
Deep Recurrent Graph Neural Networks

Luca Pasa, Nicolò Navarin and Alessandro Sperduti ∗

University of Padua - Department of Mathematics “Tullio Levi-Civita”
via Trieste 63, 35121, Padua - Italy

Abstract. Graph Neural Networks (GNN) show good results in classi-
fication and regression on graphs, notwithstanding most GNN models use
a limited depth. In fact, they are composed of only a few stacked graph
convolutional layers. One reason for this is the number of parameters
growing with the number of GNN layers. In this paper, we show how us-
ing a recurrent graph convolution layer can help in building deeper GNNs,
without increasing the complexity of the training phase, while improving
on the predictive performances. We also analyze how the depth of the
model influences the final result.

1 Introduction

In a broad range of real-world Machine Learning applications, representing ex-
amples as fixed-size vectors leads to a loss of information (e.g. predicting the tox-
icity of a molecule). In some of these problems, representing examples as graphs
is more natural, therefore availability of Machine Learning methods capable of
dealing with such structured data becomes crucial. Among other models [1],
neural networks for graphs (GNNs) have been proposed in [2]. More recently,
[3] proposed the idea that has been re-branded later as graph convolution, and
[4] defined a recurrent neural network for graphs. Many recent works defining
graph convolutional networks (GCNs) extend the idea in [3], e.g. [5, 6]. In [7],
authors show that removing the non-linearities from an existing models actually
doesn’t significantly hurt the predictive performance. [8] extended the work in
[4], exploiting Gated Recurrent Units (GRUs). The model is tested on basic
reasoning tasks over graphs, and on program verification. Other approaches
have been studied as well, such as deep graph echo state networks [9] and deep
generative models for graphs [10]. However, unlike deep networks in other do-
mains, existing GNN models do not seem to benefit much from increased depth,
arguably because of a fast increase in the number of parameters, which easily
leads to overfitting.
In this paper, we propose a novel, simple, recurrent GNN model that uses a
recurrent graph convolutional layer. This particular layer, inspired by Recurrent
Neural Networks, allows to increase the depth of the model, while the number
of weights in the convolutional stage of the GNN does not change. In order
to evaluate our approach, we focus on graph classification tasks. We use five
widely adopted bioinformatics datasets, that allow us to compare the proposed
method with exiting state-of-the-art GNN models. The proposed model obtains

∗This work has been supported by the University of Padova, Department of Mathematics,
DEEPer project.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

157

promising results (that in three out of five cases it outperforms the current
state-of-the-art), even in its simplest formulation that adopts a linear activation
function.

2 Background

Given a graph G = (V,E, L), where V = {v0, . . . , vn−1} denotes the set of
vertices (or nodes) of the graph, E ⊆ V × V is the set of edges connecting
the nodes, and L = {l0, . . . , ln−1}, with li ∈ Rs is the set of node attributes
(features) of each vertex vi ∈ V . Let N (v) be the set of nodes adjacent to v.
A Graph Neural Network (GNN) is a model that exploits the structure of the
graph and the information embedded in feature vectors of each node in order
to learn a representation hv ∈ Rm for each vertex v ∈ V . In modern GNNs
models, the computation of hv can be divided in two main steps: aggregate and
combine. We can define aggregation and combination by using two functions, A
and C, respectively: hv = C(lv,A({lu : u ∈ N (v)})).
It is possible to extend the range of the considered neighborhood by iteratively
performing aggregation and combination for k iterations. In this way, we obtain

a hidden representation h
(k)
v of the node v that contains information about the

structure and the neighbors that are at distance k from v:

h(i)
v = C(h(i−1)

v ,A({h(i−1)
u : u ∈ N (v)})), i ∈ [0, . . . , k],

h(0)
v = lv, h(i)

v ∈ Rmi ,where mi is the size of convolutional layer i.

