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Abstract

We determine the off-shell symmetry algebra and representations of Type IIB superstring theory on 
AdS3 × S3 × T4 with mixed R–R and NS–NS three-form flux. We use these to derive the non-perturbative 
worldsheet S matrix of fundamental excitations of the superstring theory. Our analysis includes both massive 
and massless modes and shows how turning on mixed three-form flux results in an integrable deformation 
of the S matrix of the pure R–R theory.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The investigation of the AdS/CFT correspondence [1–3] using integrability techniques has 
led to a remarkably successful quantitative description of the ’t Hooft, or planar, limit [4] of 
certain classes of dual theories. The two best known examples are type IIB strings on AdS5 × S5

and the dual N = 4 Supersymmetric Yang–Mills (SYM) theory, and type IIA string theory on 
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AdS4 × CP3 and the dual ABJM Chern–Simons theory [5].1 The integrability methods used to 
understand these dual pairs can also be extended to their deformations, orbifolds and orientifolds 
[9,10], suggesting that other classes of examples of the AdS/CFT correspondence may also be 
amenable to this approach.

Superstrings on AdS3 × M7 backgrounds with 16 real supersymmetries [11–15] have been 
shown to be classically integrable [15–17], opening the possibility of understanding such 
AdS3/CFT2 dualities with integrability methods. However, unlike the more supersymmetric 
cases mentioned above, such backgrounds have massive and massless worldsheet excitations in 
the near-plane-wave limit [18]. While the massive excitations could be investigated [15,19–29]
using more conventional integrability methods developed in the context of AdS5/CFT4 and 
AdS4/CFT3,2 massless modes appeared initially to be rather different and difficult to incorporate 
fully into the holographic integrability approach. For example, these massless excitations made 
it difficult to apply directly some of the integrability methods, such as the finite-gap techniques, 
to the non-perturbative theory [15,21]. Initially, progress was made by considering the massless 
modes at the weakly-coupled spin-chain point [31] and in the finite-gap equations of classical 
string theory [32].

Recently, through the analysis of the off-shell symmetry algebra of the theory and its rep-
resentations, a complete non-perturbative worldsheet S matrix of type IIB superstring theory 
AdS3 × S3 × T4 supported by R–R flux was constructed [33,34]. This provided a unified de-
scription of massive and massless worldsheet excitations in an integrable framework, where all 
worldsheet excitations are non-relativistic and so massless scattering can take place. This allows 
one to circumvent the more abstract constructions of massless relativistic S matrices found in the 
integrability literature [35–37].

Unlike the higher-dimensional AdS backgrounds, Type IIB string theory on AdS3 × S3 × T4

has a large moduli space of parameters and can be supported by a mixture of Neveu–Schwarz–
Neveu–Schwarz (NS–NS) and Ramond–Ramond (R–R) three-form fluxes. The relations between 
these backgrounds are governed by U-duality transformations and were analysed extensively in 
Ref. [38]. In particular, type IIB S-duality relates AdS3 × S3 × T4 backgrounds supported by 
different three-form fluxes: the pure R–R flux background can be obtained from the near-horizon 
limit of D1- and D5-branes, while backgrounds supported by mixed three-form fluxes involve the 
near-horizon limit of NS5-branes and fundamental strings in addition to the D1- and D5-branes.

In the bosonic non-linear sigma model, turning on the NS–NS three form flux yields a Wess–
Zumino–Witten (WZW) term in the action [39–41]. In units where the AdS radius is one, the 
R–R three form F and the NS–NS three form H are given by

F = q̃
(
Vol(AdS3) + Vol

(
S3)), H = q

(
Vol(AdS3) + Vol

(
S3)), (1.1)

where the coefficients q and q̃ satisfy

q2 + q̃2 = 1. (1.2)

The parameter q is related to the quantised coupling k of the WZW model

k = q
√

λ, (1.3)

1 See [6–8] for reviews and a more complete list of references.
2 See also [30] for a review and a more extensive list of references.
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where λ is the ’t Hooft coupling, which in turn parameterises the string tension 
√

λ/2π . Note 
that since we have3 0 � q � 1, the coupling 

√
λ satisfies 

√
λ ≥ k.

If the supersymmetric completions of such AdS3 backgrounds are tractable by integrability, 
we will have the exciting possibility of studying families of integrable models with deformation 
parameters related to (some of) the string moduli. Indeed, in Ref. [17] the classical superstring 
action for the mixed-flux AdS3 × S3 × T4 backgrounds was shown to be integrable. This led to 
rapid progress in understanding the role integrability plays in the massive sector of the theory 
[42–46].

In this paper we derive the all-loop asymptotic worldsheet S matrix for all massive and mass-
less fundamental excitations of these AdS3 × S3 × T4 backgrounds supported by a mixture of 
R–R and NS–NS fluxes. We do this by computing the off-shell symmetry algebra of the theory 
and using it to determine the two-body S matrix, which satisfies the Yang–Baxter equation. The 
S matrix is fixed up to some dressing factors which cannot be determined by symmetries alone. 
These are however constrained by crossing invariance, and we write down their crossing equa-
tions. Our approach allows us to treat the massive and massless modes on the same footing and 
shows that the approach used in Refs. [33,34] to tackle massless modes is likely to be applicable 
to more general AdS/CFT integrability settings where such modes frequently appear [15,47,48]. 
When restricted to the massive sector, we find that our S matrix reduces to the one presented in 
Refs. [43,44].

This paper is structured as follows. In Section 2 we derive the off-shell symmetry algebra of 
the theory from the type IIB superstring action for AdS3 × S3 × T4 with mixed flux in light-cone 
gauge, including the exact form of the off-shell central charges. In Section 3 we present the 
representations of the symmetry algebra A that enter the S matrix construction and then deform 
these representations in a way that produces the shortening condition for these exact charges. In 
Section 4 we use these representations to construct an invariant S matrix for the all worldsheet 
excitations of the mixed-flux theories, up to a number of dressing factors which we constrain by 
crossing symmetry. We conclude in Section 5. We relegate some more technical details to the 
appendices.

2. Superstrings on AdS3 × S3 × T4 with mixed three-form flux and their off-shell 
symmetry algebra

In this section we write down the fully gauge-fixed action for type IIB superstring theory on 
AdS3 × S3 × T4 with mixed flux, determine the classical charges of this theory and compute the 
off-shell Poisson-bracket algebra A that the charges satisfy.

The coset formulation [17] of type IIB superstring theory on AdS3 × S3 × T4 with mixed 
flux is useful in investigating classical integrability of these theories. However, the coset action 
which can be obtained from a Green–Schwarz action [49] by fully fixing the kappa symmetry 
to the so-called coset kappa gauge [15], does not allow for a straightforward computation of 
the Poisson brackets of the symmetries. This is because the massless fermions have non-standard 
kinetic terms in the bosonic light-cone gauge. Instead, one needs to work directly with the Green–
Schwarz action [49] in the BMN light-cone kappa gauge. While expressions for this action are 
known explicitly up to quartic order in fermions [50], we will only work up to quadratic order in 
fermions and so can use the actions written down in Ref. [51].

3 The theory is well defined and supersymmetric when |q| � 1. For simplicity, we restrict to positive q . A parity 
transformation on the worldsheet amounts to q → −q , and can be used to consider −1 � q < 0.
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We begin by writing down expressions for the Killing spinors of this background in Sec-
tion 2.1. In Section 2.2 we gauge fix the bosonic action of the theory and write down the explicit 
expressions for the non-dynamical fields. In Section 2.3 we use the Killing spinors to write down 
explicitly the superstring action in a mixed-flux background and impose the BMN light-cone 
kappa gauge. In Section 2.4 we write down the Noether currents for the charges that generate the 
algebra A and compute the Poisson brackets of these charges off shell in order to determine the 
classical algebra.

2.1. Killing spinors of IIB supergravity on AdS3 × S3 × T4 with mixed flux

Expressions for Killing spinors on Sn and AdSn can be found in Refs. [52,53] in a particular 
coordinate system. Throughout this paper we will find it useful to work in a different coordi-
nate system — one that is well suited for expansion around the BMN ground state — and so 
present the expressions for Killing spinors in this coordinate system below. Explicitly, we take 
the AdS3 × S3 × T4 metric to be

ds2 = ds2
AdS3

+ ds2
S3 + dXidXi, (2.1)

where

ds2
S3 = +

(
1 − y2

3+y2
4

4

1 + y2
3+y2

4
4

)2

dφ2 +
(

1

1 + y2
3+y2

4
4

)2(
dy2

3 + dy2
4

)
(2.2)

and

ds2
AdS3 = −

(
1 + z2

1+z2
2

4

1 − z2
1+z2

2
4

)2

dt2 +
(

1

1 − z2
1+z2

2
4

)2(
dz2

1 + dz2
2

)
, (2.3)

where we have indicated the transverse coordinate on AdS3 and S3 by z1, z2 and y3, y4, respec-
tively. In these coordinates the NS–NS B field is given by

B = q(
1 − z2

4

)2 (z1 dz2 ∧ dt + z2 dt ∧ dz1) + q(
1 + y2

4

)2 (y3 dy4 ∧ dφ + y4 dφ ∧ dy3).

