.

In order to prove (8.3) it suffices to prove

〈g,vg〉
πx̄(g)‖vg‖

≥ 1
2 . (8.4)

for vg = P (x̄, h̄ḡ gΩ(x̄))− x̄= P (x̄, h̄ĝΩ(x̄))− x̄. First, we have

〈g,vg〉
πx̄(g)‖vg‖

≥
〈g, v̄g〉

πx̄(g)‖v̄g‖
(8.5)

for v̄g = PB̄(x̄)(x̄, h̄ĝΩ(x̄))− x̄, given that B̄(x̄) ⊂ Ω. The RHS of (8.5) can be bounded with a tedious
but straightfoward computation. Let ḡΩ = ‖ĝΩ(x̄)‖ and ḡJ = ‖ĝJ (x̄)‖, so that πx(g) = ḡΩḡ, ḡ2

Ω + ḡ2
J = 1,

ḡΩ > 0. Of course we can explicitly compute the orthographic projection on B̄(x̄) and in particular we
have v̄g = h̄ĝΩ(x̄)−γ(h̄ḡΩ)J(x̄), for γ(r) = h̄−

√
h̄2− r2. Then 〈g, v̄g〉= ḡΩḡh̄− ḡJ ḡγ(h̄ḡΩ), πx̄(g) = ḡḡΩ,

and ‖v̄g‖=
√
h̄2ḡ2

Ω +γ(h̄ḡΩ)2. Therefore

〈g, v̄g〉
πx̄(g)‖v̄g‖

= ḡΩh̄− ḡJγ(ḡΩh̄)

ḡΩ

√
h̄2ḡ2

Ω +γ(h̄ḡΩ)2
,

and we can finally write

inf
g:(x̄,g)∈T̄ (Ω)

〈g, v̄g〉
πx̄(g)‖v̄g‖

= inf

 ḡΩh̄− ḡJγ(ḡΩh̄)

ḡΩ

√
h̄2ḡ2

Ω +γ(h̄ḡΩ)2
| ḡΩ > 0, ḡJ ≥ 0, ḡ2

J + ḡ2
Ω = 1

= 1
2 ,

which combined with (8.5) proves (8.4).

Remark 8.1. The above proposition can be generalized for any function h with a convex increasing
smoothness modulus η̄ (see e.g. [6] for some related properties) such that

h(y)≤ h(x) + 〈∇h(x),y−x〉+ η̄(‖x−y‖)

for every x,y ∈Rn. In this case ν̄(x, ĝ) can be lower bounded by a function of η̄/‖∇h(x)‖ and ‖ĝΩ(x)‖,
decreasing in both arguments. In particular when h is q−uniformly smooth with η̄(t) ≈ tq for some
q ∈ (1,2] we have

ν̄(x, ĝ) & ‖ĝΩ(x)‖
2−q
q−1

for ĝΩ(x)→ 0 and uniformly in x using that by compactness ‖∇h(x)‖ is bounded away from 0 in ∂Ω.
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8.2 Fréchet subdifferential and KL property
In this section we report the definition of the Kurdyka-Łojiasiewicz property as it is presented in [3],

[4]. We first need to recall a few additional definitions from variational analyisis, the standard references
being [15], [37] and [41].

Definition 8.1. Given a lower semicontinuous function f̃ : Rn→R∪{+∞} with dom(f̃) 6= ∅ the vector
z is said to be in the Fréchet subdifferential of f̃ at x, written ∂̂f̃(x), iff

f̃(y)≥ f̃(x) + 〈z,y−x〉+o(‖y−x‖) for all y ∈ Rn .

The limiting subdifferential of f̃ at x ∈ dom(f̃), written ∂f̃(x), is the set

∂f̃(x) := {z ∈ Rn : ∃ xn→ x, f̃(xn)→ f̃(x), zn ∈ ∂̂f̃(xn)→ z} .

It is clear from the definition that the limiting subdifferential is always closed.
We can now define the KL property.

