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Abstract. This work is a natural follow-up of the article [5]. Given a group-word
w and a group G, the verbal subgroup w(G) is the one generated by all w-values in
G. The word w is called concise if w(G) is finite whenever the set of w-values in G is
finite. It is an open question whether every word is concise in residually finite groups.
Let w = w(x1, . . . , xk) be a multilinear commutator word, n a positive integer and
q a prime power. In the present article we show that the word [wq, ny] is concise in
residually finite groups (Theorem 1.2) while the word [w, ny] is boundedly concise in
residually finite groups (Theorem 1.1).

Mathematics Subject Classification (2010). 20E26, 20F45, 20F10, 20E10

Keywords. Residually finite groups, Engel words, Concise words

1. Introduction

Let w = w(x1, . . . , xk) be a group-word. Given a group G, we denote by
w(G) the verbal subgroup corresponding to the word w, that is, the sub-
group generated by the set Gw of all values w(g1, . . . , gk), where g1, . . . , gk
are elements of G. The word w is called concise if w(G) is finite whenever
the set of w-values in G is finite. More generally, a word w is called concise
in a class of groups X if w(G) is finite whenever the set of w-values in G
is finite for a group G ∈ X . In the sixties Hall raised the problem whether
all words are concise. In 1989 S. Ivanov [12] (see also [15, p. 439]) solved
the problem in the negative. On the other hand, the problem for residually
finite groups remains open (cf. Segal [18, p. 15] or Jaikin-Zapirain [13]).
In recent years a number of new results with respect to this problem were
obtained (see [1, 10, 8, 5, 6]). The work [5] deals with conciseness of words
of Engel type in residually finite groups. Recall that multilinear commu-
tator words, also known under the name of outer commutator words, are
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precisely the words that can be written in the form of multilinear Lie mono-
mials. The multilinear commutator words were shown to be concise (in the
class of all groups) by J. C. R. Wilson [24]. Set [x, 1y] = [x, y] = x−1y−1xy
and [x, i+1y] = [[x, iy], y] for i ≥ 1. The word [x, ny] is called the nth En-
gel word. One of the results obtained in [5] says that for any multilinear
commutator word w = w(x1, . . . , xk) and any positive integer n the word
[w, ny] is concise in residually finite groups.

We say that a word w is boundedly concise in a class of groups X if for
every integer m there exists a number ν = ν(X , w,m) such that whenever
|Gw| ≤ m for a group G ∈ X it always follows that |w(G)| ≤ ν. Fernandez-
Alcober and Morigi showed that every word which is concise in the class
of all groups is actually boundedly concise [7]. It was conjectured in [8]
that every word which is concise in the class of residually finite groups is
boundedly concise.

One purpose of the present article is to show that the words [w, ny],
where w = w(x1, . . . , xk) is a multilinear commutator word, are boundedly
concise in residually finite groups.

Theorem 1.1. Suppose that w = w(x1, . . . , xk) is a multilinear commutator
word and n is a positive integer. The word [w, ny] is boundedly concise in
residually finite groups.

The other purpose of this paper is to establish conciseness of somewhat
more complicated words.

Theorem 1.2. Suppose that w = w(x1, . . . , xk) is a multilinear commutator
word. For any prime-power q and any positive integer n ≥ 1 the word [wq, ny]
is concise in residually finite groups.

We do not know if the word [wq, ny] in the above theorem is boundedly
concise in residually finite groups. Note that at present, among all words
that are known to be concise in residually finite groups, the only ones whose
bounded conciseness remains unconfirmed are the words [wq, ny] dealt with
in Theorem 1.2.

Another open question related to Theorem 1.2 is whether the theorem
remains valid if q is allowed to be an arbitrary positive integer rather than
a prime-power. It seems that at present we do not have sufficient tools to
handle words of that kind.

The proofs of most of the known results on conciseness of words in
residually finite groups use Zelmanov’s theorem on nilpotency of finitely
generated Lie algebras with a polynomial identity [25]. This is also the
case with both Theorem 1.1 and Theorem 1.2 of this article.
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2. Preliminaries

Throughout the paper we denote by G′ the commutator subgroup of a
group G and by 〈M〉 the subgroup generated by a subset M ⊆ G. In this
section we collect some preliminary results which will be needed for the
proofs of the main theorems.

