
A. Languasco Res. Number Theory (2021) 7:2
https://doi.org/10.1007/s40993-020-00213-1

RESEARCH

Efficient computation of the
Euler–Kronecker constants of prime
cyclotomic fields
Alessandro Languasco∗

*Correspondence:
alessandro.languasco@unipd.it
Dipartimento di Matematica,
“Tullio Levi-Civita”, Università di
Padova, Via Trieste 63, 35121
Padova, Italy

Abstract

We introduce a new algorithm, which is faster and requires less computing resources
than the ones previously known, to compute the Euler–Kronecker constantsGq for the
prime cyclotomic fieldsQ(ζq), where q is an odd prime and ζq is a primitive q-root of
unity. With such a new algorithm we evaluatedGq andG+

q , whereG
+
q is the

Euler–Kronecker constant of the maximal real subfield ofQ(ζq), for some very large
primes q thus obtaining two new negative values ofGq:G9109334831 = −0.248739 . . .

andG9854964401 = −0.096465 . . . We also evaluatedGq andG+
q for every odd prime

q ≤ 106, thus enlarging the size of the previously known range forGq andG+
q . Our

method also reveals that the differenceGq − G+
q can be computed in a much simpler

way than both its summands, see Sect. 3.4. Moreover, as a by-product, we also
computedMq = maxχ �=χ0 |L′/L(1,χ)| for every odd prime q ≤ 106, where L(s,χ) are
the Dirichlet L-functions, χ run over the non trivial Dirichlet characters mod q and χ0 is
the trivial Dirichlet character mod q. As another by-product of our computations, we
will provide more data on the generalised Euler constants in arithmetic progressions.

Keywords: Euler–Kronecker constants, Generalised Euler constants in arithmetic
progressions, Application of the Fast Fourier Transform

Mathematics Subject Classification: Primary 11-04, secondary 11Y60

1 Introduction
Let K be a number field and let ζK (s) be its Dedekind zeta-function. It is a well known fact
that ζK (s) has a simple pole at s = 1; writing the expansion of ζK (s) near s = 1 as

ζK (s) = c−1
s − 1

+ c0 + O (s − 1) ,

the Euler–Kronecker constant of K is defined as

lim
s→1

(ζK (s)
c−1

− 1
s − 1

)
= c0

c−1
.

In the special case in which K = Q(ζq) is a prime cyclotomic field, where q is an odd
prime and ζq is a primitive q-root of unity, we have that the Dedekind zeta-function
satisfies ζQ(ζq)(s) = ζ (s)

∏
χ �=χ0 L(s,χ), where ζ (s) is the Riemann zeta-function, L(s,χ)

123 © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-020-00213-1&domain=pdf
http://orcid.org/0000-0003-2723-554X
http://creativecommons.org/licenses/by/4.0/

 2 Page 2 of 22 A. Languasco Res. Number Theory (2021) 7:2

are the Dirichlet L-functions, χ runs over the non trivial Dirichlet characters mod q and
χ0 is the trivial Dirichlet character mod q. By logarithmic differentiation, we immediately
get that the Euler–Kronecker constant for the prime cyclotomic field Q(ζq) is

Gq := γ +
∑

χ �=χ0

L′

L
(1,χ), (1)

where γ is the Euler–Mascheroni constant. Sometimes the quantity Gq is denoted as γq
but this conflicts with notations used in literature.
An extensive study of the properties ofGq was started by Ihara [15,16] and continued by

many others; here we are mainly interested in computational problems involvingGq and
hence we just recall the paper by Ford et al. [9]. We introduce a new method to compute
the Euler–Kronecker constants of prime cyclotomic fields which is faster and uses less
computing resources than the ones previously known. The new algorithm requires the
values of the generalised gamma function�1 at some rational arguments a/q ∈ (0, 1). Such
a function has, for q large and a = o (q), an order of magnitude exponentially smaller than
the ones previously used to determine Gq , see Sect. 4 below. Moreover, the Fast Fourier
Transform (FFT) used in this new approach allows a decimation in frequency strategy1

that leads to gaining a factor 1/2 in the quantity of needed precomputation operations, in
the length of the involved transforms and in their memory usage. Our algorithm uses the
formulae in Sect. 3 below that, according to Deninger [6] and Kanemitsu [14], were first
proved in 1883 by Berger [1] and in 1929 by Gut [13].
Another interesting quantity related to Gq is the Euler–Kronecker constant G+

q for
Q(ζq + ζ−1

q), the maximal real subfield of Q(ζq). According to Eq. (10) of Moree [20] it is
defined as

G+
q := γ +

∑
χ �=χ0
χ even

L′

L
(1,χ). (2)

In Sect. 3.4 we will give a formula that leads a to a direct evaluation ofG+
q in terms of some

special functions values attained at some rationals a/q ∈ (0, 1). Moreover, in Sect. 3.4 we
will use the previously proved relations to see why the quantity Gq − G+

q is much easier
to compute than both its summands.
During such computations, as a by-product, we also evaluated the related quantity

Mq := max
χ �=χ0

∣∣∣L
′

L
(1,χ)

∣∣∣, (3)

see Sect. 5. Other quantities related toGq are the generalised Euler constants in arithmetic
progressions, sometimes also called Stieltjes constants in arithmetic progressions, denoted
as γk (a, q), k ∈ N, q ≥ 1, 1 ≤ a ≤ q, which are defined by

γk (a, q) := lim
N→+∞

(∑
0<m≤N

m≡a mod q

(logm)k

m
− (logN)k+1

q(k + 1)

)

1We use here this nomenclature since it is standard in the literature on the Fast Fourier Transform, but it could be
translated in number theoretic language using suitable properties of Dirichlet characters.

A. Languasco Res. Number Theory (2021) 7:2 Page 3 of 22 2

= −1
q

(
(log q)k+1

k + 1
+

k∑
n=0

(
k
n

)
(log q)k−nψn

(a
q
))

, (4)

see Eqs. (1.3)–(1.4) and (7.3) of Dilcher [7], where

ψn(z) := −γn − (log z)n

z
−

+∞∑
m=1

(
(log(m + z))n

m + z
− (logm)n

m

)
(5)

for n ∈ N and z ∈ C \ {0,−1,−2, . . . }, ψn(1) = −γn, and the generalised Euler constants
γn are defined as

γn := lim
N→+∞

⎛
⎝

N∑
j=1

(log j)n

j
− (logN)n+1

n + 1

⎞
⎠

=
+∞∑
m=1

(
(logm)n

m
− (log(m + 1))n+1 − (logm)n+1

n + 1

)
, (6)

by, e.g., Eqs. (3)–(4) of Bohman–Fröberg [3]. Remark that γ0 = γ . It is worth recalling that
the functions ψn(z) occur in Ramanujan’s second notebook, see [2, Chap. 8, Entry 22].
The quantities in (4) and, as we will see in Sects. 2–3 below, the one in (1), are hence

connected with the values of ψn, n ≥ 1, which is the logarithmic derivative of �n, a
generalised Gamma function, see Deninger [6], Dilcher [8] and Katayama [18], whose
definition for n = 1 is given in Sect. 3.2. In some sense we can say that the ψn-functions,
n ≥ 1, are the analogue of the usual digamma function. In the following we will denote as
ψ the standard digamma function �′/�; we also remark that it can be represented as the
function ψ0 defined in (5).
The paper is organised as follows. In Sect. 2–3 we will give the derivations of the main

formulae we will need in the computations; such proofs are classical and are based on the
functional equation for the Dirichlet L-functions, see Cohen’s books [4,5], for instance.
Other useful references for this part are the papers of Deninger [6] and Dilcher [7,8].
In Sect. 4 we will see how to implement the formulae of the previous two sections,

starting form a straightforward application of the definitions (1)–(2) of Gq and G+
q ; then

we will compare the Ford–Luca–Moree approach, based on the formulae of Sect. 2, with
our new procedure, based on the formulae of Sect. 3. In particular we will see, in both
cases, how to insert the Fast Fourier Transform and we will discuss their precisions,
computational costs and memory usages. In Sect. 5 we describe how to compute Mq .
Section 6 is devoted to providemore data on the generalised Euler constants in arithmetic
progressions. Finally, we will provide several tables containing a comparison scheme of
the different implementations and the computational results and running times of the
different approaches. We will also insert two colored scatter plots for the normalised
values of Gq and G+

q for every prime q, 3 ≤ q ≤ 106, and two scatter plots aboutMq and
its normalised values for the same set of primes.
We finally remark that some of the ideas presented here will also be used in a joint work

with Pieter Moree, Sumaia Saad Eddin and Alisa Sedunova on the computation of the
Kummer ratio of the class number for prime cyclotomic fields, see [19].

 2 Page 4 of 22 A. Languasco Res. Number Theory (2021) 7:2

2 The Ford–Luca–Moreemethod
Recall that q is an odd prime. If we do not restrict to Dirichlet characters of a prescribed
parity, we can use Eqs. (6.1) and (7.4) of Dilcher [7], as in Ford–Luca–Moree, see Eq. (3.2)
in [9]. In fact Eq. (6.1) of [7] gives

L′(1,χ) = −
q−1∑
a=1

χ (a)γ1(a, q),

where γ1(a, q) is defined in (4) which, for k = 1, becomes

γ1(a, q) = −1
q

(1
2
(log q)2 + log q ψ

(a
q
) + ψ1

(a
q
))
,

for any q ≥ 1 and 1 ≤ a ≤ q, where ψ ,ψ1 are defined in (5). Again using (5), we define

T (x) := γ1 + ψ1(x) = − log x
x

−
+∞∑
m=1

(log(x + m)
x + m

− logm
m

)
, (7)

and, specialising (6), we also have

γ1 = lim
N→+∞

(N∑
j=1

log j
j

− (logN)2

2

)
= −0.0728158454835 . . .