Definition 8.2. A function f̃ as above is said to have the KL property at x∗ ∈ dom(∂f̃) if there
exists η ∈ (0,+∞), a neighborhood U of x∗ and a continuous concave function ϕ : [0,η)→ R≥0 (called
desingularizing function) such that:

(i) ϕ(0) = 0,

(ii) ϕ is C1 on (0,η),

(iii) for all t ∈ (0,η),ϕ′(t)> 0,

(iv) for all x ∈ U ∩ [f̃(x∗)< f̃ < f̃(x∗) +η], the KL inequality holds

ϕ′(f̃(x)− f̃(x∗))dist(∂f̃(x),0)≥ 1 . (8.6)

When f̃ = f + iΩ with f ∈ C1(Ω), Ω convex and closed, the KL inequality (8.6) can be rewritten as

ϕ′(f(x)−f(x∗))‖π(TΩ(x),−∇f(x))‖ ≥ 1 . (8.7)

Indeed, by the assumptions on Ω (closedness and convexity), we can write

∂iΩ(x) =NΩ(x) ∀x ∈ Ω ,

and we have the sum rule (by e.g. [38, Proposition 2.2])

∂f̃Ω(x) = ∂iΩ(x) +∇f(x) =NΩ(x) +∇f(x) .

Finally,

dist(∂f̃Ω(x),0) = dist(NΩ(x) +∇f(x),0) = dist(NΩ(x),−∇f(x)) = ‖π(TΩ(x),−∇f(x))‖ , (8.8)

where we used Proposition 2.2 in the last equality and the equivalence is proved.
The study of bounds on the desingularizing function ϕ for smooth functions constrained to convex

sets is still very much an open area of research. In [34] it was proved that a KL property with desingu-
larizing function of the form ϕ(t) =Mt1/2 is implied by the Luo-Tseng error bound. For other examples
see Section 6.5.

Remark 8.2. Consider the LPL condition (see [7], Definition 1 for the details)

‖π(TxΩ,−∇f(x))‖α ≥ µ(f(x)−f∗) ,

with f∗ = minx∈Ω f(x), TxΩ the tangent plane to Ω in x equal to TΩ(x), f smooth and Ω a C1 surface.
For α > 1 this condition is a particular case of the KL condition. Indeed the KL inequality can still
be written in the form (8.7) when Ω is a surface, with TΩ(x) = TxΩ, as it can be proved applying the
same reasoning we have seen for convex sets. Then if α > 1 we retrieve the LPL condition considering
ϕ(t) = µ−

1
α α
α−1 t

1−1/α and any x ∈ argminx∈Ωf(x) in (8.7).
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8.3 Proofs for Section 5
In this section we prove Proposition 5.1 and Corollary 5.1. We start by recalling Karamata’s in-

equality for concave functions. Given A,B ∈ RN it is said that A majorizes B, written A�B, if

j∑
i=1

Ai ≥
j∑
i=1

Bi for j ∈ [1 :N ] ,

N∑
i=1

Ai =
N∑
i=1

Bi .

If h is concave and A�B by Karamata’s inequality

N∑
i=1

h(Ai)≤
N∑
i=1

h(Bi) .

We now prove a technical lemma. It gives an upper bound on a sum of square roots which is the key to
upper bound the length of the tail of the sequence under the descent conditions (H1), (H’2a).

Lemma 8.3. Let f0 ∈ [0,η] and assume

I =
∫ η

0
α(t)dx <+∞ .

Then
∞∑
s=0

√
σ

(s)
α (f0)−σ(s+1)

α (f0)≤ I+ 2
√
f0−σα(f0) . (8.9)

Proof. Let S = inf{s ∈ N0 | σ(s)
α (f0) = 0}. If S ∈ {0,1} then (8.9) is trivially satisfied. Otherwise for

every 0≤ s≤ S−1 we have √
σ

(s)
α (f0)−σ(s+1)

α (f0)≤ 1
α(σ(s+1)

α (f0))
(8.10)

thanks to (5.2) and (5.1), with equality for 0≤ s≤ S−2.
Let 2≤ P ≤ S. Then by (8.10) for 0≤ s≤ S−2

P−2∑
s=0

√
σ

(s)
α (f0)−σ(s+1)

α (f0) =
P−2∑
s=0

1
α(σ(s+1)

α (f0))
. (8.11)

From now on for simplicity we write ᾱ(s)(f0) to denote α(σ(s)
α (f0)).