(2.4)

This leads to the NS–NS three form4

H = dB = 2q
1 + z2

4

(1 − z2

4 )3
dt ∧ dz1 ∧ dz2 + 2q

1 − y2

4

(1 + y2

4 )3
dy3 ∧ dy4 ∧ dφ. (2.5)

Hence, the R–R and NS–NS three forms have tangent space components

F012 = F345 = 2q̃, H012 = H345 = 2q. (2.6)

The Killing spinor equations take the form(
δIJ

(
∂m + 1

4
/ωm

)
+ 1

48
σ 3

IJ /F/Em + 1

8
σ 1

IJ /Hm

)
ε̃J = 0, (2.7)

4 Note we normalise the volume form of Eq. (1.1) to yield an additional factor of 2, in such a way as to precisely match 
the conventions of Ref. [42].
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where /Em = EA
mΓA are the vielbeins and ωm is the spin-connection, whose explicit components 

can be found in Ref. [34] and the fluxes can be written as

/Hm ≡ HmABΓ AB = 2q
(
/Em

(
Γ 012 + Γ 345)+ (

Γ 012 + Γ 345)/Em

)
, (2.8)

and

/F ≡ FABCΓ ABC = 12q̃
(
Γ 012 + Γ 345). (2.9)

As shown in Appendix B, the solutions of the Killing spinor equations (2.7) are

ε̃1 =
√

1 + q̃

2
ε1 −

√
1 − q̃

2
ε2, ε̃2 =

√
1 + q̃

2
ε2 +

√
1 − q̃

2
ε1, (2.10)

where εI are the pure R–R background Killing spinors found in Ref. [34]. Recall that these latter 
spinors can be written as

ε1 = M̂ε1
0, ε2 = M̌ε2

0, (2.11)

where εI
0 are constant (9 + 1)-dimensional Majorana–Weyl spinors, which further satisfy

1

2

(
1 + Γ 012345)εI = 1

2

(
1 + Γ 012345)εI

0 = 0. (2.12)

Explicit expressions for the matrices M̂ and M̌ are given in Eqs. (B.7) and (B.8). We will find it 
useful to separate the dependence of these matrices on the transverse and light-cone coordinates 
of AdS3 × S3

M̂(zi, yi, t, φ) = M0(zi, yi)Mt (t, φ),

M̌(zi, yi, t, φ) = M−1
0 (zi, yi)M

−1
t (t, φ). (2.13)

Below, so as not to over-crowd the notation, we will drop the explicit coordinate dependence and 
simply write M̂ , M̌ , M±1

t and M±1
0 .

Before ending this subsection we would like to use the matrices M̂ and M̌ to define tangent-
space rotations M̂B

A and M̌B
A which will be useful in the following subsections

M̂−1Γ AM̂ = Γ BM̂B
A, M̌−1Γ AM̌ = Γ BM̌B

A. (2.14)

These matrices are block diagonal,

M̂ = M̂AdS3 ⊕ M̂S3 ⊕ 14, M̌ = M̌AdS3 ⊕ M̌S3 ⊕ 14, (2.15)

and explicit expressions for them can be found in Appendix C of [34].

2.2. The mixed-flux bosonic action and gauge-fixing

In this subsection we write down the bosonic action of the mixed-flux background and im-
pose uniform light-cone gauge [54]. The gauge-fixing determines the non-dynamical fields (x±
and γ αβ ) in terms of the physical degrees of freedom. Below, when computing the symmetry 
algebra A, we will work to quartic order in transverse bosons and quadratic order in transverse 
fermions. As a result, we will only need explicit expressions for the non-dynamical fields up to 
zeroth order in fermions and quadratic order in transverse bosons. The bosonic action is5

5 We suppress the overall string tension 
√

λ/2π in the worldsheet action, and only reinsert it in the final result for the 
central charge.
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SB = −1

2

+r∫
−r

dσ
(
γ αβGmn∂αXm∂βXn + εαβBmn∂αXm∂βXn

)
, (2.16)

where the range of the worldsheet coordinate σ is given by −r < σ < +r .
Introducing the canonical momenta

pm = −γ 00GMNẊN − γ 01GMN

′
XN − BMN

′
XN (2.17)

the action can be written in the first order form

SB =
+r∫

−r

dσ

(
pmẊm + γ 01

γ 00
C1 + 1

2γ 00
C2

)
, (2.18)

with

C1 = pm

′
Xm (2.19)

and

C2 = Gmnpmpn + Gmn

′
Xm

′
Xn + 2GmnBnkpm

′
XK + GmnBmkBnl

′
Xk

′
Xl. (2.20)

The constraints C1 = 0 and C2 = 0 are equivalent to the Virasoro constraints

γ 11GmnẊ
m

′
Xn + γ 01GmnẊ

mẊn = 0, γ 00GmnẊ
mẊn − γ 11Gmn

′
Xm

′
Xn = 0. (2.21)

We want to fix uniform light-cone gauge in which x+ = τ and p− is constant, where x± =
1
2 (φ ± t).6 Solving the Virasoro constraints we find7

ẋ− = −1

4

(
ż2 + ẏ2 + ẋ2 + ′

z2 + ′
y2 + ′

x2 − z2 − y2),
′
x− = −1

2
(ż · ′

z + ẏ · ′
y + ẋ · ′

x). (2.22)

Using the x± equations of motion we further find that to quadratic order in fields the worldsheet 
metric is

γ 00 = −1 + z2 − y2

2
− q

2
εij (zi

′
zj − yi

′
yj ),

γ 01 = q

2
εij (zi

′
zj − yi

′
yj ),

γ 11 = +1 + z2 − y2

2
− q

2
εij (zi

′
zj − yi

′
yj ). (2.23)

Note in particular that for q 
= 0, the worldsheet metric is non-diagonal already at quadratic order 
in fields.

6 Uniform light-cone gauge can be fixed without resorting to the first-order formalism, cf. Ref. [42]. There a generalised 
gauge choice is fixed by first performing a T-duality transformation, as done for AdS5 × S5 superstrings in Ref. [55].

7 We have checked that these equations are consistent using the equations of motion for the transverse bosons.
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In the limit where the light-cone momentum

P− =
+r∫

−r

dσ p− = 4r (2.24)

is infinite, the worldsheet becomes decompactified and we are effectively working on a plane 
rather than a cylinder. In the transverse directions we impose periodic boundary conditions 
xi(−r) = xi(+r) and xi(−r) = xi(+r). Physical closed string states should further be periodic 
in the light-cone direction x−. This leads to the condition

�x− = x−(+r) − x−(−r) =
+r∫

−r

dσ
′
x− = 0. (2.25)

The quantity �x− is directly related to the worldsheet momentum

pws = −
+r∫

−r

dσ
(
pi

′
xi + pi

′
xi
)= 2�x−. (2.26)

Here we have assumed that there is no winding along the φ direction. For non-zero winding 
number w ∈ Z, the level-matching condition takes the form

pws = 2πw. (2.27)

However, in the rest of this section we will work at zero winding. Moreover, we are mainly 
interested in studying the symmetries of the worldsheet theory when we go off shell by allowing 
the worldsheet momentum to take arbitrary values.

2.3. The Green–Schwarz action

In this subsection we describe the gauge-fixing of the Green–Schwarz action in a form that 
will be particularly suited to computing A. This computation requires the action to quadratic 
order in fermions, and we give explicit expressions for the action to this order in Appendix C. 
The Green–Schwarz action for type IIB superstrings in a general supergravity background was 
written down in terms of superfields in Ref. [49] and explicit expressions in an expansion of 
fermions up to quadratic [51] and quartic [50] order are known. The Lagrangian can be written 
as

L = LB + Lkin + LWZ, (2.28)

with the bosonic part, LB , discussed in the previous subsection. The remaining part of the 
Lagrangian is split into two terms: a term dependent on the worldsheet metric, Lkin, and the 
Wess–Zumino term LWZ. Up to quadratic order in fermions these are given by [51]

Lkin = −iγ αβ ¯̃
θI/Eα

(
δIJ Dβ + 1

48
σ IJ

3 /F/Eβ + 1

8
σ IJ

1 /Hβ

)
θ̃J , (2.29)

LWZ = +iεαβ ¯̃
θI σ

IJ
1 /Eα

(
δJKDβ + 1

σJK
3 /F/Eβ + 1

σJK
1 /Hβ

)
θ̃K . (2.30)
48 8
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It is helpful to perform a field re-definition of the fermions so as to end up with fermionic co-
ordinates that are best adapted to the underlying integrable structure. It is easiest to understand 
this field redefinition as a combination of two transformations of the fermionic coordinates θ̃I

appearing above. Initially we “rotate” the fermions along the I–J index

θ̃1 =
√

1 + q̃

2
θ1 −

√
1 − q̃

2
θ2, θ̃2 =

√
1 + q̃

2
θ2 +

√
1 − q̃

2
θ1. (2.31)