A proof of the following lemma can for example be found in [5].

Lemma 2.1. Let v be a word and G a group such that the set of v-values
in G is finite with at most m elements. Then the order of the commutator
subgroup v(G)′ is m-bounded.

An important family of multilinear commutator words is formed by the
derived words δk, on 2k variables, which are defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Of course δk(G) = G(k), the k-th term of the derived series of G. We will
need the following well-known results.

Lemma 2.2. [19, Lemma 4.1] Let G be a group and let w be a multilinear
commutator word on k variables. Then each δk-value is a w-value.

Lemma 2.3. [7, Lemma 2.2] Let w be a multilinear commutator word. Then
Gw is symmetric, that is, x ∈ Gw implies that x−1 ∈ Gw.

An element g of a group G is called a (left) Engel element if for any
x ∈ G there exists n = n(g, x) ≥ 1 such that [x,n g] = 1. If n can be chosen
independently of x, then g is a (left) n-Engel element. The next lemma is
a combination of a well-known theorem of Baer [11, Satz III.6.15] and a
result due to Gruenberg [9].

Lemma 2.4. Let G be a group generated by (left) Engel elements.

(1) If G is finite, then it is nilpotent.

(2) If G is soluble, then it is locally nilpotent.

An element g ∈ G is a right Engel element if for each x ∈ G there exists
a positive integer n such that [g, nx] = 1. If n can be chosen independently
of x, then g is a right n-Engel element. The next observation is due to
Heineken (see [17, 12.3.1]).

Lemma 2.5. Let g be a right n-Engel element in a group G. Then g−1 is a
left (n+ 1)-Engel element.
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A proof of the next two results can be found in [5].

Lemma 2.6. Let G = 〈g, t〉 be a group such that [g, nt] = 1. Then the
normal closure of the subgroup 〈g〉 in the group G is generated by the set

{gti |i = 0, . . . , n− 1}.

Lemma 2.7. Let G = U〈t〉 be a group that is a product of a normal subgroup
U and a cyclic subgroup 〈t〉. Assume that U is nilpotent of class c and there
exists a generating set A of U such that [a, nt] = 1 for every a ∈ A. Then G
is nilpotent of (c, n)-bounded class.

For a subgroup A of a group G, an element x ∈ G and a positive integer
n, we write [A, nx] to denote the subgroup generated by all elements [a, nx],
with a ∈ A. The following lemma is due to Casolo.

Lemma 2.8. [3, Lemma 6] Let A be an abelian group, and let x be an
automorphism of A such that [A, nx] = 1 for some n ≥ 1. If x has finite

order q, then [Aq
n−1

, x] = 1.

The following proposition is a consequence of a result from [23] (see [5,
Proposition 1]).

Proposition 2.9. Given positive integers d, q, n and a multilinear commuta-
tor word w, let G be a finite group in which the wq-values are n-Engel. Suppose
that a subgroup H can be generated by d elements which are wq-values. Then
H is nilpotent with (d, q, n, w)-bounded class.

We will also require the next variation on the same theme.

Proposition 2.10. [2, Proposition 14] Given positive integers q, n and a
multilinear commutator word w, let G be a residually finite group in which
the wq-values are n-Engel. Suppose that a subgroup H can be generated by
finitely many Engel elements. Then H is nilpotent.

The following lemma is taken from [21].

Lemma 2.11. [21, Lemma 4.1] Let G be a group generated by d elements
which are n-Engel. Suppose that G is soluble with derived length s. Then G
is nilpotent with (d, n, s)-bounded class.