To compute γ1 and similar constants with a very large precision, see Sect. 6.3 below. We
also remark here that the rate of convergence of the series in (7) is, roughly speaking,
about (logm)/m2. Recalling now Eq. (3.1) of [9], i.e.,

L(1,χ) = −1
q

q−1∑
a=1

χ (a) ψ
(a
q
)
, (8)

by the orthogonality of Dirichlet characters and (8), we obtain Eq. (3.2) of [9], i.e.,

L′(1,χ) = −(log q)L(1,χ) + 1
q

q−1∑
a=1

χ (a) T
(a
q
)
,

where T (x) is defined in (7) (pay attention to the change of sign in (7) with respect to
Eq. (3.2) of [9]). Summarising, we finally get

∑
χ �=χ0

L′

L
(1,χ) = −(q − 2) log q −

∑
χ �=χ0

∑q−1
a=1 χ (a) T (a/q)

∑q−1
a=1 χ (a) ψ(a/q)

. (9)

Formula (9) is the one used in the paper by Ford–Luca–Moree [9]. We will now explain
how we can compute Gq via (1) using the values of the two special functions ψ and T ,
together with the values of the non trivial Dirichlet characters mod q.
From a computational point of view it is clear that in (9) we first have to evaluate T (a/q)

and ψ(a/q) for every 1 ≤ a ≤ q − 1. For the ψ-values we can rely on the PARI/GP
function psi or, if less precision is sufficient, we can use the analogous function included

A. Languasco Res. Number Theory (2021) 7:2 Page 5 of 22 2

in GSL, the gnu scientific library [11]2. For computing the T -values, a task for which there
are no pre-defined functions in any software libraries we know, we can use the summing
function sumnum of PARI/GP; this is the most time-consuming step of the procedure.
Using the FFT algorithm to perform the sums over a, it is easy to see that computing Gq
via (9) has a computational cost of O (q log q) arithmetical operations together with the
cost of computing q − 1 values of the ψ and T functions. For more details see Sect. 4.

3 Another method: distinguishing Dirichlet characters’ parities
3.1 Primitive odd Dirichlet character case

Recall that q is an odd prime, let χ �= χ0 be a primitive odd Dirichlet character mod q and
let τ (χ) := ∑q

a=1 χ (a) e(a/q), e(x) := exp(2π ix), be the Gauß sum associated with χ . The
functional equation for L(s,χ), see, e.g., the proof of Theorem 3.5 of Gun-Murty-Rath [12],
gives

L(s,χ) = 1
π i

(2π
q

)s
�(1 − s)

τ (χ)√q
cos

(πs
2

)
L(1 − s,χ)

and hence
L′

L
(s,χ) = log

(2π
q

)
− �′

�
(1 − s) − π

2
tan

(πs
2

)
− L′

L
(1 − s,χ),

which, evaluated at s = 0, gives

L′

L
(0,χ) = log

(2π
q

)
+ γ − L′

L
(1,χ). (10)

By the Lerch identity about the values of the Hurwitz zeta-function, see, e.g., Proposition
10.3.5 of Cohen [5], and the orthogonality of Dirichlet characters, we get

L′(0,χ) = − log q
q−1∑
a=1

χ (a)
(1
2

− a
q

)
+

q−1∑
a=1

χ (a) log
(
�

(a
q
))

= log q
q

q−1∑
a=1

aχ (a) +
q−1∑
a=1

χ (a) log
(
�

(a
q
))

= −(log q)L(0,χ) +
q−1∑
a=1

χ (a) log
(
�

(a
q
))
, (11)

since, see Proposition 9.5.12 and Corollary 10.3.2 of Cohen [5], we have

L(0,χ) = −B1,χ := −1
q

q−1∑
a=1

aχ (a) �= 0, (12)

where B1,χ is the first χ-Bernoulli number which is non-zero since χ is odd.
Summarising, by (10)–(12), we obtain

∑
χ odd

L′

L
(1,χ) = q − 1

2
(
γ + log(2π)

) +
∑
χ odd

1
B1,χ

q−1∑
a=1

χ (a) log
(
�

(a
q
))
. (13)

2GSL provides just a double precision (in the sense of the C programming language precision) version of ψ ; hence
this is faster, but less accurate, than the computation of the log �-values needed in the procedure described in the
next section. If we use PARI/GP to precompute and store the ψ-values, then the costs of the precomputation and the
input/output part of the FFT step have to be doubled, see Table 1.

 2 Page 6 of 22 A. Languasco Res. Number Theory (2021) 7:2

From a computational point of view, in (13) we need to compute the log �-values; to do
so we can rely on an internal PARI/GP function or, if less precision is sufficient, we can
use the analogous function included in the C programming language. We remark that,
for x → 0+, log

(
�(x)

) ∼ log(1/x) and ψ(x) ∼ −1/x; hence for q large and a = o (q),
the values of log

(
�(a/q)

)
are exponentially smaller than the ones of ψ(a/q). Moreover,

to compute the first χ-Bernoulli number B1,χ , defined in (12), we just need an integral
sequence.

3.2 Primitive even Dirichlet character case

Recall that q is an odd prime. Assume now that χ �= χ0 is a primitive even Dirichlet
charactermod q.We followDeninger’s notation in [6] bywritingR(x) = − ∂2

∂s2 ζ (s, x)|s=0 =
log(�1(x)), x > 0, where ζ (s, x) is the Hurwitz zeta function, s ∈ C\{1}. By Eqs. (3.5)–(3.6)
of [6] we have

L′(1,χ) = (γ + log(2π))L(1,χ) + τ (χ)
q

q−1∑
a=1

χ (a) R
(a
q
)
, (14)

where, see Eq. (2.3.2) of [6], the R-function can be expressed for every x > 0 by

R(x) := −ζ ′′(0) − S(x), (15)

S(x) := 2γ1x + (log x)2 +
+∞∑
m=1

((
log(x + m)

)2 − (logm)2 − 2x
logm
m

)
. (16)

It is worth recalling that comparing (15)–(16) with (7), we see that ψ1(x) = R′(x)/2 (note
the different definition of γ1 on p. 174 of Deninger’s paper). Using (6) we have S(1) = 0
and R(1) = −ζ ′′(0). An alternative definition of S(x) for x > 0, which will be useful during
the computations, is implicitly contained in Eq. (2.12) of Deninger [6]:

S(x) = 2
∫ +∞

0

(
(x − 1)e−t + e−xt − e−t

1 − e−t

) (γ + log t)
t

dt, x > 0. (17)

By the orthogonality of the Dirichlet characters, we immediately get

q−1∑
a=1

χ (a)R(a/q) = −
q−1∑
a=1

χ (a) S(a/q). (18)

For L(1,χ), we use formula (2) of Proposition 10.3.5 of Cohen [5] and the parity of χ to
get

L(1,χ) = 2
τ (χ)
q

q−1∑
a=1

χ (a) log
(
�

(a
q
))
, (19)

sinceW (χ) = τ (χ)/q1/2 for even Dirichlet characters, see Definition 2.2.25 of Cohen [4].
Summarising, using (14) and (18)–(19), if χ is an even Dirichlet character mod q, we
finally get

∑
χ �=χ0
χ even

L′

L
(1,χ) = q − 3

2
(
γ + log(2π)

) − 1
2

∑
χ �=χ0
χ even

∑q−1
a=1 χ (a) S(a/q)

∑q−1
a=1 χ (a) log

(
�(a/q)

) . (20)

A. Languasco Res. Number Theory (2021) 7:2 Page 7 of 22 2

Weremark that in (20)wecan reuse the log �-values alreadyneeded in (13). For computing
the S-values, a task for which there are no pre-defined functions in any software libraries
we know, we can use the PARI/GP functions sumnum and intnum; this is the most time-
consuming step of the procedure. We also remark that, for x → 0+, S(x) ∼ (log x)2 and
T (x) ∼ log(1/x)/x; hence for q large and a = o (q), the values of S(a/q) are exponentially
smaller than the corresponding ones of T (a/q).
Finally we remark that for S and B1,χ we just need the summation over half of the

Dirichlet characters involved; hence in both cases in their computation using the Fast
Fourier Transform we can implement the so-called decimation in frequency strategy that
allow us to improve on both the speed and the memory usage of the actual computation,
see Sect. 4.1 below. Using the FFT algorithm to perform the sums over a, it is easy to see
that computing Gq via (13) and (20) has a computational cost of O (q log q) arithmetical
operations together with the cost of computing q − 1 values of the log �-function and
(q − 1)/2 decimated in frequency values of the S-function3.