We have

I =
∫ η

0
α(t)dx≥

P−2∑
s=0

ᾱ(s)(f0)(σ(s)
α (f0)−σ(s+1)

α (f0)) =
P−2∑
s=0

ᾱ(s)(f0)
ᾱ(s+1)(f0)2 , (8.12)

where in the first inequality the RHS is a Riemann sum and we used that α is decreasing, and in the
second equality we used again (5.1).
We now have

P−2∑
s=0

1
ᾱ(s+1)(f0)

−
P−2∑
s=0

ᾱ(s)(f0)
ᾱ(s+1)(f0)2

= 1
ᾱ(P−1)(f0)

− α(f0)
ᾱ(f0)2 +

P−2∑
s=1

ᾱ(s)(f0)
(

1
ᾱ(s)(f0)2 −

1
ᾱ(s+1)(f0)2

)
.

(8.13)
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The sum on the RHS turns out to be easily lower bounded by a telescopic sum

P−2∑
s=1

ᾱ(s)(f0)
(

1
ᾱ(s)(f0)2 −

1
ᾱ(s+1)(f0)2

)

=
P−2∑
s=1

ᾱ(s)(f0)
(

1
ᾱ(s)(f0)

− 1
ᾱ(s+1)(f0)

)(
1

ᾱ(s)(f0)
+ 1
ᾱ(s+1)(f0)

)

≤2
P−2∑
s=1

(
1

ᾱ(s)(f0)
− 1
ᾱ(s+1)(f0)

)
= 2
ᾱ(f0) −

2
ᾱ(P−1)(f0)

,

(8.14)

where in the inequality we used

ᾱ(s)(f0)
(

1
ᾱ(s)(f0)

+ 1
ᾱ(s+1)(f0)

)
≤ 2 .

We therefore have
P−2∑
s=0

1
ᾱ(s+1)(f0)

− I ≤
P−2∑
s=0

1
ᾱ(s+1)(f0)

−
P−2∑
s=0

ᾱ(s)(f0)
ᾱ(s+1)(f0)2

≤ 1
ᾱ(P−1)(f0)

− α(f0)
ᾱ(f0)2 + 2

ᾱ(f0) −
2

ᾱ(P−1)(f0)

≤ 2
ᾱ(f0) −

1
ᾱ(P−1)(f0)

,

(8.15)

where we used (8.12) in the first inequality, (8.13) together with (8.14) in the second. Then if S = +∞
taking the limit for P →+∞ in (8.15) we obtain

∞∑
s=0

1
ᾱ(s+1)(f0)

− I ≤ 2
ᾱ(f0) , (8.16)

and the thesis follows from (8.11) with P = +∞.
If S <∞ then for P = S we obtain

S−1∑
s=0

1
ᾱ(s+1)(f0)

−I = 1
ᾱ(S)(f0)

+
P−2∑
s=0

1
ᾱ(s+1)(f0)

−I ≤ 2
ᾱ(f0) + 1

ᾱ(S)(f0)
− 1
ᾱ(S−1)(f0)

≤ 2
ᾱ(f0) , (8.17)

where we used (8.15) in the first inequality and that 1/ᾱ(s)(f0) is decreasing in s in the last inequality.
We can now write

∞∑
s=0

√
σ

(s)
α (f0)−σ(s+1)

α (f0) =
S−1∑
s=0

√
σ

(s)
α (f0)−σ(s+1)

α (f0)≤
S−1∑
s=0

1
ᾱ(s+1)(f0)

≤ I+ 2
ᾱ(f0) , (8.18)

where we used σ(s) = 0 for s≥ S in the equality, (8.10) in the first inequality, (8.17) and (8.16) in the
second for the cases S <+∞ and S = +∞ respectively. By the assumption S ≥ 2 we have

2/ᾱ(f0) = 2
√
f0−σα(f0)

by (8.10) and applying this inequality to the RHS of (8.18) the thesis is proved.