Lemma 2.12. Let n, d, q be positive integers. Suppose that w = w(x1, . . . , xk)
is a multilinear commutator word and v = [wq, ny]. Let G be a residually finite
group such that v(G) is abelian. Let g1, . . . , gd be wq-values which are right
(n + 1)-Engel. Then for every t ∈ G the subgroup 〈g1, . . . , gd, t〉 is nilpotent
of (d, n, w, q)-bounded class.
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Proof. It is sufficient to prove the result in the case where G is finite. Let
H be the normal closure of the subgroup 〈g1, . . . , gd〉 in 〈g1, . . . , gd, t〉. By
Lemma 2.6, H is generated by at most (n+ 1)d conjugates of the elements
g1, . . . , gd, which are all right (n+ 1)-Engel. Note that, by Lemma 2.5 and
Lemma 2.3, all wq-values are left (n+1)-Engel in G/v(G). As Hv(G)/v(G)
is generated by (n + 1)d elements which are wq-values, by Proposition
2.9 it is nilpotent with (d, n, w, q)-bounded class. Thus H is soluble with
(d, n, w, q)-bounded derived length. As H is generated by at most (n+ 1)d
element which are (n+ 2)-Engel, by applying Lemma 2.11, we obtain that
H is nilpotent with (d, n, w, q)-bounded class. Now the result follows from
Lemma 2.7. �

The next lemma can be seen as an analogue of Theorem 1.1 for soluble
groups. The result holds for any q ≥ 1 and G here is not required to be
residually finite.

Lemma 2.13. [5, Lemma 11] Let m,n, q, s be positive integers. Suppose
that w = w(x1, . . . , xk) is a multilinear commutator word and v = [wq, ny].
Assume that G is a soluble group of derived length s such that v has at most
m values in G. Then the order of v(G) is (v,m, s)-bounded.

A proof of the next lemma can be found in [5].

Lemma 2.14. [5, Lemma 10] Let w = w(x1, x2, . . . , xk) be a word. Let G
be a nilpotent group of class c generated by k elements a1, a2, . . . , ak. Denote
by X the set of all conjugates in G of elements of the form w(ai1, a

i
2, . . . , a

i
k),

where i ranges over the set of all integers, and assume that X is finite with
at most m elements. Then |〈X〉| is (c,m)-bounded.

Corollary 2.15. Let m,n, c be positive integers and K a nilpotent group of
class at most c. Let g ∈ K and denote by Y the set of conjugates of elements
of the form [g, nx], where x ∈ K. Assume that Y is finite with at most m
elements. Then each element in Y has finite order bounded by a function of
c and m.

Proof. Choose t ∈ K. Note that

[g, nt] = [(t−1)gt, n−1t] = [t−g, n−1t]
t,

and so [g, nt] is a value of the word u = [x1,n−1 x2] in the subgroup 〈t−g, t〉
of K. As u((t−g)i, ti) = [g, nti]t

−i ∈ Y , the set of all conjugates in 〈t−g, t〉
of elements of the form u((t−g)i, ti), where i is any integer, has at most m
elements. It follows from Lemma 2.14 that the element [g, nt] has (c,m)-
bounded order, as required. �
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3. Combinatorics of multilinear commutators

Let k, n be positive integers. Throughout this section, w = w(x1, . . . , xk)
denotes an arbitrary but fixed multilinear commutator on k variables while
v denotes the word v = [w, ny].

If U is a set of words and G is a group, then U(G) will denote the
subgroup generated by all values in G of the words u ∈ U .

We denote by I the set of all k-tuples (i1, . . . , ik), where all entries is are
non-negative integers. We will view I as a partially ordered set with the
partial order defined by the rule that

(i1, . . . , ik) ≤ (j1, . . . , jk)

if and only if i1 ≤ j1, . . . , ik ≤ jk.
Given i = (i1, . . . , ik) ∈ I, we write

wi = w(δi1 , . . . , δik)

where the variables appearing in the δij ’s are renamed in such a way that
they are all different. Further, let

Wi+ = {wj| j ∈ I; j > i}.

The following lemmas are Corollary 6 and Proposition 7 in [4].

Lemma 3.1. Let G be a group and i ∈ I. If Wi+(G) = 1, then wi(G) is
abelian.