We thus obtain a deep GNN of k-layers. The choice of aggregation function
A and combination function C defines the type of Graph Convolution (GC)
adopted by the GNN. In [3], the first model that uses graph convolutions is
proposed, while in [5] a widely adopted formulation is derived. In the last
few years, several different GCs have been proposed [11, 12, 8, 13, 6, 14]. In
this work we focus our attention on the graph convolution proposed in [15]:

h
(i)
v = F(W

(i)
1 h

(i−1)
v +

∑
u∈N (v) W

(i)
2 h

(i−1)
u), where W

(i)
1 ,W

(i)
2 ∈ Rmi×mi−1

(with m0 = s) are the network parameters, and F is the element-wise (usually,

nonlinear) activation function. In node classification tasks h
(k)
v can be used as

input for the output layer (that usually involves a softmax function), while for
graph classification (the task that we consider in this work) a readout function
is required to aggregate the computed hidden representations of all nodes in
V into a graph-level representation before applying the output layer. Different
strategies can be used to aggregate the hidden representations, from simple
invariant functions like sum or average, to more complex computational modules
that involve several feed-forward layers and nonlinear functions [16, 17, 18].

3 Deep Recurrent Graph Neural Networks

Many GNN models in literature (mentioned in Sections 1 and 2) exploit several
GC layers. Each one of these layers has its own parameters, and this makes it

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

158

really complex to train a truly deep model. In fact, the number of learnable
parameters grows fast as the number of layers increases. A high number of
parameters makes the training phase heavy, and a huge quantity of training
samples is necessary in order to obtain a good predictive performance (and
to avoid overfitting). Therefore, inspired by the shared weights mechanism of
Recurrent Neural Networks, we developed a GNN model that exploits a simple
recurrent graph convolutional layer. It is important to point out that stacking

k GC layers allows the hidden vectors h
(k)
v to embed information about the

structure and the neighbors that are at most k-hop far from v. Recurrent weights
make possible to maintain the number of parameters fixed, regardless of the
number k of unfolded GC layers.

Our aim is to develop a simple model that allows us to study and analyze how
a recurrent weight sharing mechanism influences the learning capability of the
model. The proposed model uses a graph convolution, inspired by [15], where
the weights are shared among layers and that can be formally defined as follows:

h(0)
v = F(W

(l)
1 lv +

∑
u∈N (v)

W
(l)
2 lu),

h(i)
v = F(W1h

(i−1)
v +

∑
u∈N (v)

W2h
(i−1)
u), ∀i ∈ [1, . . . , k − 1],

where W
(l)
1 ,W

(l)
2 ∈ Rm×s, W1,W2 ∈ Rm×m, and F is the activation function.

In the linear case F is the identity function (following the same intuition as [7]),
while in the nonlinear version of the convolution we use the LeakyRelu activation
function. We compute a graph-level representation for each GC layer using a
pooling layer sj ,∀j ∈ [0, . . . , k−1] that exploits three different aggregation strate-

gies over the whole set of nodes V : sj = [avg({h(j)
v ,∀v ∈ V })|max({h(j)

v ,∀v ∈
V })|sum({h(j)

v ,∀v ∈ V })], where avg,max, and sum are three element-wise
function that compute the average, the maximum value and the sum, respec-
tively, of all the vectors in the given set, therefore, si ∈ R3m. The readout
part of the model is composed of three dense feed-forward layers. The input of
this stage of the model is the concatenation of all si vectors computed at each
layer: y0 = [s0, s1, . . . , sk−1] ∈ R3km. We stack two fully connected layers and
the output layer that, for a c-class classification task, are defined as follows:

y1 = ReLu(Wy1
y0 + by1

),

y2 = ReLu(Wy2
y1 + by2

),

o = LogSoftmax(Woy2 + bo),

where Wy1
∈ Rd1×3km, y1, by1

∈ Rd1 , Wy2
∈ Rd2×d1 , y2, by2

∈ Rd2 , Wo ∈
Rc×d2 , and o,bo ∈ Rc.