This ensures that the kinetic term in the Lagrangian is diagonal in terms of the θI . There are now 
two different field redefinitions that are useful to consider for different purposes. The first is to 
redefine

θ1 = M̂
1 − Γ 012345

2
ϑ−

1 + M̂
1 + Γ 012345

2
ϑ+

1 ,

θ2 = M̌
1 − Γ 012345

2
ϑ−

2 + M̌
1 + Γ 012345

2
ϑ+

2 . (2.32)

In the resulting action, before kappa-gauge fixing, supersymmetry is realised as a shift on the 
fermions ϑ−

I . The expression for the resulting Lagrangian is written down in Eqs. (C.3) and (C.4). 
However, we will be interested in a (suitably) kappa gauge fixed action, and so we will need to 
perform a different field redefinition to the one above. It turns out that a particular kappa gauge 
simplifies the computation of the algebra A. This kappa gauge is the so-called BMN light-cone 
kappa gauge for fermions that are neutral with respect to the two U(1)’s associated to shifts 
along t and φ [56]. As a result, in addition to (2.31), the second redefinition of the fermions we 
perform is

θ1 = 1

2

(
1 + Γ 012345)M0χ1 + 1

2

(
1 − Γ 012345)M0η1,

θ2 = 1

2

(
1 + Γ 012345)M−1

0 χ2 + 1

2

(
1 − Γ 012345)M−1

0 η2, (2.33)

where the matrix M0 and its inverse are defined in Eq. (B.7). The fermions ηI and χI correspond 
to the massive and massless fermions, respectively, of the integrable S matrix.

Having defined fermions that are neutral under shifts in t and φ, we impose the BMN light-
cone kappa gauge

Γ +ηI = 0, Γ +χI = 0, Γ ± = 1

2

(
Γ 5 ± Γ 0). (2.34)

The resulting light-cone kappa gauged-fixed action is written down in Eqs. (C.7) and (C.8).

2.4. The algebra A

In this section we give the algebra A of (super)charges which commute with the Hamiltonian. 
As in the case of pure R–R flux the algebra itself is given by8

A = psu(1|1)4
c.e. ⊕ so(4), (2.35)

8 We use the direct sum to denote the sum of the subalgebras as vector spaces. This does not imply that they commute 
with each other as will be clear when we write down the full commutation relations in Section 3.
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where the subscript c.e. denotes a four-fold central extension. In Section 2.4.1 we first give the 
supercurrents jI that generate the algebra. In Section 2.4.2 we consider the Poisson brackets 
of these supercurrents, see that we produce the expected Hamiltonian and compute the central 
charges of the algebra. In particular we find that the off-shell central charges are simple rescalings 
of the ones of the pure R–R theory. Throughout this section we give explicit results in the main 
text to quadratic order in fields, with higher order results given in the appendices. We use a 
“hybrid” expansion [57] in which we expand order by order in fermions and transverse bosons, 
but keep all factors of the light-cone coordinate x− exact. This allows us to compute the central 
charges exactly in momentum.

2.4.1. Supercurrents
The supercurrents of the algebra A to quadratic order are given by

jτ
1 = ie+x−γ 34((

żi − ẏi
)
γiη1 + (

zi + yi
)
γ 34γiη1 − ( ′

zi − ′
yi
)
γi(q̃η2 + qη1)

+ ẋiγ 34τ̃iχ1 − ′
xiγ 34τ̃i (q̃χ2 + qχ1)

)
,

j τ
2 = ie−x−γ 34((

żi − ẏi
)
γiη2 − (

zi + yi
)
γ 34γiη2 − ( ′

zi − ′
yi
)
γi(q̃η1 − qη2)

+ ẋiγ 34τ̃iχ2 − ′
xiγ 34τ̃i (q̃χ1 − qχ2)

)
,

jσ
1 = ie+x−γ 34((

żi − ẏi
)
γi(q̃η2 + qη1) + (

zi + yi
)
γ 34γi(q̃η2 + qη1) − ( ′

zi − ′
yi
)
γiη1

+ ẋiγ 34τ̃i (q̃χ2 + qχ1) − ′
xiγ 34τ̃iχ1

)
,

jσ
2 = ie−x−γ 34((

żi − ẏi
)
γi(q̃η1 − qη2) − (

zi + yi
)
γ 34γi(q̃η1 − qη2) − ( ′

zi − ′
yi
)
γiη2

+ ẋiγ 34τ̃i (q̃χ1 − qχ2) − ′
xiγ 34τ̃iχ2

)
. (2.36)

In Appendix D we give expressions for the supercurrents to cubic order in transverse bosons and 
leading order in fermions. These expressions for the supercurrents are given in terms of fermions 
written as bispinors of so(4)1 ⊕ so(4)2 ∈ so(1, 9),9 corresponding to rotations of (zi, yi) and xi , 
as defined in Ref. [34]. The Lagrangian of the theory does not preserve so(4)1, which is in fact 
broken to so(2)2 corresponding to separate rotations of zi and yi . Nevertheless we will find it 
useful to write expression in these notation. On the other hand, so(4)2 is unbroken, and is part 
of A in Eq. (2.35). Our conventions for the gamma matrices in these expressions are given in 
Eq. (A.4).

We have checked that the currents given in Eq. (2.36) and Appendix D satisfy the conservation 
equation

∂τ j
τ
I + ∂σ jσ

I = 0, (2.37)

to the required order using the equations of motion arising from the Lagrangian computed in the 
previous section.

9 We have suppressed the corresponding spinor indices. These can easily be put back in; as defined in Appendix A

the fermions carry spinor indices (ηI )ȧḃ and (χI )ab , while the so(4) gamma matrices carry indices (γi )
a
ḃ

, (τ̃i )ȧb and 
(γ 34)ab .
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2.4.2. The algebra from the supercurrents
To find the off-shell symmetry algebra we need to compute Poisson brackets of the supercur-

rents, which in turn requires the Poisson brackets of the fermions. Explicit expressions for these 
are given in Appendix E. For the Poisson brackets of two charges with the same index we find10∫

dσ dσ ′{jτ
1 (σ ), jτ

1

(
σ ′)}

PB = + i

2

∫
dσ(H+M)εε,∫

dσ dσ ′{jτ
2 (σ ), jτ

2

(
σ ′)}

PB = + i

2

∫
dσ(H−M)εε. (2.38)

The bosonic Hamiltonian density H is given to quadratic order by

H = 1

2

(
pip

i + pip
i + ′

zi
′
zi + ′

yi
′
yi + ′

xi
′
xi + ziz

i + yiy
i − 2qεij (zi

′
zj + yi

′
yj )
)
. (2.39)

The full quartic bosonic Hamiltonian can be found in Eq. (D.1). The “mass” term M is given by

M = −εij (pizj + piyj ) − q
(
pi

′
zi + pi

′
yi + pi

′
xi
)
. (2.40)

It is important to note that this expression does not receive any corrections at quartic order.
Calculating the Poisson bracket between the two charges with different index we find∫

dσ dσ ′{jτ
1 (σ ), jτ

2

(
σ ′)}

PB

= − iq̃

2

∫
dσ

[
∂σ

(
e2γ 34x−)− 1

8
e2γ 34x−

∂σ

[(
z2 − y2)2]

− ∂σ

(
e2γ 34x− z2 − y2

2
− ziyj

(
1 + z2 − y2

4

)
γij

)]
γ 34εε. (2.41)

The total derivative on the second line integrates to zero. The second term in the first line can 
be integrated by parts. The result is of higher order in transverse bosons and can therefore be 
dropped. Hence, we are left with∫

dσ dσ ′{jτ
1 (σ ), jτ

2

(
σ ′)}

PB = − iq̃

2
e+2γ 34x−(−∞)

(
e+γ 34pws − 1

)
γ 34εε (2.42)

Hence, we find the central charge

C = iζ

2

q̃
√

λ

2π

(
eipws − 1

)
(2.43)

where we have reintroduced the string tension, and where ζ = exp(2ix−(−∞)). This is related 
to the central charge of the pure R–R theory by a rescaling by q̃ . It is precisely the fact that C
depends non-linearly on the momentum which imposes a non-local coproduct on the symmetry 
algebra, which we will discuss in Section 3.3.3.

3. Symmetry algebra and representations

We have seen that the off-shell symmetry algebra A takes the same form in the mixed-flux 
case as it did in the pure-R–R one. Furthermore, in the limit where the NS–NS flux vanishes, we 

10 Here ε symbols carry appropriate spinor indices, which we have suppressed for brevity.
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expect to recover precisely the same representations that were described in detail in Ref. [34]. 
For this reason, we begin in Section 3.1 by briefly recalling the representations arising in the 
pure-R–R case. Then in Sections 3.2 and 3.3, we describe how these are deformed, first in the 
near-plane-wave limit, and then in the full theory. We will see that the deformation can be com-
pletely understood by suitably altering the representation parameters of the pure-R–R case. As 
we proceed we will encounter, and comment on, several new features of the mixed-flux back-
ground.