Lemma 3.2. Let G be a group and i ∈ I. Suppose that aj ∈ G(ij) for
j = 1, . . . , k, and let bs ∈ G(is). If Wi+(G) = 1, then

w(a1, . . . , as−1, bsas, as+1, . . . , ak)

= w(ā1, . . . , ās−1, bs, ās+1, . . . , āk)w(a1, . . . , as−1, as, as+1, . . . , ak),

where āj is a conjugate of aj and moreover āj = aj if ij ≤ is .

Corollary 3.3. Let G be a group and i ∈ I. If Wi+(G) = 1, then every
power of a wi-value is a w-value.

Proof. Let w(a1, . . . , ak) be a wi-value, where each aj is a δij -value. In

particular aj ∈ G(ij). Let is be the maximum among all ij with j = 1, . . . , k
and let l be any integer. Then Lemma 3.2 and induction on l show that:

w(a1, . . . , as−1, as, as+1, . . . , ak)
l = w(a1, . . . , as−1, a

l
s, as+1, . . . , ak).

This proves the result. �
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We say that a word u is an extension of w if u = w(u1, . . . , uk), for
some words u1, . . . , uk. The series constructed in the following proposition
is similar to those appearing in [7, 4, 8]

Proposition 3.4. Let F be the free group on countably many free generators.
Then for each s ≥ k there exist a (k, s)-bounded integer r and a series of length
r

F (s) = U0(F ) ≤ U1(F ) ≤ · · · ≤ Ur(F ) = w(F )

such that:

(1) Each Uj is a finite set of multilinear commutators which are extensions
of w.

(2) Every section Uj+1(F )/Uj(F ) is abelian.

(3) For every j = 1, . . . , r and u ∈ Uj the inclusion (Fu)i ⊆ Fw Uj−1(F )
holds for all integers i, that is, i-th powers of u-values are w-values
modulo Uj−1(F ).

Proof. We set U0 = {δs}. Note that there are only (k, s)-boundedly many
k-tuples i such that wi(F ) 6≤ U0(F ). Choose i such that wi(F ) 6≤ U0(F )
but Wi+(F ) ≤ U0(F ) and set U1 = {wi} ∪ U0. More generally, once
we have defined Uj−1, we choose i such that wi(F ) 6≤ Uj−1(F ) but
Wi+(F ) ≤ Uj−1(F ) and set Uj = {wi} ∪ Uj−1. After a (k, s)-bounded
number of steps r we get i = (0, . . . , 0). So Ur = {w} ∪ Ur−1. As all the
words in Ur−1 are extensions of w we obtain that Ur(F ) = w(F ).

As Wi+(F ) ≤ Uj−1(F ), it follows that

Uj(F )/Uj−1(F ) = wi(F )Uj−1(F )/Uj−1(F )

is a homomorphic image of wi(F )/Wi+(F ). So the quotient group
Uj(F )/Uj−1(F ) is abelian by Lemma 3.1. Moreover, by Corollary 3.3,
powers of wi-values are again w-values modulo Wi+(F ) so the same holds
modulo Uj−1(F ). �

Proposition 3.5. Let U0, . . . , Ur be sets of words as in Proposition 3.4.
Then for every positive integer i there exists an integer ri such that for every
group G, for every j = 1, . . . .r, for every Uj-value g in G and every t ∈ G
we have

[g, nt]
i = ṽτ,

where ṽ is a v-value and τ is the product of ri Uj−1-values.

Proof. Let F be the free group of countable rank with free generators
{y, xη|η = 1, 2, . . . } and let

F (s) = U0(F ) ≤ U1(F ) ≤ · · · ≤ Ur(F ) = w(F ),
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be a series as in Proposition 3.4. Consider an arbitrary j and let u ∈ Uj .
Recall that u-values are w-values and their powers are w-values modulo
Uj−1(F ). So for every integer i we have

ui Uj−1(F ) = ũi Uj−1(F ),

for some w-value ũi in F (which depends on i). As Uj(F )/Uj−1(F ) is
abelian, it follows that

[u, ny]i Uj−1(F ) = [ui, ny]Uj−1(F ) = [ũi, ny]Uj−1(F ).