3.3 OnG+
q : the constant attached to the maximal real subfield ofQ(ζq)

It is a consequence of the computations in this section that the Euler–Kronecker constant
G+

q for Q(ζq + ζ−1
q), the maximal real subfield of Q(ζq), is directly connected with the

S-function since, by (2) and (20), we have

G+
q = q − 1

2
γ + q − 3

2
log(2π) − 1

2
∑

χ �=χ0
χ even

∑q−1
a=1 χ (a) S(a/q)

∑q−1
a=1 χ (a) log

(
�(a/q)

) . (21)

Hence in this case the relevant information is encoded in the S and log � functions.
Clearly G+

q can be obtained during the Gq-computation since it requires a subset of the
data needed for getting Gq . In Fig. 2 you can find a colored scatter plot of its values for
every q prime, 3 ≤ q ≤ 106.
Moreover, a direct evaluation of G+

q via (21) allow us to use a decimation in frequency
strategy in the application of the FFT technique to evaluate the sums over a, see Sects. 4.1–
4.3.

3.4 RegardingGq − G+
q

By (1)–(2), (13) and (21) it is trivial to get that

Gq − G+
q =

∑
χ odd

L′

L
(1,χ) = q − 1

2
(
γ + log(2π)

) +
∑
χ odd

1
B1,χ

q−1∑
a=1

χ (a) log
(
�

(a
q
))
.

(22)

This reveals that, from a practical point of view,Gq −G+
q is much easier to compute with

respect to both Gq and G+
q : this not just because, as for G+

q , it requires a subset of the
data needed for Gq but also because it involves just one special function, log �, which is
directly available in many software libraries and in the C programming language.

3An explanation for this fact can be found towards the end of Sect. 4.1.

 2 Page 8 of 22 A. Languasco Res. Number Theory (2021) 7:2

In this case too, a direct evaluation of Gq − G+
q via (22) allow us to use a decimation

in frequency strategy in the application of the FFT technique to evaluate the sums over a,
see Sects. 4.1–4.3. Some computational data about this quantity are also included in [19].

4 Comparison of methods, results and running times
First of all we notice that PARI/GP, v. 2.11.4, has the ability to generate the Dirichlet
L-functions (and many other L-functions) and hence the computation ofGq ,G+

q andMq
can be performed using (1)–(3) with few instructions of the gp scripting language. This
computation has a linear cost in the number of calls of the lfun function of PARI/GP
and, at least on our Dell Optiplex desktop machine, it is slower than both the procedures
we are about to describe.
Comparing (13) and (20) with (9), we see that in both cases we can rely on pre-defined

functions to compute either the log
(
�(a/q)

)
-values or the ψ(a/q)-values, 1 ≤ a ≤ q − 1,

and finally we have to evaluate theT and S functions respectively involved.We recall that,
when taking q very large, it is relevant to know their order of magnitude for x → 0+;
it is easy to verify that log

(
�(x)

) ∼ log(1/x), S(x) ∼ (log x)2, ψ(x) ∼ −1/x and T (x) ∼
log(1/x)/x. Hence for x → 0+, we have that log

(
�(x)

)
and S(x) are exponentially smaller

than ψ(x) and T (x); a fact that will lead to a more accurate result when using a fixed
precision in the final step of the computation. Another difference is that, for the odd
Dirichlet characters, the first χ-Bernoulli number in Eq. (13) does not involve any special
function, but just an integral sequence. So it seems reasonable to compare the following
two approaches:

(a) use theT -series formulae and theψ-values as in [9]; in this case we have two possible
alternatives to evaluate the ψ-function: using GSL (gaining in speed but losing in
precision) or using PARI/GP (with a much better precision, but doubling the needed
hard disk storage and the number of input/output operations on the hard disk);

(b) use the S-function formulae for the even Dirichlet characters case and the first χ-
Bernoulli number for the odd one; remark that in both cases we have to evaluate a
sum of the log �-values.

This way we can extend the computation performed in [9], not only because we are
developing a different implementation of the same formulae, but also because we can
solve the problem in an alternative way which is faster, needs less computing resources,
and uses functions having a much smaller order of magnitude, see Table 1 for a summary
of these facts. In the computation we will use the PARI/GP scripting language to exploit
its ability to accurately evaluate the series and integrals involved in the definition of the
T and S functions, defined respectively in (7) and (16)–(17), via the functions sumnum or
intnum.

4.1 Using the FFT algorithm

We also remark that the procedures (a)–(b) trivially require a quadratic number of arith-
metical operations to perform the computations in (9), (13) and (20), but this can be
improved by using the FFT algorithm and the following argument. Focusing on (9), (13)
and (20), we remark that, since q is prime, it is enough to get g , a primitive root of q, and
χ1, the Dirichlet character mod q given by χ1(g) = e2π i/(q−1), to see that the set of the non

A. Languasco Res. Number Theory (2021) 7:2 Page 9 of 22 2

trivial characters mod q is {χ j
1 : j = 1, . . . , q − 2}. Hence, if, for every k ∈ {0, . . . , q − 2},

we denote gk ≡ ak ∈ {1, . . . , q − 1}, every summation in (9)–(13) and (20) is of the type

q−2∑
k=0

e
(σ jk
q − 1

)
f
(ak
q

)
, (23)

where e(x) := exp(2π ix), j ∈ {1, . . . , q − 2}, σ = ±1, and f is a suitable func-
tion which assumes real values. As a consequence, such quantities are, depending on
σ , the Discrete Fourier Transforms, or its inverse transformations, of the sequence
{f (ak/q) : k = 0, . . . , q−2}. This idea was first formulated by Rader [22] and it was already
used in [9] to speed-up the computation of these quantities via the use of FFT-dedicated
software libraries.
For the approach b) we can also use the decimation in frequency strategy: assuming that

in (23) one has to distinguish between the parity of j (hence on the parity of the Dirichlet
characters), lettingm = (q − 1)/2, for every j = 0, 1, . . . , q − 2 we have that

q−2∑
k=0

e
(σ jk
q − 1

)
f
(ak
q

)
=

m−1∑
k=0

e
(σ jk
q − 1

)
f
(ak
q

)
+

m−1∑
k=0

e
(σ j(k + m)

q − 1

)
f
(ak+m

q

)

=
m−1∑
k=0

e
(σ jk
q − 1

)(
f
(ak
q

)
+ (−1)j f

(ak+m
q

))
.

Let now j = 2t + �, where � ∈ {0, 1} and t ∈ Z. Then, the previous equation becomes

q−2∑
k=0

e
(σ jk
q − 1

)
f
(ak
q

)
=

m−1∑
k=0

e
(σ tk

m

)
e
(σ�k
q − 1

)(
f
(ak
q

)
+ (−1)�f

(ak+m
q

))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m−1∑
k=0

e
(

σ tk
m

)
bk if � = 0

m−1∑
k=0

e
(

σ tk
m

)
ck if � = 1,

(24)

where t = 0, . . . , m − 1, σ = ±1,

bk := f
(ak
q

)
+ f

(ak+m
q

)
and ck := e

(σk
q − 1

)(
f
(ak
q

)
− f

(ak+m
q

))
.

Hence, if we just need the sum over the even, or odd, Dirichlet characters as in the
procedure b) for f (x) = S(x) or f (x) = x, instead of computing an FFT transform of length
q− 1 we can evaluate an FFT of length (q− 1)/2, applied on a suitably modified sequence
according to (24). Clearly this represents a gain in both the speed and the memory usage
in running the actual computer program. Moreover, if the values of f (ak/q) have to be
precomputed and stored, this also means that the quantity of information we have to save
during the precomputation (which will be the most time consuming part), and to recall
for the FFT algorithm, is reduced by a factor of 2.
In Table 1 we give a summary of the main characteristics of both approaches for com-

puting Gq ; it is clear that the one using T (x) beats the one which implements S(x) only
in the total number of the needed FFT transforms4, but in any other aspect the latter is

4In fact the FFT transforms can be independently performed and hence they can be executed in parallel; this eliminates
the unique disadvantage in using the S-function method.

 2 Page 10 of 22 A. Languasco Res. Number Theory (2021) 7:2

Table 1 Comparison of themain characteristics of procedures a) and b) to computeGq
andG+

q

Comparison Procedure a) Procedure a) Procedure b)

(ψ comp. with

GSL)

(ψ comp. with

PARI/GP)

Magnitude of the functions for

x → 0+ :
ψ (x) ∼ −1/x ψ (x) ∼ −1/x log(�(x)) ∼ log(1/x)

T (x) ∼ log(1/x)
x T (x) ∼ log(1/x)

x S(x) ∼ (log x)2

Precomputations (T and S with PARI/GP):

Needed space for storing

precomputed values

(〈g〉 = Z∗
q , ak := gk mod q):

q − 1 values of

T (ak/q)

2(q − 1) values of

T (ak/q) and ψ (ak/q)

(q − 1)/2 values of

S(ak/q) + S(1 − ak/q)

Number of write operations on

hard disks:

q − 1 2(q − 1) (q − 1)/2

Number of sumnum or intnum calls: q − 1 q − 1 (q − 1)/2

FFT-step (with fftw):

Number of read operations on

hard disks:

q − 1 2(q − 1) (q − 1)/2

Number of FFTs: 2 2 3

Length of FFTs: both q − 1 both q − 1 one of length q −
1; the others of

length (q − 1)/2

Total RAM usage (in number of

long double positions; in-place FFTs):

2q + 2 2q + 2 2q†

† But the computation forG+
q requires only (3q + 5)/2 long double positions; so, reusing a portion of the RAM after the

computation ofGq − G+
q , in the second part of the program we essentially have a gain of about (q − 1)/2 long double

positions for the RAM usage

better. In particular the procedure b) is much faster in the precomputation part since its
cost is ≤ 1/2 than approach a)’s one.