4 Experimental Setup and Results

In this section, we report and analyze the results obtained by our model on
graph classification tasks. The proposed Deep Recurrent Graph Neural Network

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

159

(DRGNN) is compared versus several state-of-the-art methods. Moreover, we
analyze how using a higher number of recurrent GC layers influences the training
phase and the classification capability of the model.
Datasets: We performed experiments on five bioinformatics datasets: MUTAG,
PTC, NCI1, PROTEINS, and D&D (see [18] for details). These datasets model
binary classification tasks over node-labeled graphs (representing chemical com-
pounds or proteins).
Model Setup: Similarly to modern Neural Networks for sequential data, we
applied layer normalization to the recurrent GC layer [19], to reduce the covariate
shift effect. Moreover, it allows for a more stable training phase. In order to
avoid divergence during training and to attenuate overfitting effects, we applied
dropout on the last two layers. The dropout probability was fixed to 0.5 for all
tests. We used the Negative Log Likelihood (NLL-Loss) loss function and the
Adam optimizer. We performed a limited random search-based hyper-parameter
tuning, therefore all the reported results may improve through a finer hyper-
parameters validation phase. Moreover, since one of the main goals of this work
is investigating the impact of using different values of k with a recurrent GC
layer, we maintained most of the hyper-parameters fixed and varied only the
value of k. For further details about experimental setup, it is possible to consult
the publicly available code 1, that adopts the library pytorch geometric [20].
Result Analysis: We compare DRGNN with four state-of-the-art GNN ar-
chitectures, in 10-fold cross-validation. We consider PSCN [21], Capsule Graph
Networks (CapGCN) [14], DGCNN [16], and GIN [13] (we re-run the experiments
using the validation set for model selection and, differently than [13], using only
the node labels as input of the model). For DRGNN, the hyper-parameters were
chosen according to a random search validation phase, by using accuracy as the
reference metric. Table 1 shows that the DRGNN obtains state-of-the-art results
on 3 out of 5 datasets (PTC, NCI1, and D&D), while in the others it obtains
comparable performances with the other methods, but with a significantly lower
standard deviation. In particular, the comparison with the Capsule GNN (that
achieves the best results on PROTEINS dataset) is not completely fair, in that
it is a meta-model, that embeds another model (DGCNN) as a capsule.

It is surprising that DRGNN achieves these results without using any non-
linearity in the graph convolution (exploited in all the compared models). Indeed
the comparison between Linear-DRGNN (L-DRGNN) and LeakyReLu-DRGNN
(LR-DRGNN) shows that the use of a nonlinear function does not bring any
advantage in almost all considered cases.

In Figure 1 we report the plots of the evolution of the loss function on the
validation set during training for some values of k on the NCI1 dataset (other
plots omitted for space limitations), for L-RDGNN (a) and LR-RDGNN (b).
The starting point gets worse as the value of k increases. This behaviour is due
to the higher depth of the unfolded network, that during the first epochs is far
from being optimal. After 30-40 epochs, the values of the loss function are very
close regardless of the value of k. In Figure 1b it is possible to notice that the

1https://github.com/lpasa/RecurrentDGNN

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

160

Dataset MUTAG PTC NCI1 PROTEINS D&D
(#Graphs) (188) (344) (4110) (1113) (1178)

PSCN[21] 88.95±4.37 60.00 ±4.82 76.34 ±1.68 75.00 ±2.51 76.27 ±2.64
CapGCN[14] 86.67 ±6.88 - 78.35 ±1.55 76.28±3.63 75.38 ±4.17
DGCNN[16] 85.83 ±1.74 58.59 ±2.47 74.44 ±0.47 75.54 ±0.94 79.37 ±0.69
GIN[13] 84.68 ±1.82 57.80 ±0.86 71.14 ±1.71 71.89 ±1.41 72.60 ±2.14

L-DRGNN 87.09 ±1.66 61.54±1.30 83.07±0.35 75.62 ±0.52 79.62±0.22
(m - k) (80-15) (50-3) (150-6) (100-15) (100-3)

LR-DRGNN 87.64 ±2.09 60.54 ±2.76 83.05 ±0.09 75.36 ±0.58 78.24 ±0.96
(m - k) (80-15) (50-3) (150-10) (100-10) (100-3)

Table 1: Accuracy comparison among DRGNN and state-of-the-art models.