3.1. Overview of the pure-R–R symmetries and representations

The off-shell symmetry algebra A for type IIB superstrings on the pure-R–R AdS3 × S3 × T4

background has been found in Ref. [34]. There it was found that A is a central extension of 
psu(1|1)4 ⊕ so(4)2. Writing down the supercharges in components we have{

QL
ȧ ,QLḃ

}= 1

2
δȧ

ḃ(H + M),
{
QL

ȧ ,QRḃ

}= δȧ
ḃC,{

QRȧ ,QR
ḃ
}= 1

2
δȧ

ḃ(H − M),
{
QLȧ ,QR

ḃ
}= δȧ

ḃC. (3.1)

The supercharges carry labels “L” and “R” corresponding to the left and right labels in the su-
perisometry algebra su(1, 1|2)L ⊕ su(1, 1|2)R. We also decompose

so(4)2 = su(2)• ⊕ su(2)◦, (3.2)

so that the massive fermions are charged only under su(2)•. The lower and upper dotted in-
dices correspond to the fundamental and anti-fundamental representation of su(2)• respectively. 
Finally, the central charges on the one-particle representation are

C = + ih

2

(
e+ip − 1

)
, C = − ih

2

(
e−ip − 1

)
,

H =
√

m2 + 4h2 sin

(
p

2

)2

, M = m, (3.3)

where p is the momentum, m is an angular momentum taking values ±1, 0 and h is the cou-
pling constant, which is expected to be a so-far undetermined function of the ’t Hooft coupling, 
h = h(λ).

3.1.1. Exact representations for the pure-R–R theory
The fundamental excitations of the theory are 8 bosons and 8 fermions, which arrange them-

selves into three irreducible representations of A. The 4 + 4 massive excitations transform in 
two irreducible representations, that we call “left” and “right” and depict in Fig. 1. The remain-
ing modes transform in the “massless” representation of A, depicted in Fig. 2. All these are short 
representations of psu(1|1)4

c.e., i.e. they satisfy the shortening condition

H2 = M2 + 4CC. (3.4)

The left representation is four-dimensional and has m = +1. It is an irreducible representation 
of psu(1|1)4

c.e. and it owes its name to the fact that on shell only the left supercharges act non-
trivially on its module. We can write it as
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Fig. 1. The massive excitations and their transformation properties under A. The left and right panel depict the left and 
right representations respectively. The bosons ZL,R are excitations on AdS3 while Y L,R are excitations on S3. Note that 
the massive fermions ηLȧ , ηRȧ are charged under su(2)• . The tensor products below each diagram indicate how each 
representation can be obtained from the short fundamental representations of su(1|1)2

c.e. introduced in Section 3.1.3.

QL
ȧ
∣∣Y L

p

〉= aL
p

∣∣ηLȧ
p

〉
, QL

ȧ
∣∣ηLḃ

p

〉= εȧḃaL
p

∣∣ZL
p

〉
,

QLȧ

∣∣ZL
p

〉= −εȧḃā
L
p

∣∣ηLḃ
p

〉
, QLȧ

∣∣ηLḃ
p

〉= δȧ
ḃāL

p

∣∣Y L
p

〉
,

QRȧ

∣∣ZL
p

〉= −εȧḃb
L
p

∣∣ηLḃ
p

〉
, QRȧ

∣∣ηLḃ
p

〉= δȧ
ḃbL

p

∣∣Y L
p

〉
,

QR
ȧ
∣∣Y L

p

〉= b̄L
p

∣∣ηLȧ
p

〉
, QR

ȧ
∣∣ηLḃ

p

〉= εȧḃb̄L
p

∣∣ZL
p

〉
. (3.5)

The representation coefficients aL
p and bL

p are such as to reproduce the central charges (3.3)
and bL

p vanishes on shell, i.e., bL
p=0 = 0. We will comment more on the aL

p and bL
p in the next 

subsection.
The right representation is also four-dimensional and has m = −1. It is given by

QL
ȧ
∣∣ZR

p

〉= bR
p

∣∣ηRȧ
p

〉
, QL

ȧ
∣∣ηRḃ

p

〉= −εȧḃbR
p

∣∣Y R
p

〉
,

QLȧ

∣∣Y R
p

〉= εȧḃb̄
R
p

∣∣ηRḃ
p

〉
, QLȧ

∣∣ηRḃ
p

〉= δȧ
ḃb̄R

p

∣∣ZR
p

〉
,

QRȧ

∣∣Y R
p

〉= εȧḃa
R
p

∣∣ηRḃ
p

〉
, QRȧ

∣∣ηRḃ
p

〉= δȧ
ḃaR

p

∣∣ZR
p

〉
,

QR
ȧ
∣∣ZR

p

〉= āR
p

∣∣ηRȧ
p

〉
, QR

ȧ
∣∣ηRḃ

p

〉= −εȧḃāR
p

∣∣Y R
p

〉
. (3.6)

Note that this right representation follows from the previous one by relabelling every-
where L ↔ R. We will refer to this Z2 symmetry as left–right symmetry (LR symmetry).

Finally, the massless representation is eight-dimensional with four bosons T ȧa and four 
fermions χa , χ̃a . This representation has m = 0 and is given by two irreducible representations 
of psu(1|1)4

c.e. that form a doublet under su(2)◦ ⊂ so(4)2. Each of these psu(1|1)4
c.e. represen-

tations can equivalently be obtained by using the left or right representations above and taking 
a massless limit of the coefficients aL

p, bL
p or aR

p , bR
p . This is due to the fact that the left and 

right representations become isomorphic in the massless limit. For definiteness, let us take the 
representation coefficients to be inherited from the left representation. Then we have

QL
ȧ
∣∣T ḃa

p

〉= εȧḃaL
p

∣∣χ̃a
p

〉
, QL

ȧ
∣∣χa

p

〉= aL
p

∣∣T ȧa
p

〉
,

QLȧ

∣∣χ̃a
p

〉= −εȧḃā
L
p

∣∣T ḃa
p

〉
, QLȧ

∣∣T ḃa
p

〉= δȧ
ḃāL

p

∣∣χa
p

〉
,

QRȧ

∣∣T ḃa
〉= δȧ

ḃbL
∣∣χa

〉
, QRȧ

∣∣χ̃a
〉= −ε ˙bL

∣∣T ḃa
〉
,
p p p p ȧb p p
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Fig. 2. The massless excitations transform in two irreducible representations of psu(1|1)4
c.e. , which form a doublet un-

der su(2)◦ . Each of these representation can equivalently be taken to be the massless limit of a left or a right representation 
with a fermionic highest-weight state. For definiteness, here we take both of them to be given by left representations. 
Below each psu(1|1)4

c.e. diagram we indicate how each representation can be obtained from one of two (left or right) 
isomorphic tensor products of fundamental su(1|1)2

c.e. representations, see Section 3.1.3.

QR
ȧ
∣∣χa

p

〉= b̄L
p

∣∣T ȧa
p

〉
, QR

ȧ
∣∣T ḃa

p

〉= εȧḃb̄L
p

∣∣χ̃a
p

〉
. (3.7)

Note also that the highest weight state of the massless representations are fermionic, namely |χa〉, 
in contrast with the ones of the left and right representations, that are |Y L〉 and |ZR〉 respectively.

3.1.2. Representation coefficients for the pure R–R theory
In absence of NS–NS fluxes, the representations coefficients are

aL
p = aR

p = ηpeiξ , āL
p = āR

p = ηpe−ip/2e−iξ ,

bL
p = bR

p = − ηp

x−
p

e−ip/2eiξ , b̄L
p = b̄R

p = − ηp

x+
p

e−iξ , (3.8)

with

ηp = eip/4

√
ih

2

(
x−
p − x+

p

)
. (3.9)

The equality of the left- and right-representation coefficients in Eq. (3.8) indicates that left–right 
symmetry is particularly simple in the pure-R–R case. The Zhukovski variables x±

p are mass-
dependent:

x+
p

x−
p

= eip, x+
p + 1

x+
p

− x−
p − 1

x−
p

= 2i|m|
h

. (3.10)

In fact, the dependence of the representation parameters on m = ±1, 0 is entirely encoded in x±
p . 

The phase ξ is irrelevant for the one-particle representation, but is instrumental for defining the 
two-particle representation, i.e. in order to define a non-trivial coproduct [34], similarly to what 
happens for AdS5 × S5 strings [58].

Let us note that while the excitations in the left and right modules have kinematic properties 
similar to the one of AdS5 × S5 excitations, new features emerge in the massless case. When 
m = 0, the Zhukovski variables satisfy the additional constraint

x+
p = 1

− . (3.11)

xp
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Moreover, the vanishing of M imposes that the representation coefficients satisfy∣∣aL,R
p

∣∣2 = ∣∣bL,R
p

∣∣2, at m = 0, (3.12)

and the dispersion relation becomes non-analytic,

E(p) = 2h

∣∣∣∣sin

(
p

2

)∣∣∣∣. (3.13)

This last property can be physically interpreted as an indication that left- and right-movers on the 
worldsheet should be treated as two different species of particles, similarly to what is done in the 
relativistic case.