4.2 Decimation in frequency for the even Dirichlet characters case

Wemake explicit the form that the sequence bk defined in (24), assumes in our cases.
It is useful to remark that from 〈g〉 = Z∗

q it trivially follows that gm ≡ q−1 mod q, where
m = (q − 1)/2. Hence, recalling ak ≡ gk mod q, we obtain ak+m ≡ gk+m ≡ ak (q − 1) ≡
q − ak mod q and, as a consequence, we get

f
(ak+m

q

)
= f

(q − ak
q

)
= f

(
1 − ak

q

)
. (25)

So, inserting the reflection formula for S(x), see Eq. (3.3) of Dilcher [8]5, into (24)–(25),
for every k = 0, . . . , m − 1 and for f (x) = S(x), using (16), the sequence bk becomes

S
(ak
q

)
+ S

(ak+m
q

)
= S

(ak
q

)
+ S

(
1 − ak

q

)
=

=
(
log

ak
q

)2 +
+∞∑
n=1

((
log

(
n + ak

q
))2 +

(
log

(
n − ak

q
))2 − 2(log n)2

)
, (26)

5Pay attention to the fact that the Deninger S(x)-function defined in (15)–(16) is equal to −2 log(�1(x)) as defined in
Proposition 1 of Dilcher [8].

A. Languasco Res. Number Theory (2021) 7:2 Page 11 of 22 2

where ak ≡ gk mod q, while, using (17), we obtain

S
(ak
q

)
+ S

(
1 − ak

q

)
= 2

∫ +∞

0

(
−e−t + e−

ak
q t + e−(1− ak

q)t − 2e−t

1 − e−t

) (γ + log t)
t

dt

= 2
∫ +∞

0

(
−3 + e−t + e

ak
q t + e(1−

ak
q)t

) (γ + log t)
t(et − 1)

dt, (27)

in which we exploited the uniform convergence of the involved integrals. To optimise
speed andprecision, both equations (26)–(27)will be usedduring the actual computations;
when possible we will exploit the exponential decay e−ct , with c = min(ak/q, 1 − ak/q),
of the integrand function in (27) using the PARI/GP function intnum. But when the
parameter c will become too small to give reliable results, we will switch to apply the
PARI/GP function sumnum to Eq. (26); in this case, roughly speaking, the decay order is
(log n)/n2.
Hence, thanks to the previous formulae, the number of calls to the sumnum or intnum

functions required in the precomputation of the S-values is reduced by a factor of 2 with
respect to the ones needed to precompute the T -values.
If we are just interested in the computation ofG+

q , we can directly use (21) in which we
can embed (26)–(27) and the following remark about the needed log �-values. Assum-
ing f (x) = log �(x), using (25) and the well-known reflection formula �(x)�(1 − x) =
π/ sin(πx), we obtain

log
(
�

(ak
q

)) + log
(
�

(ak+m
q

)) = log
(
�

(ak
q

)) + log
(
�

(
1 − ak

q
))

= log π − log
(
sin

(πak
q

))
,

thus further simplifying the final computation by replacing the �-function with the sin-
function.

4.3 Decimation in frequency for the odd Dirichlet characters case

Wemake explicit the form that the sequence ck defined in (24), assumes in our cases.
If we are just interested in the computation ofGq −G+

q , we can directly use (22); using
the reflection formula�(x)�(1−x) = π/ sin(πx) and arguing as in the previous paragraph,
we obtain

log
(
�

(ak
q

)) − log
(
�

(
1 − ak

q
)) = 2 log

(
�

(ak
q

)) + log
(
sin

(πak
q

)) − log π ,

for every k = 0, . . . , m − 1, m = (q − 1)/2, and hence ck is modified accordingly. In this
case the gain of using the previous formula is that the number of needed evaluations of
the log �-function is reduced by a factor of 2.
The case in which f (x) = x is easier; using again 〈g〉 = Z∗

q , ak ≡ gk mod q and
gm ≡ q − 1 mod q, we can write that ak+m ≡ q − ak mod q; hence

ak − ak+m = ak − (q − ak) = 2ak − q,

so that in this case we obtain ck = e(σk/(q − 1))(2ak/q − 1) for every k = 0, . . . , m − 1,
m = (q − 1)/2, σ = ±1.

 2 Page 12 of 22 A. Languasco Res. Number Theory (2021) 7:2

4.4 Computations trivially summing over a (slower but with more digits available)

Unfortunately in libpari the FFT-functions work only if q = 2� + 1, for some � ∈ N.
So we had to trivially perform these summations and hence, in practice, this part is the
most time consuming one in both the procedures a) and b) since it has a quadratic cost
in q. Being aware of such limitations, we used PARI/GP (with the trivial way to compute
the sum over a) to evaluate Gq and G+

q with these three approaches for every odd prime
q ≤ 300, on a Dell OptiPlex-3050 (Intel i5-7500 processor, 3.40GHz, 16 GB of RAM and
running Ubuntu 18.04.2) using a precision of 30 digits, see Table 2; we also inserted there
the values ofMq , defined in (3), for the same set of primes. Such results largely extend the
precision of the data in Table 1 on p. 1472 of [9]. The computation of the values of Table 2
needed 19 s using the S-function, 33 s using the T -function and 51 s using PARI/GP
lfun function. We also computed the values of Gq and G+

q , with a precision of 30
digits, for q = 1009, 2003, 3001, 4001, 5003, 6007, 7001, 8009, 9001, 10007, 20011, 30011,
as you can see in Table 3. These numbers were chosen to heuristically evaluate how the
computational cost depends on the size of q. In this case, in the fifth column of Table 3 we
also reported the running time of the direct approach, i.e. using (1), the third and fourth
columns are respectively the running times of the other two procedures. For these values
of q it became clear that the computation time spent in performing the sums over a was
the longest one. This means that inserting an FFT-algorithm is fundamental to further
improve the performances of both the algorithms a)-b). We discuss this in more detail in
the next paragraph.

4.5 Computations summing over a via FFT (much faster but with less digits available)

As we saw before, for large q the time spent in summing over a dominates the com-
putational cost. So we implemented the use of FFT for this task. We first used the gp2c
compiler tool to obtain suitableCprograms to perform the precomputations of the needed
T and S-values with 38 digits and save them to the hard disk6. Then we passed such values
to the C programs which used the fftw [10] software library to perform the FFT step. In
such a final stage the performance was thousand times faster than the one for the same
stage trivially performed; as an example you can compare the running times for q = 10007,
20011, 30011 in Tables 3 and 4. The running times for the approaches a) and b) reveal
that the latter is faster, mainly because it requires less input operations to gain the stored
precomputed information since the FFT works on a set of data of half the length than in
the former case7.
This way we computed the values of Gq and G+

q for q = 40009, 42611, 50021, 60013,
70001, 80021, 90001, 100003, 305741, 1000003, 4178771, 6766811, 10000019, 28227761,
75743411with the longdoubleprecision, seeTable 4.These computationswereperformed
with the Dell OptiPlex machine mentioned before.
Some of these q-values were chosen for their size and others with the help of B, the

“greedy sequence of prime offsets”, http://oeis.org/A135311, in the following way. We
define B using induction, by b(1) = 0 ∈ B and b(n) ∈ B if it is the smallest integer
exceeding b(n− 1) such that for every prime r the set {b(i) mod r : 1 ≤ i ≤ n} has at most

6If we do not use the GSL to directly compute ψ , we need to insert its precomputation here.
7If ψ is precomputed using PARI/GP, then the gain ratio in the stored space and in the number of input/output
operations is raised to 3/4.

http://oeis.org/A135311

A. Languasco Res. Number Theory (2021) 7:2 Page 13 of 22 2

Table 2 Values ofGq,G
+
q andMq for every odd prime up to 300with a precision of 30

digits; computed with PARI/GP, v. 2.11.4 with trivial summing over a. Total computation
time: forGq,G

+
q : 18 sec. 852millisec., forMq: 19 sec., 171millisec. on the Dell Optiplex

machinementioned before
q Gq G+

q Mq

3 0.94549728087168070323974999415 . . . 0.57721566490153286060651209008 . . . 0.36828161597014784263323790407 . . .

5 1.72062421251340476169572878865 . . . 1.40489514161703774859755907976 . . . 0.82767947671550488799104698967 . . .

7 2.08759407471733013281542471957 . . . 1.95715645444971475271382186143 . . . 0.69374325299917902224231637393 . . .

11 2.41542590428326783034287963583 . . . 2.66207409890433174906654072453 . . . 0.64960999942397995363690453077 . . .

13 2.61075773741765019699776108857 . . . 2.89959572414790509559591203013 . . . 0.69630986299203715584089218352 . . .

17 3.58197604409757765927178812919 . . . 3.23179164885108167689200470642 . . . 1.36293176857311326439833395890 . . .

19 4.79040941571428332590703936458 . . . 3.36702810226943360422911738361 . . . 1.56821936415476775304938942269 . . .