To prove Proposition 5.1 we first need another technical lemma where we use Karamata’s inequality
in combination with condition (H1) to upper bound the length of the tails of {xk}.
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Lemma 8.4. Let f̃ be as in Proposition 5.1, {xk}k∈I be a sequence indexed by I = [0,m]∩N0 for
some m ∈ N∪{∞}. Assume that {xk}k∈I satisfies conditions (H1) and (H’2) for every k ∈ I and that
f̃ satisfies the KL inequality with respect to x∗ in {x̃k}k∈I\{m} ∩ [f̃(x∗) < f̃ < η] with f̃(x0) < η. Let
α(t) = b√

a
ϕ′(t). Then

f̃(xk)− f̃(x∗)≤σ(k)
α (f̃(x0)− f̃(x∗))

m−1∑
i=k
‖xi−xi+1‖+

√
f̃(xm)− f̃(x∗)

a
≤ b
a
ϕ(f̃(xk)− f̃(x∗)) + 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a
,

(8.19)
for all k ≤m−1 where we set f̃(xm) = f̃(x∗) for m=∞.

Proof. First observe that {f̃(xk)} is decreasing by condition (H1), so that for every k ∈ I we have
f̃(x̃k)≤ f̃(xk)< η. Therefore for every k ∈ I if f̃(x̃k)> f̃(x∗) then the KL inequality holds in x̃k.
Let fi = f̃(xi)− f̃(x∗)≥ 0 for i ∈ I, fi = 0 for i > m. If fi+1 = 0 then trivially

fi+1 = 0≤ σα(fi) .

If fi+1 > 0 then
f̃(xi)− f̃(xi+1)≥ a

b2
dist(∂f̃(x̃i+1),0)2

≥ a

b2ϕ′(f̃(x̃i)− f̃(x∗))2 ≥
1

α(fi+1)2 ,
(8.20)

where the first inequality is (H’2), the second the KL property which holds in x̃i by (4.4) since f̃(x̃i)≥
f̃(xi+1)> f̃(x∗), and the third follows from the monotonicity of α. We can rewrite (8.20) as

fi+1 + 1
α(fi+1)2 ≤ fi ,

and from the definition of σα also in this case fi+1 ≤ σα(fi). Now by induction we obtain

fi ≤ σ(i−l)
α (fl) (8.21)

for every 0≤ l ≤ i, and to prove the first part of (8.19) it suffices to take k = i and l = 0.
By the monotonicity of α equation (5.2) together with (5.1) imply that the sequence σ

(i−l)
α (fl)−

σ
(i−l+1)
α (fl) is decreasing in i. Let now i≥ k+ 1, and let

n(i,k) = min{j | fj+1 ≤ σ(i−k)
α (fk)} .

Then by (8.21) with k = l we have n(i,k)≤ i−1. Consider the vectors vik,w∗ik in Ri−k≥0 defined by

vik = (fk−σα(fk), ...,σ(i−k−1)
α (fk)−σ(i−k)

α (fk)) ,

w∗ik = (fk−fk+1, ...,fn(i,k)−σ
(i−k)
α (fk),0, ...,0) .

so that in particular vik is in decreasing order.
For n(i,k)−k+ 1≤ u≤ i−k we have

u∑
j=1

vik(j) = fk−σ
(u)
α (fk)≤ fk−σ

(i−k)
α (fk) =

u∑
j=1

w∗ik(j) , (8.22)

where the inequality follows by monotonicity of σ(u)
α in u and we have equality if u = i− k. For

1≤ u≤ n(i,k)−k we have
u∑
j=1

vik(j) = fk−σ
(u)
α (fk)≤ fk−fu+k =

u∑
j=1

w∗ik(j) . (8.23)
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where the inequality follows by (8.21) with l = k and u= i− l. Combining (8.22) and (8.23) we obtain
that if wik is the permutation in decreasing order of w∗ik then wik � vik so that by Karamata’s inequality√

fn(i,k)−σ
(i−k)
α (fk) +

n(i,k)∑
j=k+1

√
fj−1−fj =

i−k∑
j=1

√
w∗ik(j)≤

i−k∑
j=1

√
vik(j) =

i−k∑
j=1

√
σ

(j−1)
α (fk)−σ(j)

α (fk) .