3.1.3. Representations of su(1|1)2
c.e.

It is useful to introduce the su(1|1)2
c.e. algebra, whose anticommutation relations are

{QL,QL} = 1

2
(H + M), {QL,QR} = C,

{QR,QR} = 1

2
(H − M), {QL,QR} = C. (3.14)

The short representations of this algebra are two-dimensional, and have been studied in Ref. [22]. 
Once again, we have a left representation �L

QL
∣∣φL

p

〉= aL
p

∣∣ψL
p

〉
, QL

∣∣ψL
p

〉= āL
p

∣∣φL
p

〉
,

QR
∣∣ψL

p

〉= bL
p

∣∣φL
p

〉
, QR

∣∣φL
p

〉= b̄L
p

∣∣ψL
p

〉
. (3.15)

Similarly, we can consider a right representation �R

QL
∣∣ψR

p

〉= bR
p

∣∣φR
p

〉
, QL

∣∣φR
p

〉= b̄R
p

∣∣ψR
p

〉
,

QR
∣∣φR

p

〉= aR
p

∣∣ψR
p

〉
, QR

∣∣ψR
p

〉= āR
p

∣∣φR
p

〉
. (3.16)

Two more representations, which we denote by ̃�L and ̃�R, can be obtained from the ones above 
by exchanging bosons with fermions.

As discussed in detail in Ref. [27], appropriate tensor products of pairs of these representations 
are isomorphic to the psu(1|1)4

c.e. representations discussed above. In fact, a similar structure will 
be present also in the mixed-flux case, and we will exploit it to write down the S matrix.

Let us sketch these isomorphisms. Firstly, note that we can obtain psu(1|1)4
c.e. supercharges 

from those of the tensor products of su(1|1)2
c.e. by setting11

Q 1
L = QL ⊗ 1, Q 2

L = 1 ⊗ QL, QR1 = QR ⊗ 1, QR2 = 1 ⊗ QR, (3.17)

and similarly for their conjugates. Clearly then �L ⊗ �L, �R ⊗ �R, etc. are representations of 
psu(1|1)4

c.e.. What is more, one can check that the left representation given in Eq. (3.5) is iso-
morphic to �L ⊗�L, while the right one (3.6) is isomorphic to �R ⊗�R. As for the two psu(1|1)4

c.e.
modules that constitute the massless A module, each of them can be given either by �L ⊗ �̃L or 
by �R ⊗ �̃R. This is consistent with the equivalence of left and right representations when m = 0, 
and with the fact that the massless modules have fermionic highest-weight states.

The details of the isomorphisms outlined above are reviewed in Appendix F.

11 This tensor-product structure is similar to the one of psu(2|2)2
c.e. , which is the off-shell symmetry algebra of

AdS5 × S5 superstrings [6,7].
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3.2. Representations in the near-plane-wave limit for the mixed-flux theory

The near-plane-wave limit of the symmetry algebra [18,59] can be read off the explicit ex-
pression of the supercurrents (2.36), truncated at quadratic order in the fields. This yields a 
representation on the fields and conjugate momenta X, P , η, η̄, and so on. For our purposes 
it is more useful to work in terms of the excitations. To this end, we introduce creation and 
annihilation operators in the usual way. For the bosons, we schematically write

a†(p) ≈
∫

dσ√
ω(p,m,q)

(
ω(p,m,q)X − iP

)
e+ipσ ,

a(p) ≈
∫

dσ√
ω(p,m,q)

(
ω(p,m,q)X + iP

)
e−ipσ . (3.18)

This representation depends on the energy ω(p, m, q), which is function of the mass m and on 
the flux parameter q . For the fermions we write

d†(p) ≈
∫

dσ√
ω(p,m,q)

(
f (p,m,q)η − ig(p,m,q)η̄

)
e+ipσ ,

d(p) ≈
∫

dσ√
ω(p,m,q)

(
f (p,m,q)η + ig(p,m,q)η̄

)
e−ipσ , (3.19)

where we introduced the wave-function parameters f (p, m, q) and g(p, m, q). The creation op-
erators generate the space of fundamental excitations, which as we reviewed consists of sixteen 
particles∣∣ZL,R〉= a

†
L,Rz|0〉, ∣∣Y L,R〉= a

†
L,Ry |0〉, ∣∣ηLȧ

〉= dL
ȧ†|0〉, ∣∣ηR

ȧ

〉= d
†
Rȧ|0〉,∣∣T ȧa

〉= aȧa†|0〉, ∣∣χa
〉= da†|0〉, ∣∣χ̃a

〉= d̃a†|0〉. (3.20)

In Appendix G we extract the supercharges from the supercurrents constructed in Section 2, 
which indeed gives an algebra of the form (3.1). Furthermore, we rewrite them in terms of oscil-
lators, obtaining

QL
ȧ =

∫
dp
[(

dL
ȧ†aLy + εȧḃa

†
LzdLḃ

)
f L

p + (
a

†
RydR

ȧ + εȧḃ d
†
Rḃ

aRz

)
gR

p

+ (
εȧḃd̃a†aḃa + aȧa†da

)
f̃p

]
,

QRȧ =
∫

dp
[(

d
†
RȧaRy − εȧḃ a

†
Rzd

ḃ
R

)
f R

p + (
a

†
LydLȧ − εȧḃdL

ḃ†aLz

)
gL

p

+ (
da†aȧa − εȧḃa

ḃa†d̃a

)
g̃p

]
, (3.21)

and similarly for their conjugates. Note that we suppressed the dependence of f L,R
p , f̃p and gL,R

p , 
g̃p on m and q for ease of notation.

This representation is indeed of the form (3.5)–(3.7) up to fixing the representation coeffi-
cients, and closely resembles near-plane wave limit of the pure-R–R one discussed in Ref. [34]. 
Note however that wave-function parameters are f L

p 
= f R
p and gL

p 
= gR
p , unlike what happened 

in the pure-R–R case. This is reflected by the values of the central charges

M =
{

qp + 1 left,
qp − 1 right,
qp massless,

H =
⎧⎨⎩
√

q̃2 + (p + q)2 left,√
q̃2 + (p − q)2 right,√

2

(3.22)
p massless,
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while the off-shell central charges take the same form for all representations, and are both real

C = C = − q̃

2
p. (3.23)

This is consistent with the tree-level analysis of symmetries in the massive sector [43] and with 
the leading-order massless dispersion relation [18].

3.2.1. Representation coefficients
The wave-function parameters play the role of representation coefficients. In fact, compar-

ing (3.21) with the pure-R–R representations of Section 3.1, we see that the real parameter fp

should be the near-plane-wave limit of ap and āp , while gp should be the limit of bp and b̄p . 
Therefore, the precise form of fp and gp will be important in order to fix ap , āp , bp and b̄p in 
the full theory.

Let us begin from the massive representations. We have

ωL
p =

√
q̃2 + (p + q)2, f L

p =
√

1 + qp + ωL
p

2
, gL

p = − q̃p

2f L
p

,

ωR
p =

√
q̃2 + (p − q)2, f R

p =
√

1 − qp + ωR
p

2
, gR

p = − q̃p

2f R
p

, (3.24)

where the energy is related to the representation parameters by ωp = f 2
p + g2

p . The different sign 
in front of the p-linear terms is explained by the necessity of reproducing (3.22), and ultimately is 
a consequence of the fact that the NS–NS flux breaks parity invariance. In particular, this implies 
that LR symmetry will require a non-trivial map of the representation coefficients too.

For the massless representation we have

ω̃p ≡ ω̃L
p =

√
p2, f̃p ≡ f̃ L

p =
√

qp + ω̃p

2
, g̃p ≡ g̃L

p = − q̃p

2f̃p

. (3.25)

This may appear troubling: we have argued in Section 3.1 that at least at q = 0 massless modes 
can be equivalently obtained from the left or right representation, and indeed this seems to be 
the case looking at (3.22). However, the values of f̃p and g̃p come from a massless limit of f L

p

and gL
p . To see how this is inessential, let us define new massless parameters, now as limit of f R

p

and gR
p :

ω̃R
p =

√
p2, f̃ R

p =
√

−qp + ω̃R
p

2
, g̃R

p = − q̃p

2f̃ R
p

. (3.26)

Let us rescale e.g. the massless fermion creation operators in (3.21) as

da → f̃ L
p

g̃R
p

da, da† → f̃ L
p

g̃R
p

da†,

d̃a → − g̃R
p

f̃ L
p

d̃a, d̃a† → − g̃R
p

f̃ L
p

d̃a†, (3.27)

and note the identities
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(
f̃ L

p

)2 = (
g̃R

p

)2
,

(
g̃L

p

)2 = (
f̃ R

p

)2
, f̃ L

p f̃ R
p = g̃L

pg̃R
p . (3.28)

In this way we replace everywhere the parameters f̃p ≡ f̃ L
p and g̃p ≡ g̃L

p with f̃ R
p and g̃R

p , and in 
fact obtain the massless limit of a right representation. In summary, also in the mixed-flux case 
the massless representation can equivalently be described as a left or a right one, at least in the 
near-plane-wave limit. For definiteness, we will adopt the first choice.