0 20 40 60 80 100
Epoch

0.015

0.020

0.025

0.030

0.035

L
os

s

NCI1 Loss Function for L-DRGNN

k=3

k=6

k=10

k=15

(a)

0 20 40 60 80 100
Epoch

0.015

0.020

0.025

0.030

0.035

L
os

s

NCI1 Loss Function for LR-DRGNN

k=3

k=6

k=10

k=15

(b)

Fig. 1: Loss function curves (k = {3, 6, 10, 15}) for (a) linear activation function,
and (b) LeakyReLU activation function, obtained for the NCI1 dataset.

use of LeakyRelu activation makes the training phase more stable. After epoch
40, the trend of the loss function suggests that deeper networks show a more
stable behavior. In fact, with higher k, the loss function tends to diverge later.

5 Conclusions

In this paper, we proposed a simple Recurrent Deep GNN model. The model
exploits the weight sharing technique for the convolutional layers. This allows
to define a model with arbitrary depth while avoiding the substantial increase
in the number of parameters, typical of deep GNNs. The experimental results
showed that this simple model can achieve comparable, and some times better,
accuracy than the state-of-the-art models proposed in the literature, without
using any non-linearity in the convolutional layers. Moreover, we showed the
effect of increasing the depth of the unfolded network on the loss function. In the
future, we plan to study how the diameters of the input graphs could influence
the choice of the “optimal” value for the depth of the unfolded network. We

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

161

also plan to extend our model by adding more complex graph-level pooling
techniques, inspired by the methods proposed in [16, 17]. Moreover, we plan
to extend the empirical comparison by considering the model proposed in [8].

References

[1] Giovanni Da San Martino, Nicolò Navarin, and Alessandro Sperduti. Tree-Based Kernel
for Graphs With Continuous Attributes. IEEE Transactions on Neural Networks and
Learning Systems, 29(7):3270—-3276, 2018.

[2] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classifica-
tion of structures. IEEE Trans. Neural Networks, 8(3):714–735, 1997.

[3] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[4] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2008.

[5] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. In ICLR, pages 1–14, 2017.

[6] Dinh V. Tran, Nicolo Navarin, and Alessandro Sperduti. On Filter Size in Graph Convo-
lutional Networks. In IEEE SSCI, pages 1534–1541, Bengaluru, India, nov 2018. IEEE.

[7] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. Simplifying Graph Convolutional Networks. ICML, feb 2019.

[8] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence
Neural Networks. In ICLR, 2016.

[9] Claudio Gallicchio and Alessio Micheli. Fast and Deep Graph Neural Networks. In AAAI,
2019.

[10] Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual Graph Markov Model:
A Deep and Generative Approach to Graph Processing. In ICML, 2018.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In NIPS, pages 3844–3852, 2016.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NIPS, pages 1024–1034, 2017.

[13] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph
Neural Networks? In International Conference on Learning Representations, 2019.

[14] Zhang Xinyi and Lihui Chen. Capsule graph neural network. In ICLR, 2019.

[15] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In AAAI, volume 33, pages 4602–4609, 2019.

[16] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In AAAI, 2018.

[17] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Ad-
vances in Neural Information Processing Systems, pages 4800–4810, 2018.

[18] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Universal Readout for Graph
Convolutional Neural Networks. In IJCNN, Budapest, Hungary, 2019.

[19] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[20] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[21] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In ICML, pages 2014–2023, 2016.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

162