So
[u, ny]i = [ũi, ny]τi,

where [ũi, ny] is a v-value in F and τi is the product of a finite number
r(i, u) of Uj−1-values. Let ri be the maximum of all r(i, u)’s, for all words
u ∈ Uj and all j = 0, . . . , r. Note that ri depends only on w and i.

Now let G be any group and let g be a u-value for some u ∈ Uj , say
u = u(x1, . . . , xl), so that g = u(g1, . . . , gl) where each gη belongs to G.
Consider the epimorphism ϕ : F → 〈g1, . . . , gl, t〉 defined by ϕ(y) = t,
ϕ(xη) = gη if η ∈ {1, . . . , l}, ϕ(xη) = 1 otherwise. Then [g, nt]i = ϕ([u, ny]i)
has the desired properties, where ṽ = ϕ([ũi, ny]) and τ = ϕ(τi). �

4. Proof of Theorem 1.1

In this section we will prove the first of our main results.

Proof of Theorem 1.1. Let v = [w, n y], where w is a multilinear commutator
word in k variables and n ≥ 1. We need to show that if G is a residually
finite group with at most m values of the word v, then the order of v(G)
is (v,m)-bounded. Evidently, it suffices to establish this result for finite
quotients of G. Therefore, without loss of generality, we assume that G is
finite.

In view of Lemma 2.1 we may pass to the quotient G/v(G)′ and assume
that v(G) is abelian. The image of w(G) in G/v(G) is generated by right
Engel elements. Hence w(G)/v(G) is nilpotent. Since w is a multilinear
commutator on k variables, Lemma 2.2 tells us that every δk-value is a
w-value. It follows that the group G is soluble. Taking into account that
CG(v(G)) has m-bounded index in G, we deduce that G/CG(v(G)) has m-
bounded derived length. Let l be the smallest integer greater than k such
that G(l) centralizes v(G). Note that l is (m, k)-bounded and every δl-value
is also a w-value.

Let x, y ∈ G where y is a δl-value. Using the formula [x, y, y] =
[y−xy, y] and taking into account that y−1 is a w-value, we deduce that
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the commutator [x, n+1 y] is a v-value and therefore, since [v(G), y] = 1, we
have [x, n+2 y] = 1. So each δl-value is (n+ 2)-Engel in G.

Note that any δ2l-value can naturally be written as a δl-value whose
entries are also δl-values. Let g = δl(g1, . . . , g2l) be a δ2l-value, where each
gi is a δl-value. Further, choose an arbitrary element t ∈ G and let H
be the minimal t-invariant subgroup of G containing all these elements
gi. Since the image of t in G/v(G) acts on each gi as an Engel element,
Lemma 2.6 tells us that the image of H in G/v(G) is generated by a (v,m)-
bounded number of δl-values, which are (n+ 2)-Engel. By Proposition 2.9,
Hv(G)/v(G) is nilpotent of (v,m)-bounded class. Since v(G) is abelian, we
conclude that H〈t〉 is soluble of (v,m)-bounded derived length. Lemma 2.13
tells us that v(H〈t〉) is finite with order bounded by an integer R = R(v,m)
depending only on v and m. Since v(G) is abelian of rank at most m, the
order of the subgroup M0 of v(G) generated by all elements of order at
most R is (v,m)-bounded. In particular, as [g, nt] ∈ v(H〈t〉), it follows that
[g, nt] ∈M0. Thus we have found a normal subgroup M0 of (v,m)-bounded
order such that for every δ2l-value g, and every t ∈ G we have that [g, nt] = 1
in the quotient group G/M0.

Consider now the sets of words U0, . . . , Ur defined in Proposition 3.4
and the integers ri defined in Proposition 3.5 with s = 2l. Then for every
integer i, for every j = 1, . . . , r, for every Uj-value g ∈ G and every t ∈ G
we have

[g, nt]
i = ṽτ, (1)

where ṽ is a v-value and τ is the product of ri Uj−1-values.
We will prove by induction on j that

(*) G has a normal subgroup Mj ≤ v(G) of (v,m, j)-bounded order such
that [g, n+1t] ∈Mj for every Uj-value g and every t ∈ G.