3.3. Exact representations for the mixed-flux theory

When we go beyond the near-plane-wave limit, we expect the representations discussed in 
the previous subsection to be deformed. In particular, as we have computed in Section 2.4.2, the 
off-shell central charges will be non-linear functions of the worldsheet momentum,

C = + ih

2

(
e+i P − 1

)
, C = − ih

2

(
e−i P − 1

)
. (3.29)

Here we introduce the mixed-flux coupling constant h = h(λ, q̃), which enters as an overall 
normalisation of the central charge. In the worldsheet calculation we found that for large 

√
λ

h(λ, q̃) ≈ q̃
√

λ

2π
. (3.30)

However, this relation might receive perturbative and non-perturbative corrections in 1/
√

λ, anal-
ogously to what happens for string theory in AdS4 × CP3 [60,61].12 Note that we have absorbed 
a factor q̃ into the definition of h. This makes (3.29) take the same form as in the pure R–R case, 
but differs from the conventions of previous literature.

In our discussion of pure-R–R representations at the start of this section the eigenvalue of M
was a real number. However, from the string theory computations of Section 2.4.1 we see that 
it should be a function of the total worldsheet momentum P. This may appear surprising as we 
expect M to be a quantised angular momentum on a physical state. As we detail in Section 3.3.4, 
this can be achieved if we take

M = m + −kP, (3.31)

where m = ±1, 0 depending on which representation we are considering, as in Eq. (3.22). The 
constant −k is related to the WZW level k by

−k = k

2π
= q

√
λ

2π
. (3.32)

In this way, using the shortening condition (3.4), we conclude that the all-loop dispersion relation 
is

E(p) =
√

(m + −kp)2 + 4h2 sin2
(

p

2

)
, (3.33)

which for massive particles confirms what was found by the analysis of giant magnons [44–46]. 
It is interesting to note that in the massless case the dispersion relation is non-analytic also at 
−k 
= 0. To make this evident, we write

12 Recently a proposal has been made for the all-loop λ-dependence of the function h(λ) in AdS4 × CP3 [62].
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E(p) = −k|p|
√

1 + 4h2 sin2(
p
2 )

−k2p2
, at m = 0, (3.34)

where the square root is analytic when p is in the vicinity of the real line.

3.3.1. Exact representation parameters
We now want to construct three irreducible representations of A that in the limit q → 0 coin-

cide with the pure-R–R ones which we recalled in Section 3.1, and whose near-plane-wave limit 
is the one we computed in Section 3.2. To this end, it will be sufficient to suitably deform the 
representation coefficients of Eqs. (3.5)–(3.7). In particular, we define

aL
p = ηL

peiξ , āL
p = ηL

pe−ip/2e−iξ , bL
p = − ηL

p

x−
Lp

e−ip/2eiξ , b̄L
p = − ηL

p

x+
Lp

e−iξ ,

aR
p = ηR

peiξ , āR
p = ηR

pe−ip/2e−iξ , bR
p = − ηR

p

x−
Rp

e−ip/2eiξ , b̄R
p = − ηR

p

x+
Rp

e−iξ ,

(3.35)

with

ηL
p = eip/4

√
ih

2

(
x−

Lp − x+
Lp

)
, ηR

p = eip/4

√
ih

2

(
x−

Rp − x+
Rp

)
. (3.36)

Here we have introduced two sets of Zhukovski variables x±
Lp and x±

Rp , which satisfy

x+
Lp

x−
Lp

= eip, x+
Lp + 1

x+
Lp

− x−
Lp − 1

x−
Lp

= 2i(|m| + −kp)

h
,

x+
Rp

x−
Rp

= eip, x+
Rp + 1

x+
Rp

− x−
Rp − 1

x−
Rp

= 2i(|m| − −kp)

h
. (3.37)

These equations can be solved by setting

x±
Lp =

(|m| + −kp) +
√

(|m| + −kp)2 + 4h2 sin2(
p
2 )

2h sin(
p
2 )

e± i
2 p,

x±
Rp =

(|m| − −kp) +
√

(|m| − −kp)2 + 4h2 sin2(
p
2 )

2h sin(
p
2 )

e± i
2 p, (3.38)

as usual with m = ±1, 0. In this way, we reproduce the central charges (3.29)–(3.31) and the 
dispersion relation (3.33). It is interesting to note that for the massless modes it is no longer true 
that x+ = 1/x−. This identity is replaced by

x±
Lp = 1

x∓
Rp

at m = 0. (3.39)

Owing to this equality, we can check the following identities for the representation coefficients 
of the massless representation

aL
pāR

p = bL
pb̄R

p = aR
p āL

p = bR
pb̄L

p,
∣∣aL

p

∣∣2 = ∣∣bR
p

∣∣2, ∣∣aR
p

∣∣2 = ∣∣bL
p

∣∣2, (3.40)

that generalise (3.12). Note that it is not true that e.g. |aL
p |2 = |bL

p|2 at −k 
= 0.
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3.3.2. Equivalent representations for massless modes
In Eq. (3.7) we chose to describe all massless modes by the massless limit of left representa-

tions. In terms of su(1|1)2
c.e. representations, this corresponds to describing the massless module 

as (�L ⊗ �̃L)⊕2. As discussed in detail in Ref. [34] and as we briefly recalled, equivalent alter-
native description are (�R ⊗ �̃R)⊕2, (�L ⊗ �̃L) ⊕ (�R ⊗ �̃R) or (�R ⊗ �̃R) ⊕ (�L ⊗ �̃L); all these 
representations are isomorphic in the massless limit at −k = 0. Here we expect the same to hold, 
as a priori there is no reason to prefer any of these choices to describe massless modes.

Let us perform the redefinition

∣∣χa
〉→ aL

p

bR
p

∣∣χa
〉
,

∣∣χ̃a
〉→ −bR

p

aL
p

∣∣χ̃a
〉
. (3.41)

Using (3.40) in the defining relations (3.7) we find that, as a result, the representation (�L ⊗
�̃L)⊕2 is indeed isomorphic to (�R ⊗ �̃R)⊕2. We can then obtain the mixed cases (�L ⊗ �̃L) ⊕
(�R ⊗ �̃R) or (�R ⊗ �̃R) ⊕ (�L ⊗ �̃L) by performing the rescaling only on |χ2〉, |χ̃2〉 or |χ1〉, |χ̃1〉
respectively. It is also interesting to note that the rescaling coefficient is just a sign:

aL
p

bR
p

= −sgn

[
sin

(
p

2

)]
. (3.42)

3.3.3. Two-particle representations
So far, we have described the action of the symmetries on the one-particle representations. In 

order to construct the S matrix, we will also need to consider two-particle representations. These 
can be constructed by introducing a deformed coproduct [63], or equivalently by appropriately 
picking the phase ξ in the one-particle representations [58], cf. Eq. (3.35). A way to find such a 
coproduct is to require that the central charges C,C vanish on physical two-particle states [58], 
so that they should be

C(12) = + ih

2

(
e+iP − 1

)
, C(12) = − ih

2

(
e−iP − 1

)
, (3.43)

where P is the total worldsheet momentum,

P|p1, . . . , pn〉 = (p1 + · · · + pn)|p1, . . . , pn〉. (3.44)

This then enforces, in the same way as in Refs. [27,34], that the supercharges are13

QL
ȧ
(12)(p, q) = QL

ȧ(p1) ⊗ 1 + e+ i
2 pΣ ⊗ QL

ȧ (q),

QRȧ(12)(p, q) = QRȧ(p) ⊗ 1 + e+ i
2 pΣ ⊗ QRȧ(q),

QLȧ(12)(p, q) = QLȧ (p) ⊗ 1 + e− i
2 pΣ ⊗ QLȧ (q),

QR
ȧ
(12)(p, q) = QR

ȧ (p) ⊗ 1 + e− i
2 pΣ ⊗ QR

ȧ (q), (3.45)

where Σ is the fermion-sign matrix taking values +1, −1 on bosons and fermions respectively. 
Consequently, on the central charges we have

13 It is possible to pick different coproduct that are related to this one by a momentum-dependent change of the two-
particle basis, as discussed in Ref. [27].
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C(12)(p, q) = C(p) ⊗ 1 + e+ip1 ⊗ C(q),

C(12)(p, q) = C(p) ⊗ 1 + e−ip1 ⊗ C(q), (3.46)

consistently with (3.43), and finally

H(12) = H ⊗ 1 + 1 ⊗ H, M(12) = M ⊗ 1 + 1 ⊗ M. (3.47)

Similarly, the coproduct is trivial for the so(4)2 generators.