23 2.61128917618820092550739164964 . . . 3.56605274186303485506490005633 . . . 1.07370241439895666993863022504 . . .

29 3.09373170599426872316275179819 . . . 3.77451272291818155837540505527 . . . 1.37173438584080190328583030799 . . .

31 4.31444292526747509770757441042 . . . 3.74063417131631765163927862231 . . . 1.41315141911004437078399808370 . . .

37 4.30493818995760201798557926417 . . . 3.88346103237113739135523493388 . . . 1.29518958101078356915278401821 . . .

41 3.97152162792133216028257040014 . . . 3.90067243331576039538420460289 . . . 1.29673609198958173353796568380 . . .

43 4.37862750574695049413775062336 . . . 4.37462848511375110150884874389 . . . 1.41176882240051173489451389181 . . .

47 4.79939425890741613452758429988 . . . 4.78330592374031492736088514964 . . . 1.39567565425273602292102717603 . . .

53 4.33773685859709231869696082307 . . . 4.06734814093911422415451881781 . . . 1.30627572903790815149667975264 . . .

59 5.43351634538500398077634438193 . . . 5.74977495098717868985714511291 . . . 1.81899383678937843989348366929 . . .

61 5.07108519057651619595805098113 . . . 4.71919160448137601223479232791 . . . 1.41809980889441627035459190983 . . .

67 5.29213930662896260873428461831 . . . 5.49478574409231087894450914285 . . . 1.67019193303154369921782607634 . . .

71 5.25525819281894616772013128637 . . . 5.02459221437013823603453457463 . . . 1.47455511100236771011015896767 . . .

73 4.06694909044749529201648815625 . . . 5.56638018904420607773144876527 . . . 1.78248970799598673447282517891 . . .

79 4.99827631817068010789431392945 . . . 4.31392816983842153234814442952 . . . 1.34616837027813468918588610688 . . .

83 3.03313611343607418716403819105 . . . 4.06119890648015486954960478374 . . . 1.34527786237910789501875868023 . . .

89 4.16409079888983276880841110372 . . . 5.44834851555434719261902953243 . . . 1.61654649274126300156782088673 . . .

97 4.89124074040389666830751468857 . . . 4.44563411256346738186380452664 . . . 1.60286118570076458480362218799 . . .

101 5.29701289150966971887860032739 . . . 5.93364557387726998305789899164 . . . 1.51871979857079618912367283335 . . .

103 5.14433955125208822113330503220 . . . 5.53312508630999898815400644939 . . . 1.56072764165486011343921965820 . . .

107 5.45827420997024503421680245453 . . . 5.35744691959596839332603590620 . . . 1.55529418086936504978552066530 . . .

109 6.90663814626423653219469837704 . . . 6.28639312060842026587282318484 . . . 1.65357828827908326582841136643 . . .

113 4.02173038257803067578318006617 . . . 4.71308052553071355344451609738 . . . 1.51486982889352164427060492878 . . .

127 5.08859912415333449423215636240 . . . 5.28427526641642291108714895825 . . . 1.55590143040596443193792941854 . . .

131 2.83682634158837909860285797321 . . . 4.29182422162389365669036230041 . . . 1.43797882292531602089564238879 . . .

137 4.93700022614368468691962999711 . . . 5.17281966401368126952267004684 . . . 1.53929870904867707257469538680 . . .

139 5.88916863399867186726383730369 . . . 5.15673467267785693456200640445 . . . 1.58828875478913218915240825692 . . .

149 5.98342477769515981450242785739 . . . 6.35744273145487616682151978517 . . . 1.55933423387754689170927007457 . . .

151 5.04201611352872179914519461022 . . . 5.66732269410388218441768644382 . . . 1.48171078244888795642226012230 . . .

157 7.40802206572222729350845201390 . . . 5.67766459100970078752076942990 . . . 1.52915091159611605159149879696 . . .

163 5.92966482288720678755499913844 . . . 5.54289611872522541669860167904 . . . 2.16832712928352380386400324642 . . .

167 8.03300175268872470467583357802 . . . 6.80394798958259907108839110755 . . . 1.56607236656750344030293511154 . . .

173 3.38434753653206190344297798897 . . . 4.74313680866654143318864467269 . . . 1.54242401828716131644723995819 . . .

179 3.86236132549903008112126130282 . . . 5.59074764196693719810304550344 . . . 1.60085064594072009293300914735 . . .

181 5.14111848776848135810136664257 . . . 5.52401113238735460988935254057 . . . 1.65656567095010010041093792977 . . .

191 4.69286990201422664003552434812 . . . 6.21621633683078754687889560801 . . . 1.69400806335478035992195123369 . . .

193 5.16342219673915483320078262720 . . . 6.33516880970302226248749231989 . . . 1.72106839151430000218016220949 . . .

197 7.55148715896640647886485129372 . . . 6.72431280547758930911931614898 . . . 1.58425224704856913591906318269 . . .

199 6.47366513609320738699497459778 . . . 4.97867314026834059118807347477 . . . 1.52055512030192431037107983792 . . .

211 7.73613578424586162532810587585 . . . 5.43928767077706865027592727891 . . . 1.58887689723521687477342354947 . . .

223 7.81777971785991367471336734851 . . . 6.97640718267880419790301145060 . . . 1.57809439787964273689310796956 . . .

227 8.08053156951296218697071193757 . . . 6.16478105833535800088839052312 . . . 1.61440476278289514090073256762 . . .

229 7.16298632058099546745778115058 . . . 5.19368182825228459062582716349 . . . 1.64391627222705529854073112016 . . .

233 3.11948354485127541303115295258 . . . 5.48268694035180653761326391137 . . . 1.56534808865669695863593307680 . . .

239 3.99911017207833249512632297919 . . . 4.89826038220509731091188200357 . . . 1.83593237895342242137799671838 . . .

241 6.03752521401034215065709250935 . . . 6.91099570349028181262249488655 . . . 1.74483502309356231328685290592 . . .

251 5.04313708502347351042811119022 . . . 5.85522475367262429906377535883 . . . 1.60634233356394595761434310531 . . .

257 8.16991391232741391670225155227 . . . 7.41413126491779482941571986652 . . . 1.52986363395322517571321794433 . . .

263 7.30343624736815435414348077406 . . . 6.88761891078185993452639437420 . . . 1.61873689910065712561008039262 . . .

269 6.26034831666577102735252755712 . . . 6.33572466741282346876839833227 . . . 1.58662353583078976012953348699 . . .

271 5.97717804854803304223773905976 . . . 4.91607375378349595312704873315 . . . 1.51145118046000075647340279932 . . .

277 4.59280817714077895164777081661 . . . 6.07306330239530923314413596279 . . . 1.72974155675277125427451583060 . . .

281 4.66496432366211457505220852623 . . . 4.99043740542558229612252801406 . . . 1.60536366070704717918242357661 . . .

283 7.15028579741068251409225231188 . . . 7.04969230270522888347459792033 . . . 1.55609186296142373233316514603 . . .

293 3.38438152121953978658468259238 . . . 5.38438152121953978658468259238 . . . 1.58515317244284064528356780036 . . .

 2 Page 14 of 22 A. Languasco Res. Number Theory (2021) 7:2

Table 3 A few other values ofGq andG+
q with a precision of 30 digits; computed with

PARI/GP, v. 2.11.4 with trivial summing over a [m =minutes, s = seconds]. Computation
performed on the Dell Optiplex machinementioned before
q Gq G+

q time time time
T S direct

1009 8.4421351518492992758606946727 . . . 6.2733540844322103172186250111 . . . 5s. 3s. 14s.
2003 5.7934213690793633280384982162 . . . 6.9935258611413978746616842142 . . . 10s. 7s. 39s.
3001 8.6474651369683869388023453509 . . . 8.6459700672984138998934976577 . . . 17s. 11s. 1m. 11s.
4001 7.0034355462031439943568517684 . . . 8.7805380094230735872867993849 . . . 24s. 17s. 1m. 49s.
5003 5.5492930045816142277368795404 . . . 7.2440224742791062634412330617 . . . 32s. 23s. 2m. 36s.
6007 8.3116101219984838165629034403 . . . 9.8742666472425769486896123420 . . . 41s. 30s. 3m. 22s.
7001 8.5052778761008771393168780384 . . . 9.6833327734910786447084880544 . . . 52s. 38s. 4m. 07s.
8009 11.6868463915493575353450869960 . . . 11.4431421556247084876087109206 . . . 1m. 03s. 47s. 5m. 00s.
9001 10.1094784318383409358225035802 . . . 9.4868388831454962767492760006 . . . 1m. 15s. 57s. 5m. 56s.
10007 12.6646120045606923275389356783 . . . 11.0601624759024741933308283063 . . . 1m. 27s. 1m. 07s. 7m. 12s.
20011 10.7996803112999205186430402899 . . . 10.5489807692170969459672226221 . . . 4m. 30s. 3m. 43s. 20m. 01s.
30011 10.3330799721240242255136062255 . . . 11.0127039500540893278498877674 . . . 9m. 19s. 8m. 11s. 37m. 28s.