In the case j = 0 we have U0 = {δ2l}, and the result has already been
proved.

Assume that j > 0. Without loss of generality we can assume that Mj−1
is trivial and so every Uj−1-value is right (n+ 1)-Engel in G.

Let g be an arbitrary Uj-value in G and let t ∈ G. As in G there are
at most m v-values, equality (1) implies that for some 0 ≤ i1 < i2 ≤ m we
have

[g, nt]
i1 = ṽτ1,

[g, nt]
i2 = ṽτ2,

where τ1 and τ2 are products of at most r1 and r2 Uj−1-values, respectively.
So [g, nt]i2−i1 is the product of f (possibly trivial) Uj−1-values z1, . . . , zf
where

f = 2 ·max{ri | 0 ≤ i ≤ m}.
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By induction, [zi, n+1t] = 1 for each i. Lemma 2.12 guarantees that
the subgroup Z = 〈z1, . . . , zf , t〉 is nilpotent of (v,m)-bounded class. So
there exists a (v,m)-bounded integer s such that [Z, st] = 1. Since the
index of CG(v(G)) in G is finite, conjugation by t is an automorphism of
v(G) ∩ Z of bounded order, say e. In view of Lemma 2.8 we obtain that

[(v(G) ∩ Z)e
s−1

, t] = 1. As v(G) ∩ Z is abelian, it follows that [v(G) ∩ Z, t]
has finite exponent at most es−1, which is (v,m)-bounded. Let N be the
subgroup of v(G) generated by all elements of order at most es−1. Note
that N has (v,m)-bounded order.

If N = 1, then [a, t] = 1 for every a ∈ v(G)∩Z and t ∈ G, that is, v(G)∩Z
is contained in the center of the group G. Moreover, as [g, nt]i2−i1 ∈ Z∩v(G)
and v(G) is abelian, we deduce that

1 = [[g, nt]
i2−i1 , t] = [[g, nt], t]

i2−i1 = [g, n+1t]
i2−i1 .

Let Mj be the subgroup generated by all elements of v(G) whose m!-th
power belongs to N . The above equality shows that [g, n+1t] ∈ Mj for an
arbitrary Uj-value g and an arbitrary t ∈ G. Obviously, the order of Mj is
bounded. This concludes the proof of (*).

Therefore there exists a normal subgroup Mr of G of (v,m)-bounded
order such that in the quotient group G/Mr the equality [g, n+1t] = 1 holds
for every w-value g and for every element t.

Passing to the quotient G/Mr, we can assume that Mr = 1. By Lemma
2.12 the subgroup 〈g, t〉 is nilpotent of (v,m)-bounded class for every g ∈ Gw
and every t ∈ G. In view of Corollary 2.15 we obtain that for every g ∈ Gw
and every t ∈ G the element [g, nt] has (v,m)-bounded order.

Thus, v(G) is an abelian group of rank at most m generated by elements
of (v,m)-bounded order. Hence, the order of v(G) is (v,m)-bounded. The
proof is complete. �

5. Theorem 1.2

In the present section Theorem 1.2 will be proved. We need the following
proposition, which is the main result in [20].

Proposition 5.1. Let G be a residually finite group satisfying some identity.
Suppose G is generated by a normal commutator-closed set of p-elements.
Then G is locally finite.

Recall that a group is locally graded if every non-trivial finitely gener-
ated subgroup has a proper subgroup of finite index. The class of locally
graded groups is fairly large and in particular it contains all residually finite
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groups. Proposition 5.1 can be easily extended to the case of locally graded
groups.

Lemma 5.2. Let G be a locally graded group satisfying some identity. Sup-
pose G is generated by a normal commutator closed set of p-elements for some
prime p. Then G is locally finite.

Proof. Let X be a normal commutator closed set of p-elements which
generate G. It is sufficient to prove that any subgroup generated by finitely
many elements from X is finite. Let K = 〈x1, . . . , xs〉, where x1, . . . , xs ∈ X.
Let R be the finite residual of K. It follows from Proposition 5.1 that K/R
is finite. In particular R is finitely generated. Now it is enough to prove
that R = 1. Assume by contradiction that R is nontrivial. As G is locally
graded, R has a proper subgroup N of finite index. Clearly, N has also
finite index in K, and as R is the finite residual of K it follows that R ≤ N ,
a contradiction. �

Important properties of the verbal subgroup corresponding to a multi-
linear commutator word in a soluble-by-finite group are described in the
following proposition.