3.3.4. A momentum-dependent mass?
It may appear unnatural that M depends on the momentum of the excitations, since in the 

algebra of superisometries it had the interpretation of an angular momentum. The resolution of 
this apparent contradiction is recalling that M is supposed to be identified with an isometry for a 
physical state, i.e., on shell. This means that we should expect M to be integer-valued only when 
applied to states that satisfy the level-matching condition (2.27). Let us rewrite (3.31) in term of 
the integer level of the WZW term in the string action k = 2π−k ∈ Z. For a one-particle state we 
then have

M = m1 + k

2π
P. (3.48)

A physical state has worldsheet momentum 2πw, where w ∈ Z is the winding number. This 
shows that M is integer on shell even for states with non-trivial winding.

Note that linearity in the worldsheet momentum P is crucial to extend this property to any 
physical multi-particle state. In fact in the off-shell algebra the coproduct of M (3.47) remains 
undeformed, so that its action on a multi-particle states is just additive. Any non-linear function 
in Eq. (3.48) would have prevented us from rewriting the eigenvalue of M on a multiparticle state 
in terms of the total worldsheet momentum, which is what is quantised on shell.14

The quantisation of the angular momentum M explains why we have introduced the two 
coupling constants h and −k, even though they are both proportional to the string tension 

√
λ/2π

to leading order at strong coupling. According to the above discussion, the quantisation of the 
momentum-dependent term in the mass follows from the fact that the WZW coupling is integer 
valued, a relation that should not get any quantum corrections. The coupling h, on the other hand, 
appears as an overall factor in front of the central charge C and is expected to receive corrections 
at higher orders in 1/

√
λ.

It is also interesting to see how the momentum-dependence is compatible with the other sym-
metries of the theory. In Ref. [34] it was argued that M could not receive quantum correction 
without spoiling either the su(2)◦ symmetry or crossing invariance. Let us see how that argu-
ment works in the present setting. Invariance under su(2)◦ dictates that M takes the same value 
on both psu(1|1)4

c.e. massless modules. If we write M in a block-matrix form, with each block 
corresponding to a psu(1|1)4

c.e. module,15 we see that this indeed the case:

M =

⎛⎜⎜⎝
+1 + −kp 0 0 0

0 −1 + −kp 0 0
0 0 −kp 0
0 0 0 −kp

⎞⎟⎟⎠ . (3.49)

14 It is interesting to note that the winding number affects the “mass” of excitations, so that e.g. when k = w = 1 a 
right-moving excitation has the kinematics of a massless one. It would be interesting to understand if this has deeper 
implications, which may require analysing in more detail the complete bound-state spectrum of the theory.
15 Respectively, �L ⊗ �L, �R ⊗ �R and the massless doublet (�L ⊗ �̃L)⊕2.



590 T. Lloyd et al. / Nuclear Physics B 891 (2015) 570–612
On the other hand, under a crossing transformation it should be possible to map every irreducible 
module to some other one for which M has an opposite sign. We can see that at −k = 0 this means 
sending right to left movers, and massless modes to themselves. If we perform the crossing 
transformation at −k > 0 we must account for the fact that p flips sign, i.e.

M =

⎛⎜⎜⎝
+1 − −kp 0 0 0

0 −1 − −kp 0 0
0 0 −−kp 0
0 0 0 −−kp

⎞⎟⎟⎠ , at crossed p. (3.50)

This shows that indeed even at −k > 0 one can implement crossing by swapping left and right 
movers and sending the massless modes to themselves. The condition for this to be possible is 
that the eigenvalue of M in the massless sector is an odd function of P. This in particular rules 
out a constant correction to the mass.

These general considerations on the momentum-dependence of M fit together nicely with our 
analysis of the x−-dependence in the supercharges, which constrains the non-local coproduct to 
take the form discussed in Section 3.3.3. They are also consistent with the form of the dispersion 
relation found by studying semi-classical solutions [44–46] and with the analysis of the possible 
spectrum of bound states performed in Ref. [44].

4. S matrix

Our discussion of the S matrix of fundamental particles for the mixed-flux backgrounds will 
be based on the one done in Ref. [34] in the pure-R–R case. As we have seen, the particle content 
is the same in the two theories, and the symmetry representations of our case of interest are a 
deformation of the ones of [34].

We define the S matrix as the operator S(12)(p, q) acting on the two-particle Hilbert space and 
relating in- and out-states as

S(12)(p, q)
∣∣X (in)

p Y(in)
q

〉= ∣∣Y(out)
q X (out)

p

〉
, (4.1)

where X (in)
p , Y(in)

q are two arbitrary excitations and X (out)
p , Y(out)

q are the product of their scat-
tering — possibly a linear combination of several two-particle states. For this S matrix to be 
physical and for the underlying theory to be integrable, several requirements should be satisfied. 
The most obvious is the invariance of S under all symmetries of the theory

S(12)(p, q)Q(12)(p, q) = Q(12)(q,p)S(12)(p, q). (4.2)

Here Q(12)(p, q) is any (super)charge of A, acting on a two-particle state. Note that we impose 
commutation with the off-shell symmetries as S(12)(p, q) acts on particles that generally do not 
satisfy the level-matching condition. Next, we require braiding and physical unitarity, which 
read

S(12)(q,p)S(12)(p, q) = 1,
(
S(12)(p, q)

)†S(12)(p, q) = 1. (4.3)

We also impose the Yang–Baxter equation on the three-particle Hilbert space

S(12)(q, r)S(23)(p, r)S(12)(p, q) = S(23)(p, q)S(12)(p, r)S(23)(q, r), (4.4)

which ensures that factorised scattering can be consistently defined. We will find that the Yang–
Baxter equation automatically holds for the psu(1|1)4

c.e. invariant S matrices, signalling that this 
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is a good candidate to be an integrable theory. Lastly, there is the requirement of invariance under 
the crossing transformation. We will come back to this in Section 4.3.

We will start by briefly recalling the form of some invariant matrices which will then be useful 
to restrict the form of S by means of (4.3). Since our charges take the same form as the ones in 
Ref. [34] up to suitably redefining the Zhukovski variables x±, we expect the final result to be 
closely related to the one found there. We will see that this is the case, even if there are some 
new features here. Imposing (4.3) will fix the S matrix up to some dressing factors, which we 
will discuss in Section 4.3.

4.1. Invariant su(1|1)2
c.e. S matrices

We start by considering operators that are invariant under su(1|1)2
c.e., which were first studied 

in Ref. [22]. Since in this case the representations are much smaller, the resulting S matrices 
are more manageable. Additionally, if we can define e.g. a matrix SLL which commutes with 
all the generators of the two-particle �L representation, we are guaranteed that SLL ⊗ SLL will 
commute with all generators of the two-particle �L ⊗ �L one, which is one of the psu(1|1)4

c.e.
representations which will be of interest to us. Clearly the same holds for all representations we 
need to consider.

4.1.1. Same target-space-chirality scattering
Let us start from the case where we have two excitations in the representation �L. In [22] it 

was found that the invariant S matrix takes the form

SLL
∣∣φL

pφL
q

〉= ALL
pq

∣∣φL
q φL

p

〉
, SLL

∣∣φL
pψL

q

〉= BLL
pq

∣∣ψL
q φL

p

〉+ CLL
pq

∣∣φL
q ψL

p

〉
,

SLL
∣∣ψL

pψL
q

〉= F LL
pq

∣∣ψL
q ψL

p

〉
, SLL

∣∣ψL
pφL

q

〉= DLL
pq

∣∣φL
q ψL

p

〉+ ELL
pq

∣∣ψL
q φL

p

〉
. (4.5)

This is the case also for us, with the ratio of the S-matrix elements being a function of x±
Lp and 

x±
L q , and of course the overall normalisation being arbitrary. We collect the expressions for these 

coefficients in Appendix H. It is interesting to note that those expressions depend on h, −k and m

only through the Zhukovski variables.
From (4.5) we can immediately find the invariant S matrix describing the scattering of e.g.

two particles that both are in the �̃L representation. In fact, since the representations �L and ̃�L

are related by a change of basis, we will have that

S L̃L̃ = ΠgO−1ΠgSLLO, (4.6)

where O = O−1 = σ1 ⊗ σ1 is the change-of-basis matrix and Πg is the graded permutation that 
accounts for the fermion signs. Up to suitably choosing O, this also yields S L̃L and SLL̃.16

The case of SRR, i.e. both particles being in the representation �R, is similar and in fact follows 
from the previous one by left–right symmetry. All we have to do is relabel everywhere L → R 
and introduce new scattering elements ARR

pq , BRR
pq , etc. These will now depend on x±

Rp and x±
R q . 

In a similar way, S R̃R, SRR̃ and SR̃R̃ can be easily found.

16 The explicit form of the matrices SL̃L̃, SL̃L and SLL̃ is also spelled out in Ref. [34].
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4.1.2. Opposite target-space-chirality scattering
Let us now consider the case where one particle transforms in �L and one transforms in �R. 