r − 1 elements. An equivalent statement, assuming that the prime k-tuples conjecture
holds, is that b(n) is minimal such that b(1) = 0 and there are infinitely many primes q
with b(i)q + 1 prime for 2 ≤ i ≤ n, n ≥ 2. Let now

m(A) :=
s∑

i=1

1
ai
,

where A is an admissible set, i.e., A = {a1, . . . , as}, ai ∈ N, ai ≥ 1, such that does not
exist a prime p such that p | n

∏s
i=1(ain + 1) for every n ≥ 1. Thanks to Theorem 2

of Moree [20], if the prime k-tuples conjecture holds and if A is an admissible set, then
Gq < (2−m(A)+o (1)) log q for� x/(log x)−|A |−1 primes q ≤ x.Moreover, byTheorem
6 ofMoree [20], assuming both the Elliott-Halberstam and the prime k-tuples conjectures,
ifA is an admissible set thenGq = (1−m(A)+o (1)) log q for� x/(log x)−|A |−1 primes
q ≤ x.
The greedy sequence of prime offsetsB has the property that any finite subsequence is

an admissible set. With a PARI/GP script we computed the first 2089 elements ofB since
for C := {b(2), . . . , b(2089)} we getm(C) > 2. So, if we are looking for negative values of
Gq , it seems to be a good criterion to evaluate Gq for a prime number q such that bq + 1
is prime for many elements b ∈ C (clearly it is better to start with the smaller available
b’s). To be able to measure this fact, we define

v(q) :=
∑

2≤i≤2089; b(i)∈C
b(i)q+1 is prime

1
b(i)

. (28)

Some of the q-values written before in this paragraph are such that v(q) > 1.15 so that,
thanks toMoree’s results already cited, they are good candidates to have a negative Euler–
Kronecker constant. The complete list of q ≤ 1010 such that v(q) > 1.2 is towards the end
of the PARI/GP script testseq that can be downloaded here: http://www.math.unipd.
it/~languasc/EK-comput.html.

4.5.1 Data for the scatter plots

After having evaluated the running times of the previous examples, we decided to provide
the colored scatter plots, see Figs. 1 and 2, of the normalised values ofGq andG+

q (both in
long double precision) for every odd prime q ≤ 106 thus enlarging the known range of the

http://www.math.unipd.it/~languasc/EK-comput.html
http://www.math.unipd.it/~languasc/EK-comput.html

A. Languasco Res. Number Theory (2021) 7:2 Page 15 of 22 2

Table 4 A few other values ofGq andG+
q ; computed with PARI/GP, v. 2.11.4 and fftw,

v. 3.3.8, with long double precision. The sum over awas performed using the FFT
algorithm on the Dell Optiplex machinementioned before [s = seconds, ms =milliseconds;
precomputations of decimated in frequency S-values performed on the Optiplex; their
computation time is excluded from this table]. ∗: on the Intel Xeonmachine due to a
runtimememory error on the Dell Optiplex

q Gq G+
q time

10007 12.664612 . . . 11.060162 . . . 10ms.

20011 10.799680 . . . 10.548981 . . . 23ms.

30011 10.333080 . . . 11.012704 . . . 15ms.

40009 13.146885 . . . 13.469520 . . . 25ms.

42611 2.499688 . . . 8.367404 . . . 41ms.

50021 9.910507 . . . 11.063741 . . . 98ms.∗

60013 12.810360 . . . 12.671109 . . . 36ms.

70001 12.572765 . . . 13.428551 . . . 25ms.

80021 14.185633 . . . 11.617216 . . . 100ms.∗

90001 11.819424 . . . 9.601757 . . . 33ms.

100003 15.166074 . . . 14.765926 . . . 69ms.

305741 1.650523 . . . 8.839799 . . . 198ms.

1000003 17.379970 . . . 15.298449 . . . 876ms.

4178771 0.922855 . . . 8.909168 . . . 2s. 613ms.

6766811 1.604045 . . . 10.961044 . . . 4s. 584ms.

10000019 17.087945 . . . 15.974742 . . . 6s. 361ms.

28227761 2.361562 . . . 10.153369 . . . 17s. 996ms.

75743411 2.469939 . . . 12.234097 . . . 2m. 24s. 217ms.

Fig. 1 The values ofGq/ log q, q prime, 3 ≤ q ≤ 106, plotted using GNUPLOT, v.5.2, patchlevel 8. The
minimal value is 0.13067 . . . and it is attained at q = 305741; the maximal value is 1.62693 . . . and it is
attained at q = 19. Orange points satisfy v(q) ≤ 0.25; green points satisfy 0.25 < v(q) ≤ 0.5; blue points satisfy
0.5 < v(q) ≤ 0.75; black points satisfy 0.75 < v(q) ≤ 1; red points satisfy v(q) > 1; v(q) is defined in (28)

 2 Page 16 of 22 A. Languasco Res. Number Theory (2021) 7:2

Fig. 2 The values ofG+
q / log q, q prime, 3 ≤ q ≤ 106, plotted using GNUPLOT, v.5.2, patchlevel 8. The

minimal value is 0.451468 . . . and it is attained at q = 918787; the maximal value is 1.42626 . . . and it is
attained at q = 2053. Orange points satisfy v(q) ≤ 0.25; green points satisfy 0.25 < v(q) ≤ 0.5; blue points
satisfy 0.5 < v(q) ≤ 0.75; black points satisfy 0.75 < v(q) ≤ 1; red points satisfy v(q) > 1; v(q) is defined in (28)

Fig. 3 The values ofMq , q prime, 3 ≤ q ≤ 106, plotted using GNUPLOT, v.5.2, patchlevel 8. The minimal value
is 0.3682816 . . . and it is attained at q = 3; the maximal value is 3.085536 . . . and it is attained at q = 991027.
The lines represent the functions c · log log q, with c = 17/20, respectively c = 6/5

A. Languasco Res. Number Theory (2021) 7:2 Page 17 of 22 2

Fig. 4 The values ofM′
q := Mq/ log log q, q prime, 3 ≤ q ≤ 106, plotted using GNUPLOT, v.5.2, patchlevel 8.

The minimal value is 0.7392305 . . . and it is attained at q = 13; the maximal value is 3.9158971 . . . and it is
attained at q = 3 (not represented in the plot).M′

q > 17/20 for every 13 < q ≤ 106;M′
q < 6/5 for every

1531 < q ≤ 106. The lines represent the constant functions c = 17/20 and c = 6/5

Table 5 A few other values ofGq andG+
q ; computed with PARI/GP, v. 2.11.4 and fftw,

v. 3.3.8, with long double precision. Boldfaced results are the ones corresponding to
known instances ofGq < 0. The sum over awas performed using the FFT algorithm on the
Intel Xeonmachine or, for q = 251160191, 212634221, 1139803271, 7079770931,
9109334831, 9854964401 on the CAPRI infrastructure mentioned before. [m =minutes, s =
seconds; precomputations of decimated in frequency S-values performed on the cluster;
their computation time is excluded from this table]

q Gq G+
q time

193894451 0.662110 . . . 9.607705 . . . 4m. 29s.

212634221 1.435141 . . . 11.883540 . . . 4m. 28s.

251160191 1.912681 . . . 11.785574 . . . 2m. 53s.

538906601 1.474911 . . . 12.957235 . . . 11m. 56s.

964477901964477901964477901 −0.182374 . . .−0.182374 . . .−0.182374 . . . 10.40222410.40222410.402224 . . . 23m. 13s.

1139803271 0.768538 . . . 8.313111 . . . 27m. 56s.

1217434451 0.877596 . . . 12.946690 . . . 29m. 16s.

1806830951 0.880396 . . . 11.973128 . . . 47m. 48s.

2488788101 0.424880 . . . 12.248837 . . . 103m. 08s.

2830676081 1.254528 . . . 12.438044 . . . 89m. 59s.

2918643191 0.302793 . . . 12.573983 . . . 87m. 49s.

7079770931 1.544698 . . . 14.301772 . . . 742m. 09s.

910933483191093348319109334831 −0.248739 . . .−0.248739 . . .−0.248739 . . . 12.128187 . . .12.128187 . . .12.128187 . . . 311m. 28s.

985496440198549644019854964401 −0.096465 . . .−0.096465 . . .−0.096465 . . . 12.807752 . . .12.807752 . . .12.807752 . . . 326m. 03s.

 2 Page 18 of 22 A. Languasco Res. Number Theory (2021) 7:2

data onGq andG+
q , see [9]. For performing the needed precomputations of the S-values,

we used the cluster of the Department of Mathematics of the University of Padova; the
cluster setting is described here: http://computing.math.unipd.it/highpc. The minimal
value of Gq/ log q, 3 ≤ q ≤ 106, q prime, is 0.13067 . . . and it is attained at q = 305741,
as expected; the maximal value is 1.62693 . . . and it is attained at q = 19. The minimal
value ofG+

q / log q, 3 ≤ q ≤ 106, q prime, is 0.451468 . . . and it is attained at q = 918787;
the maximal value is 1.42626 . . . and it is attained at q = 2053. The points (q,Gq/ log q)
and (q,G+

q / log q) in Figs. 1 and 2 are colored in orange if v(q) ≤ 0.25 (65.65% of the
cases), in green if 0.25 < v(q) ≤ 0.5 (23.62%), in blue if 0.5 < v(q) ≤ 0.75 (6.29%), in black
if 0.75 < v(q) ≤ 1 (4.21%), and in red if v(q) > 1 (0.23%). The behaviour of Gq is the
expected one since the red strip essentially corresponds with its minimal values, while the
minima of G+

q seem to be less related to v(q); we plan to investigate this phenomenon in
the next future. The complete list of numerical results forGq andG+

q can be downloaded
at the following web address: https://www.math.unipd.it/~languasc/EKcomput/results.