Sending i to infinity since fn(i,k)−σ
(i−k)
α (fk)→ 0 (because both terms converge to 0) we obtain

∞∑
j=k

√
fj−fj+1 ≤

∞∑
j=0

√
σ

(j)
α (fk)−σ(j+1)

α (fk) . (8.24)

We now apply Lemma 8.3 to the RHS:
∞∑
j=0

√
σ

(j)
α (fk)−σ(j+1)

α (fk)≤
∫ fk

0
α(t)dt+ 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

= b√
a
ϕ(f̃(xk)− f̃(x∗)) + 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗)) ,

(8.25)

where we used α(t) = b√
a
ϕ′(t) in the equality.

We can now prove the second part of (8.19):
m−1∑
i=k
‖xi−xi+1‖+

√
f̃(xm)− f̃(x∗)

a
≤ 1√

a

m−1∑
i=k

√
fi−fi+1 +

√
f̃(xm)− f̃(x∗)

a
= 1√

a

∞∑
i=k

√
fi−fi+1

≤ b

a
ϕ(f̃(xk)− f̃(x∗)) + 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a
,

where in the fist inequality we applied (H1), the equality follows from fi = f̃(xi)− f̃(x∗) = 0 for i > m,
and the second inequality follows from (8.24) together with (8.25).

We can now prove the main result.

Proposition 5.1. We show by induction {xk},{x̃k}⊂Bδ(x∗) with f(xk)≥ f(x∗) for every k. By (5.6) we
have ‖x0−x∗‖< δ. Now if we know {xk}k≤u ⊂Bδ(x∗), mink≤u f(xk)≥ f(x∗) and {x̃k}k≤u−1 ⊂Bδ(x∗)
for some u ∈ N0 then by condition (5.5) we have f(xu+1)≥ f(x∗). We also have

‖xu+1−x∗‖ ≤ ‖xu+1−xu‖+‖xu−x∗‖

≤
√
f(xu)−f(xu+1)

a
+‖xu−x∗‖

≤
√
f(xu)−f(xu+1)

a
+
u−1∑
k=0
‖xk+1−xk‖+‖x0−x∗‖

≤
√
f(xu)−f(x∗)

a
+
u−1∑
k=0
‖xk+1−xk‖+‖x0−x∗‖

≤ b
a
ϕ(f(x0)−f(x∗)) + 2

√
f(x0)−f(x∗)−σα(f(x0)−f(x∗))

a
+‖x0−x∗‖< δ ,

(8.26)

where we used (H1) in the first inequality, condition (5.5) in the third inequality, Lemma 8.4 in the
fourth one and assumption (5.6) in the last one. Finally,

‖x̃u−x∗‖ ≤‖x̃u−xu‖+‖xu−x∗‖ ≤
√
f(xu)−f(x̃u)

a
+‖xu−x∗‖

≤
√
f(xu)−f(xu+1)

a
+‖xu−x∗‖< δ ,
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where in the second and in the third inequality we used (4.4), while the last inequality follows from
(8.26). This completes the induction. Applying Lemma 8.4 with m= +∞ we obtain (5.7), the second
inequality of (5.8) and in particular f(xk)→ f(x∗) by (5.3) together with the condition f(xk)≥ f(x∗)
for every k ∈N0. Finally, given that {xk} has finite length it has a limit x̃∗ with f̃(x̃∗)≤ f̃(x∗) by lower
semicontinuity, and by the triangular inequality we have that the first part of (5.8) is also satisfied.

The proof of Corollary 5.1 given Proposition 5.1 is based on a straightforward computation of the
asymptotic behaviour of the worst case sequence for α(t) = Utε, with U > 0 and ε ∈ (−1,−1

2 ]. For the
sake of completeness we include here a detailed version of the proof.