Proposition 5.3. [1, Proposition 2.6] Let w be a multilinear commutator
word, and let G be a group having a normal soluble subgroup of finite index e
and derived length s. Then G has a series of subgroups

1 = T1 ≤ T2 ≤ · · · ≤ Tl = w(G)

such that:

(1) All subgroups Ti are normal in G.

(2) The length l of the series is (w, s, e)-bounded.

(3) Every section Ti+1/Ti is abelian and can be generated by w-values in
G/Ti all of whose powers are also w-values, except possibly one section
whose order is finite and (s, e)-bounded.

The next lemma is a version of Theorem 1.2 in the case when the group
G is soluble-by-finite. Note that G here is not required to be residually
finite and q is an arbitrary integer.

Proposition 5.4. Let m,n, q, s, e be positive integers. Suppose that w =
w(x1, . . . , xk) is a multilinear commutator word and v = [wq, ny]. Assume
that G has a normal soluble subgroup of finite index e and derived length s
and suppose that v has at most m values in G. Then the order of v(G) is
(v,m, s, e)-bounded.
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Proof. In view of Lemma 2.1 we may assume that v(G) is abelian. Consider
a series as in Proposition 5.3. We will use induction on the length of this
series, the case w(G) = 1 being trivial. Let L be the last nontrivial term of
the series. By induction we assume that the image of v(G) in G/L has finite
(v,m, s, e)-bounded order. Set K = v(G) ∩ L. It follows that the index of
K in v(G) is (v,m, s, e)-bounded.

Without loss of generality, we may assume that the subgroup L is abelian
and can be generated by w-values in G all of whose powers are also w-values.
Let g ∈ L be one of those w-values and let t ∈ G. Then for every positive
integer i the element [giq, nt] is a v-value. As L is abelian, it follows that
[giq, nt] = [gq, nt]i. Since v has at most m values in G, there are two different
integers i1, i2 with 0 ≤ i1 < i2 ≤ m such that [gq, nt]i1 = [gq, nt]i2 . It follows
that [gq, nt] has order at most m, and consequently [g, nt] has order at most
mq. Let T1 be the subgroup of v(G) generated by all elements of order at
most mq. As v(G) is abelian with at most m generators, T1 has (m, q)-
bounded order. Thus, we can pass to the quotient G/T1 and assume that
[g, nt] = 1 for every generator g of L chosen as above and for every t ∈ G.
Since L is abelian, it follows that [L, nt] = 1 for every t ∈ G. In particular,
[K, nt] = 1 for every t ∈ G.

Since the index of CG(v(G)) in G is m-bounded, the conjugation by an
arbitrary element t ∈ G induces an automorphism of v(G) of m-bounded

order, say r. Lemma 2.8 tells us that [Krn−1

, t] = 1. As K is abelian, it
follows that [K, t] has exponent dividing rn−1, which is (m,n)-bounded. Let
T2 be the subgroup of v(G) generated by all elements of order at most rn−1.
We can pass to the quotient G/T2 and without loss of generality assume
that [K, t] = 1 for every t ∈ G. Therefore K is contained in the center
of the group G. Further, note that K〈tr〉 is a central subgroup of v(G)〈t〉
and has (v,m, s, e)-bounded index in v(G)〈t〉. So by Schur’s Theorem [17,
10.1.4] the derived subgroup of v(G)〈t〉 has (v,m, s, e)-bounded order, and
the bound does not depend on the choice of t. Arguing as before and
factoring out an appropriate subgroup of v(G) of bounded order, we may
assume that [v(G), t] = 1 for every t ∈ G, that is, v(G) is contained in the
center of G.