4.5.2 Computations for larger q

For values of q larger than 30 millions the precomputation of T and S, if performed on
a single desktop computer, would require too much time; hence we parallelised them
on the cluster previously mentioned. To check the correctness of such computations it
is possible to use the following formulae; recalling that γ = 0.577215664901 . . . and
ζ ′′(0) = −2.006356455908 . . . , we have that

q−1∑
a=1

S
(a
q

)
= −ζ ′′(0)(q − 1) − log q log(2π) − (log q)2

2
, (29)

q−1∑
a=1

T
(a
q

)
= q

2
(log q)2 + γ q log q. (30)

Formula (29) is an immediate consequence of Theorem 2.5 of Deninger [6] and formula
(30) follows from equation (7.10) of Dilcher [7].
Moreover, for being able to handle very large cases, we used a dedicated fftw interface8

which is able to perform transforms whose length is greater than 231 − 1.
In this way we were able to obtain an independent confirmation of Theorem 4 of [9] get-

tingG964477901 = −0.18237472563711916085 . . . , sincewe computed it using thequadru-
ple precision. At the same time we also got G+

964477901 = 10.40222338242826353694 . . .

To do so we first split the computation, with a precision of 38 digits, of the needed deci-
mated in frequency values of S in 49 subintervals Ij of size 107 each (for T we would need
97 intervals of such a length); the computation time required for each Ij was on average
about 1600 min on one of the cluster’s machines. Then we passed such values to the pro-
grams that performed the FFT-step and got the final results. This last part needed about
23 min (long double precision) or 522 min (quadruple precision) of computation time on
an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, with 160 GB of RAM, running Ubuntu
16.04. A similar procedure let us to get analogous computation times for the long double
precision evaluation ofG1217434451 = 0.877596 . . . andG+

1217434451 = 12.946690 . . .

8It is called the guru64 interface; see the user’s manual of fftw [10].

http://computing.math.unipd.it/highpc
https://www.math.unipd.it/~languasc/EKcomput/results

A. Languasco Res. Number Theory (2021) 7:2 Page 19 of 22 2

We then looked for prime numbers q such that v(q) > v(964477901) = 1.2369344 . . .

and we found that v(2918643191) = 1.2440460 . . . In about 90 min of computation
time for the FFT-step on the same machine mentioned before we got that G2918643191 =
0.302789 . . . and G+

2918643191 = 12.573983 . . . , using the long double precision. In this
case it seems that procedure in a) is much less stable than the one in b) probably because
of the fact that T (x) and ψ(x) are much larger, for x → 0+, than S(x) and log(�(x)).
Computations for further “good” candidates, in the sense that v(q) > 1.18, like q =
193894451, 212634221, 251160191 538906601, 1139803271, 1217434451, 1806830951,
2488788101, 2830676081, 7079770931 were also performed. The computations for these
primes were performed on the cluster previously mentioned.
Moreover, for q = 9109334831we got thatG9109334831 = −0.248739 . . . , thus obtaining

a new minimal value for Gq and a new example of Theorem 4 of [9]; at the same time we
also got G+

9109334831 = 12.128187 . . . The precomputations for this case, performed with
the same strategy used for the smaller primes q mentioned in this paragraph, required
about nine days on the cluster and the FFTs computation required about 1000 min on the
Xeon machine mentioned before (this amount of time also depends on a runtime RAM
swapping phenomenon) or 312 min on the new CAPRI infrastructure of the University
of Padova (“Calcolo ad Alte Prestazioni per la Ricerca e l’Innovazione”; whose CPU is an
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, with 256 cores and equipped with 6TB of
RAM). Such a result was then double-checked onCAPRI using themuch slower algorithm
a). A further new example of Theorem4 of [9] we obtained isG9854964401 = −0.096465 . . .

which required about ten days of time for the precomputations and 326 min for the FFT
stage on CAPRI. As usual the result was double-checked using the approach a).
All the results mentioned in this paragraph are collected in Table 5. The PARI/GP

scripts and the C programs used and the computational results obtained are available at
the following web address: http://www.math.unipd.it/~languasc/EK-comput.html.

5 On the absolute value of the logarithmic derivative of Dirichlet L-functions
Using (10)–(12), (14) and (18)–(19), for every odd prime q we immediately get

Modd
q := max

χ odd

∣∣∣L
′

L
(1,χ)

∣∣∣ = max
χ odd

∣∣∣γ + log(2π) + 1
B1,χ

q−1∑
a=1

χ (a) log
(
�

(a
q
))∣∣∣

and

Meven
q := max

χ �=χ0
χ even

∣∣∣L
′

L
(1,χ)

∣∣∣ = max
χ �=χ0
χ even

∣∣∣γ + log(2π) − 1
2

∑q−1
a=1 χ (a) S(a/q)

∑q−1
a=1 χ (a) log

(
�(a/q)

)
∣∣∣.

Hence we can computeMq = maxχ �=χ0 |L′/L(1,χ)| = max(Modd
q ,Meven

q) using the values
of log � and S obtained for the computation of Gq and G+

q . In Table 2 we give the values
of Mq for every odd prime up to 300 computed, using PARI/GP, with a precision of 30
digits. Using the data in Sect. 4.5.1 we also computed, on the Dell Optiplex machine
previously mentioned, the values of Mq and Mq/ log log q for every odd prime q ≤ 106

and in Figs. 3 and 4 we inserted their scatter plots that largely extend Fig. 1 of Ihara et
al. [17] (please remark that our Mq is denoted as Qm there). Such data in Figs. 3 and 4
also fit, for q sufficiently large, with the estimate Mq ≤ (2 + o (1)) log log q as q tends to

http://www.math.unipd.it/~languasc/EK-comput.html

 2 Page 20 of 22 A. Languasco Res. Number Theory (2021) 7:2

infinity, proved, under the assumption of GRH, in Theorem 3 of [17].We also remark that
Modd

q > Meven
q for 62521 cases over a total number of primes equal to 78497 (79.65%) and

thatMeven
q > Modd

q in the remaining 15976 cases (20.35%).
The complete list of numerical results forMq can be downloaded at the following web

address: https://www.math.unipd.it/~languasc/EKcomput/results.

6 On the generalised Euler constants in arithmetic progressions γk(a, q)
Recall that q is an odd prime. In the case we have to precompute T (a/q) and we also need
ψ(a/q). Hence, as a by-product we can also obtain the values of the generalised Euler
constants γ0(a, q) and γ1(a, q), see Sect. 6.1–6.2. In practice this is done by activating an
optional flag in the main gp script. The computation of γk (a, q) for k ≥ 2 is described in
Sect. 6.3.

6.1 Generalised Euler constants γ0(a, q)

For γ0(a, q) with 1 ≤ a ≤ q − 1, q odd prime, by (4) we have

γ0(a, q) = −1
q

(
log q + ψ(

a
q
)
)
.

Recalling that ψ(1) = −γ , we also have γ0(q, q) = (γ − log q)/q.

6.2 Generalised Euler constants γ1(a, q)

For γ1(a, q) with 1 ≤ a ≤ q − 1, q odd prime, we can use (4) and (7). This way we get

γ1(a, q) = −1
q

((log q)2
2

+ (log q)ψ(
a
q
) + ψ1(

a
q
)
)

= 1
q

(
γ1 − (log q)2

2
− (log q)ψ(

a
q
) − T

(a
q
))
.

Moreover, since ψ(1) = −γ and T (1) = 0, we also have

γ1(q, q) = 1
q

(
γ1 + γ log q − (log q)2

2

)
.

Using the formulae in the previous two paragraphs we computed γ0(a, q) and γ1(a, q) with
q prime, 3 ≤ q ≤ 100, 1 ≤ a ≤ q, in about 4 s of computation time with a precision of 30
digits.
Such results are listed towards the end of the gp-script file that can be downloaded here:

http://www.math.unipd.it/~languasc/EK-comput.html.

6.3 The general case γk (a, q), k ≥ 2

The general case γk (a, q), k ∈ N, k ≥ 2, q ≥ 1, 1 ≤ a ≤ q, do not follow from the data
already computed for the Euler–Kronecker constants since we need information about
the values ofψn(x), for every 2 ≤ n ≤ k . Such a direct computation of bothψn(a/q) and γn
can be easily performed via Eqs. (4)–(5) using the PARI/GP summing function sumnum

paying attention to submit a sufficiently fast convergent sum. For example, to compute
γn, n ∈ N, we used the formulae

γn =
+∞∑
m=1

((logm)n

m
− 1

n + 1

n∑
j=0

(
n + 1
j

)
(logm)j(log

(
1 + 1

m
)
)n+1−j

)
(31)

https://www.math.unipd.it/~languasc/EKcomput/results
http://www.math.unipd.it/~languasc/EK-comput.html

A. Languasco Res. Number Theory (2021) 7:2 Page 21 of 22 2

Table 6 Computation of the generalised Euler constants γn, 0 ≤ n ≤ 30, with a precision of
at least 40 digits; computed with PARI/GP, v. 2.11.4

n γn

0 0.5772156649015328606065120900824024310 . . .