Corollary 5.1. By Proposition 5.1 we have

f̃(xk)− f̃(x∗)≤ σ(k)
α (f̃(x0)− f̃(x∗)) , (8.27)

with α(t) =Mb
√

1
a t
θ−1. Now if θ = 1

2 then equation (5.1) becomes

t−σα(t) = a

b2M2σα(t) ,

which has always the solution
σα(t) = t

(
1 + a

b2M2

)−1
.

The bound (5.9) for θ = 1
2 then follows by induction.

In this case we also have
b

a
ϕ(f̃(xk)− f̃(x∗)) =O

((
1 + a

b2M2

)− k2) (8.28)

and

2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a
=O(

√
f̃(xk)− f̃(x∗)) =O

((
1 + a

b2M2

)− k2)
. (8.29)

We can now prove (5.10) for θ = 1
2 :

∞∑
i=k
‖xi−xi+1‖ ≤

b

a
ϕ(f̃(xk)− f̃(x∗)) + 2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a

=O

((
1 + a

b2M2

)− k2)
,

where we used Corollary 5.2 in the first inequality, and we summed (8.29), (8.28) in the second.
Let 0< θ < 1

2 , g = 1
1−2θ , f0 = f̃(x0)− f̃(x∗) and let

P = max
(
f0,

(
2r+2rb2M2

a

)r)
. (8.30)

We now prove by induction
σ

(k)
α (f0)≤ P

(k+ 1)r , (8.31)

so that the bound (5.9) follows by

f̃(xk)− f̃(x∗)≤ σ(k)
α (f0)≤ P

(k+ 1)r ,
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where we used (8.27) in the first inequality and (8.31) in the second.
For k = 0 (8.31) is true by definition of P . Assume now σ

(k)
α (f0) = P

Jr for some J ≥ k+1. Then on the
one hand by (5.1)

0 = σ
(k)
α (f0)−σ(k+1)

α (f0)− 1
α(σ(k+1)

α (f0))2
= P

Jr
−σα

(
P

Jr

)
− 1
α(σα( PJr ))2 , (8.32)

while on the other hand

P

Jr
− P

(J + 1)r −
1

α( P
(J+1)r )2 = P

Jr
− P

(J + 1)r −
aP 2−2θ

b2M2(J + 1)r+1 <
rP

Jr+1 −
aP 2−2θ

b2M2(J + 1)r+1 ≤ 0 , (8.33)

where the last inequality follows from the definition (8.30) of P . Now the function

q(s) = P

Jr
−s− 1

α(s)2

is decreasing in s and q( P
(J+1)r )< q(σα( PJr )) by (8.32) and (8.33). It follows

σ
(k+1)
α (f0) = σα(σ(k)

α (f0)) = σα( P
Jr

)< P

(J + 1)r ≤
P

(k+ 2)r ,

where we used J ≥ k+ 1 in the last inequality and the induction is complete.
Having established f̃(xk)− f̃(x∗) =O(1/k

1
1−2θ ), we have

b

a
ϕ(f̃(xk)− f̃(x∗)) =O(1/k

θ
1−2θ ) .

Whence

2

√
f̃(xk)− f̃(x∗)−σα(f̃(xk)− f̃(x∗))

a
=O

(
1

α(σα(f̃(xk)− f̃(x∗)))

)
=O

(
1

α(f̃(xk)− f̃(x∗))

)
=O(1/k

1−θ
1−2θ ) =O(1/k

θ
1−2θ ) ,

where we used (5.1) in the first equality, σα(f̃(xk)− f̃(x∗))< f̃(xk)− f̃(x∗) in the second and 1−θ > θ
in the last one.
Reasoning exactly as for θ = 1

2 we obtain the bound (5.10) for θ ∈ (0, 1
2 ).

Finally, in the above proof the dependence from f0 of the implicit constants is always monotone in-
creasing, so that it can be eliminated by replacing f0 = f̃(x0)− f̃(x∗) with η ≥ f0 in the bounds (8.27)
and (8.31).
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