In particular, [gq, n+1t] = 1 for every g ∈ Gw and every t ∈ G. So every
wq-value is right (n + 1)-Engel in G. Thus, by Lemma 2.5 combined with
Lemma 2.3, every wq-value is left (n+ 2)-Engel.

It follows from Lemma 2.6 that the normal closure U of the subgroup

〈gq〉 in the group 〈gq, t〉 is generated by the set A = {(gq)ti |i = 0, . . . , n}
whose elements are left (n+2)-Engel. The subgroup U has a normal soluble
subgroup N of index at most e and derived length at most s. It follows from
Lemma 2.4 that U/N is nilpotent, and as it has bounded order, in particular
it is soluble of e-bounded derived length. Lemma 2.11 now tells us that U
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is nilpotent with (n, s, e)-bounded class. As [a, n+1t] = 1 for every a ∈ A,
Lemma 2.7 shows that U〈t〉 = 〈gq, t〉 is nilpotent of (v,m, s, e)-bounded
class.

By Corollary 2.15 the element [gq, nt] has (v,m, s, e)-bounded order.
Thus, we have shown that v(G) is an abelian group of rank at most m
generated by elements of (v,m, s, e)-bounded order. Hence, the order of
v(G) is (v,m, s, e)-bounded. The proof is complete. �

Proof of Theorem 1.2. Let G be a residually finite group with finitely many
v-values, where v = [wq, ny], w is multilinear commutator word and q is a
prime power. In view of Lemma 2.1 we may pass to the quotient G/v(G)′

and assume that v(G) is abelian. Since v(G) is finitely generated, it is
clear that elements of finite order in v(G) form a finite normal subgroup.
We pass to the quotient over this subgroup and without loss of generality
assume that v(G) is torsion-free.

Since G is residually finite, we can choose a normal subgroup H of finite
index such that H intersects Gv trivially. Observe that every wq-value in
H is right n-Engel. It follows from Lemmas 2.5 and 2.3 that every wq-value
in H is left (n + 1)-Engel. Let K = wq(H). It follows from Proposition
2.10 that K is locally nilpotent. Moreover, Lemma 2.7 implies that for
each t ∈ G the subgroup 〈K, t〉 is locally nilpotent. Note that G/K need
not be residually finite but by the result in [14] the quotient G/K is locally
graded. We deduce from Lemma 5.2 that w(H)/K is locally finite.

Note that in the group Ḡ = G/w(H) the subgroup H̄ is a soluble normal
subgroup of finite index. Proposition 5.4 guarantees that v(Ḡ) is finite.
Thus, v(G) ∩ w(H) has finite index in v(G).

Using the fact that v(G) is finitely generated and the local finiteness
of w(H)/K we deduce that v(G) ∩ K has finite index in v(G) ∩ w(H).
Thus v(G) ∩K has finite index in v(G). In particular, v(G) ∩K is finitely
generated.

Choose t ∈ G. Since the subgroup 〈K, t〉 is locally nilpotent and v(G)∩K
is finitely generated, there exists an integer s such that [v(G) ∩K, st] = 1.

Since the index of CG(v(G)) in G is finite, the conjugation by t induces
an automorphism of v(G) of finite order, say r. Lemma 2.8 tells us that

[(v(G)∩K)r
s−1

, t] = 1. As v(G)∩K is abelian, it follows that [v(G)∩K, t] has
finite exponent dividing rs−1. Since v(G) is torsion-free, [v(G) ∩K, t] = 1.

We see that (v(G)∩K)〈tr〉 is a central subgroup of finite index in v(G)〈t〉.
So by Schur’s Theorem the commutator subgroup of v(G)〈t〉 is finite. Since
the commutator subgroup is contained in v(G), which is torsion-free, it
follows that [v(G), t] = 1. Since t is arbitrary, v(G) is contained in the
center of G. In particular, if g ∈ Gw and t ∈ G, we have [gq, n+1t] = 1.

Hence, by Lemma 2.12 〈gq, t〉 is nilpotent and so by Corollary 2.15 we
obtain that [gq, nt] has finite order.
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Since [gq, nt] is an arbitrary v-value and v(G) is torsion-free, we conclude
that v(G) = 1. The theorem is established. �
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