1 −0.0728158454836767248605863758749013191 . . .

2 −0.0096903631928723184845303860352125293 . . .

3 0.0020538344203033458661600465427533842 . . .

4 0.0023253700654673000574681701775260680 . . .

5 0.0007933238173010627017533348774444448 . . .

6 −0.0002387693454301996098724218419080042 . . .

7 −0.0005272895670577510460740975054788582 . . .

8 −0.0003521233538030395096020521650012087 . . .

9 −0.0000343947744180880481779146237982273 . . .

10 0.0002053328149090647946837222892370653 . . .

11 0.0002701844395439035266729020820679556 . . .

12 0.0001672729121051401933535015433411834 . . .

13 −0.0000274638066037601588600076036933551 . . .

14 −0.0002092092620592999458371396973445849 . . .

15 −0.0002834686553202414466429344749971269 . . .

16 −0.0001996968583089697747077845632032403 . . .

17 0.0000262770371099183366994665976305101 . . .

18 0.0003073684081492528265927547519486256 . . .

19 0.0005036054530473556290555964377171600 . . .

20 0.0004663435615115594494005948244335505 . . .

21 0.0001044377697560001158107956743677204 . . .

22 −0.0005415995822039977016551961731741055 . . .

23 −0.0012439620904082457792997415995371658 . . .

24 −0.0015885112789035615619061966115211158 . . .

25 −0.0010745919527384888247242919873531730 . . .

26 0.0006568035186371544315047730033562152 . . .

27 0.0034778369136185382090073595742588115 . . .

28 0.0064000685317006294581072282219458636 . . .

29 0.0073711517704722391344124024235594021 . . .

30 0.0035577288555731609479135377489084026 . . .

and

γn =
+∞∑
m=1

(
(logm)n

(
1
m

− log
(
1+ 1

m

))
− 1

n + 1

n−1∑
j=0

(
n + 1
j

)
(logm)j(log

(
1+ 1

m
)
)n+1−j

)
,

(32)

which both easily follow from (6). We get, in less than 7 s of time and with a precision
of at least 40 digits, the results in Table 6; to be sure about the correctness of such
results we computed them twice using the formulae (31)–(32) and then we compared the
outcomes. These values are in agreement with the data on p. 282 of Bohman–Fröberg [3]
for n = 0, . . . , 20. For larger n’s the formulae in (31)–(32) seem to be not good enough to
get precise results via the sumnum function with this precision level.
To compute ψn(a/q) and, as a consequence, γk (a, q), we can proceed in a similar way

as we did for T (a/q) and γ1(a, q), see the program Gen-Euler-constants.gp here
http://www.math.unipd.it/~languasc/EK-comput.html. Towards the end of this program

http://www.math.unipd.it/~languasc/EK-comput.html

 2 Page 22 of 22 A. Languasco Res. Number Theory (2021) 7:2

file you can find a large list (too long to be included here) of computed values of γk (a, q)
for 1 ≤ k ≤ 20, 1 ≤ q ≤ 9, 1 ≤ a ≤ q, with a precision of 20 digits. In about 50 s of
computation time we replicated Dilcher’s computations, on pp. S21–S24 of [7].

Authors’ contributions
Some of the calculations here described were performed using the University of Padova Strategic Research Infrastructure
Grant 2017: “CAPRI: Calcolo ad Alte Prestazioni per la Ricerca e l’Innovazione”, http://capri.dei.unipd.it. I also wish to thank
Karim Belabas and Bill Allombert (University of Bordeaux) for a couple of key suggestions about libpari and gp2c
and Luca Righi (University of Padova) for his help in developing the quadruple precision versions of the fft-programs, in
designing the parallelised precomputations and in organising the use of the cluster of the Dipartimento di Matematica
“Tullio Levi-Civita”, http://computing.math.unipd.it/highpc, and the use of CAPRI.
Finally, I warmly thank the referee for his/her suggestions and remarks.

Funding Open access funding provided by Universitá degli Studi di Padova within the CRUI-CARE
Agreement.

Received: 13 November 2019 Accepted: 3 September 2020

References
1. Berger, A.: Sur une sommation des quelques séries. Nova Acta Reg. Soc. Sci. Ups. 12, 29–31 (1883)
2. Berndt, B.C.: Ramanujan’s Notebooks. Part I. Springer, Berlin (1985)
3. Bohman, J., Fröberg, C.-E.: The Stieltjes function-definition and properties. Math. Comp. 51, 281–289 (1988)
4. Cohen, H.: Number Theory. Volume I: Tools and Diophantine Equations. Graduate Texts in Mathematics, vol. 239.

Springer, Berlin (2007)
5. Cohen, H.: Number Theory. Volume II: Analytic and Modern Tools. Graduate Texts in Mathematics, vol. 240. Springer,

New York (2007)
6. Deninger, C.: On the analogue of the formula of Chowla and Selberg for real quadratic fields. J. Reine Angew. Math.

351, 171–191 (1984)
7. Dilcher, K.: Generalized Euler constants for arithmetical progressions. Math. Comp. 59, 259–282 (1992)
8. Dilcher, K.: On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function.

Aequationes Math. 48, 55–85 (1994)
9. Ford, K., Luca, F., Moree, P.: Values of the Euler φ-function not divisible by a given odd prime, and the distribution of

Euler-Kronecker constants for cyclotomic fields. Math. Comp. 83, 1447–1476 (2014)
10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). The C library is

available at http://www.fftw.org
11. Gnu Scientific Library, version 2.5, 2018. http://www.gnu.org/software/gsl/
12. Gun, S., Murty, M.R., Rath, P.: Transcendental nature of special values of L-functions. Can. J. Math. 63, 136–152 (2011)
13. Gut, M.: Die Zetafunktion, die Klassenzahl und die Kronecker’sche Grenzformel eines beliebigen Kreiskorpers. Com-

ment. Math. Helv. 1, 160–226 (1929)
14. Kanemitsu, S.: On evaluation of certain limits in closed form. In: de Koninck, Levesque (eds.) Théorie des nombres,

Proceedings of the International Number Theory Conference, Université Laval, July 5–18, 1987, De Gruyter 1989, pp.
459–474

15. Ihara, Y.: The Euler-Kronecker invariants in various families of global fields. In: Ginzburg, V. (ed.) Algebraic Geometry
and Number Theory. In Honor of Vladimir Drinfeld’s 50th Birthday, Progress in Mathematics, vol. 850, pp. 407–451.
Birkhäuser Boston, Cambridge, MA (2006)

16. Ihara, Y.: On “M-functions” closely related to the distribution of L′/L-values. Publ. Res. Inst. Math. Sci. 44, 893–954
(2008)

17. Ihara, Y., Murty, V.K., Shimura, M.: On the logarithmic derivatives of Dirichlet L-functions at s = 1. Acta Arith. 137,
253–276 (2009)

18. Katayama, K.: Class number formulas, Kronecker’s limit formulas, Chowla–Selberg formulas and the generalized
gamma functions. J. Number Theory 133, 2092–2120 (2013)

19. Languasco, A., Moree, P., Saad Eddin, S., Sedunova, A.: Computation of the Kummer ratio of the class number for
prime cyclotomic fields, arxiv (2019), http://arxiv.org/abs/1908.01152

20. Moree, P.: Irregular Behaviour of Class Numbers and Euler-Kronecker Constants of Cyclotomic Fields: The Log Log
Log Devil at Play, Irregularities in the Distribution of Prime Numbers. In: Pintz, J., Rassias, MTh (eds.) From the Era of
Helmut Maier’s Matrix Method and Beyond, pp. 143–163. Berlin, Springer (2018)

21. The PARI Group, PARI/GP version 2.11.4, Bordeaux, 2020. http://pari.math.u-bordeaux.fr/
22. Rader, C.M.: Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://capri.dei.unipd.it
http://computing.math.unipd.it/highpc
http://www.fftw.org
http://www.gnu.org/software/gsl/
http://arxiv.org/abs/1908.01152
http://pari.math.u-bordeaux.fr/

	Efficient computation of the Euler–Kronecker constants of prime cyclotomic fields
	Abstract
	1 Introduction
	2 The Ford–Luca–Moree method
	3 Another method: distinguishing Dirichlet characters' parities
	3.1 Primitive odd Dirichlet character case
	3.2 Primitive even Dirichlet character case
	3.3 On mathfrakGq+: the constant attached to the maximal real subfield of mathbbQ(ζq)
	3.4 Regarding mathfrakGq-mathfrakGq+

	4 Comparison of methods, results and running times
	4.1 Using the FFT algorithm
	4.2 Decimation in frequency for the even Dirichlet characters case
	4.3 Decimation in frequency for the odd Dirichlet characters case
	4.4 Computations trivially summing over a (slower but with more digits available)
	4.5 Computations summing over a via FFT (much faster but with less digits available)
	4.5.1 Data for the scatter plots
	4.5.2 Computations for larger q

	5 On the absolute value of the logarithmic derivative of Dirichlet L-functions
	6 On the generalised Euler constants in arithmetic progressions γk(a,q)
	6.1 Generalised Euler constants γ0(a,q)
	6.2 Generalised Euler constants γ1(a,q)
	6.3 The general case γk(a,q), kge2

	References