At −k = 0, such a set-up gives a scattering process of the form [22,27]

S
∣∣X L

p YR
q

〉= Tpq

∣∣YR
q X L

p

〉+ Rpq

∣∣YL
q XR

p

〉
, (4.7)

where Tpq is the transmission amplitude and Rpq is the reflection one. Then, imposing LR-
symmetry and unitarity requires either amplitude to vanish, and comparison with perturbative 
calculations sets Rpq = 0.

On the other hand, when −k 
= 0 we have that

H
∣∣X L

p YR
q

〉 
= H
∣∣XR

p YL
q

〉
, (4.8)

which immediately sets Rpq = 0 when imposing (4.2) for the Hamiltonian. This is an additional 
a posteriori validation of the choice of a pure-transmission S matrix originally made in Ref. [22].

We can therefore write down the matrix SLR as

SLR
∣∣φL

pφR
q

〉= ALR
pq

∣∣φR
q φL

p

〉+ BLR
pq

∣∣ψR
q ψL

p

〉
, SLR

∣∣φL
pψR

q

〉= CLR
pq

∣∣ψR
q φL

p

〉
,

SLR
∣∣ψL

pψR
q

〉= ELR
pq

∣∣ψR
q ψL

p

〉+ F LR
pq

∣∣φR
q φL

p

〉
, SLR

∣∣ψL
pφR

q

〉= DLR
pq

∣∣φR
q ψL

p

〉
. (4.9)

Here the S-matrix elements are functions of x±
Lp and x±

Rq , see Appendix H. Just as before, we 

can use changes of basis such as (4.6) to write down SLR̃, S L̃R and S L̃R̃.
Finally, we can once more use LR symmetry to write down SRL, S R̃L, SRL̃ and SR̃L̃. Due to 

the relabelling L ↔ R, these will all depend on x±
Rp and x±

L q .

4.1.3. Tensor-product structure
As we have argued, the tensor product of any pair of S matrices invariant under su(1|1)2

c.e.
will yield a psu(1|1)4

c.e.-invariant S matrix in a given representation. Let us consider a pair of 
particles, transforming in two psu(1|1)4

c.e. representations which we call �X1 ⊗�Y1 and �X2 ⊗�Y2

respectively, where Xi and Yi could be L, R, L̃ or R̃. The psu(1|1)4
c.e.-invariant S matrix will be 

given by the tensor product of two su(1|1)2
c.e. S matrices. In formulae,

Spsu(1|1)4 = SX1X2
su(1|1)2 ⊗̌SY1Y2

su(1|1)2 . (4.10)

Note that we have to account for signs arising from swapping fermionic excitations. To this end 
we define the graded tensor product ⊗̌, given by

(A ⊗̌B)
KK ′,LL′
MM ′,NN ′ = (−1)εM ′εN+εLεK ′AKL

MNBK ′L′
M ′N ′ , (4.11)

where ε = 0 for bosons and ε = 1 for fermions.

4.2. Matrix part of S

Let us decompose the S matrix in different sectors, depending on the mass of the incoming 
particles, which clearly will be conserved during the scattering. We denote by S•• the sector of 
massive excitations, S◦◦ the one of massless excitations, and by S•◦, S◦• the S-matrix blocks 
scattering particles of mixed mass.



T. Lloyd et al. / Nuclear Physics B 891 (2015) 570–612 593
4.2.1. Massive sector
We can decompose the massive sector depending on whether the incoming particles have left 

or right target-space chirality. According to the discussion in the previous section, the scattering 
in each block should be given by the graded tensor product of two su(1|1)2

c.e.-invariant S matri-
ces, and indeed

S•• =
(

σ ••
LLSLL ⊗̌ SLL σ̃ ••

RLSRL ⊗̌ SRL

σ̃ ••
LRSLR ⊗̌ SLR σ ••

RRSRR ⊗̌ SRR

)
. (4.12)

Note here that we are writing down four undetermined factors, rather than the two (same-chirality 
and opposite-chirality) that we would have in the pure-R–R case. Still, these are related pairwise 
by left–right symmetry, so we take

σ ••
LL(p, q) = σ ••(x±

pL, x±
qL

)
, σ ••

RR(p, q) = σ ••(x±
pR, x±

qR

)
,

σ̃ ••
LR(p, q) = σ̃ ••(x±

pL, x±
qR

)
, σ̃ ••

RL(p, q) = σ̃ ••(x±
pR, x±

qL

)
, (4.13)

where σ •• and σ̃ •• are two appropriately defined functions.

4.2.2. Massless sector
In the massless sector we have two irreducible representations of psu(1|1)4

c.e. that form a dou-
blet under su(2)◦. For this reason the S matrix here is the tensor product of a psu(1|1)4

c.e.-invariant 
one with an su(2)-invariant pre-factor:

S◦◦ = σ ◦◦Ssu(2) ⊗ (
SLL ⊗̌ S L̃L̃), (4.14)

where

Ssu(2) = 1

1 + ςpq

(1 + ςpqΠ), (4.15)

and Π is the permutation matrix. In fact, the Yang–Baxter equation implies that Ssu(2) should be 
precisely the S matrix of the Heisenberg model, i.e.

ς(p,q) = i(wp − wq), (4.16)

where wp is an appropriate rapidity, whose explicit form is to be fixed from physical considera-
tions.

This all follows closely what was found in Refs. [33,34]. However, a few differences emerge 
at −k 
= 0. Firstly, since now x+ 
= 1/x− at m = 0, the kinematics is richer. Consequently, scat-
tering processes that accidentally had the same amplitude at −k = m = 0 may now differ. For 
example〈

χc
qχd

p

∣∣S∣∣χa
pχb

q

〉= 〈
χ̃ c

q χ̃d
p

∣∣S∣∣χ̃a
pχ̃b

q

〉
only at −k = 0, (4.17)

while at −k 
= 0 the ratio of the two amplitudes is given by (ALL
pq/F LL

pq )2. Additionally, both the 
dressing factor σ ◦◦ and the rapidity wp might have a more complicated form in the mixed-flux 
case.
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4.2.3. Mixed-mass sector
Let us now consider the scattering of a massive particle with a massless one. On symmetry 

grounds we can write

S•◦ = [
σ •◦

L

(
SLL ⊗ SLL̃)⊕2]⊕ [

σ •◦
R

(
SRL ⊗ SRL̃)⊕2]

, (4.18)

where the subscript indices L, R on the dressing factors refer to the target-space chirality of 
the massive excitation. The presence of two copies of the S matrix inside each square bracket 
is due the fact that the massless psu(1|1)4

c.e. modules are doublets under su(2)◦. Once again, 
we have two dressing factors, which should be related to one another by replacing x±

pL ↔ x±
pR

everywhere, i.e.

σ •◦
L (p, q) = σ •◦(x±

Lp, x±
Lq

)
, σ •◦

R (p, q) = σ •◦(x±
Rp, x±

Rq

)= σ •◦
(

x±
Rp,

1

x∓
Lq

)
, (4.19)

where in the last equation we used that x±
R = 1/x∓

L at m = 0. The scattering elements and hence 
the expression of σ •◦ should not depend on whether we represent the massless particles as left-
or right-movers, which is a constraint on the form of the dressing factor.

In a similar way, we can also can write

S◦• = [
σ ◦•

L

(
SLL ⊗ S L̃L)⊕2]⊕ [

σ ◦•
R

(
SLR ⊗ S L̃R)⊕2]

, (4.20)

with the same caveats for the dressing factors as above.

4.3. Dressing factors

The linear symmetries that we used in the previous subsection cannot constrain the scalar fac-
tors. On the other hand, braiding and physical unitarity, and crossing symmetry will impose new 
constraints. Before discussing those, let us fix the normalisation of each block of the S matrix.

4.3.1. Normalisations
The normalisation each S-matrix block can be read off from the elements listed below. In the 

massive sector we have chosen

〈
Y L

q Y L
p

∣∣S∣∣Y L
p Y L

q

〉= x+
L p

x−
Lp

x−
Lq

x+
Lq

x−
Lp − x+

Lq

x+
Lp − x−

Lq

1 − 1
x−

Lpx+
Lq

1 − 1
x+

Lpx−
Lq

1

(σ ••
LLpq)2

,

〈
Y R

q Y L
p

∣∣S∣∣Y L
p Y R

q

〉= x+
L p

x−
Lp

x−
Rq

x+
Rq

1 − 1
x+

Lpx−
Rq

1 − 1
x+

Lpx+
Rq

1 − 1
x−

Lpx+
Rq

1 − 1
x−

Lpx−
Rq

1

(σ̃ ••
LRpq)2

, (4.21)

with two more equations following by LR symmetry when we exchange everywhere L ↔ R. 
In the massless sector we set〈

T ȧa
q T ȧa

p

∣∣S∣∣T ȧa
p T ȧa

q

〉= 1

(σ ◦◦
pq)2

. (4.22)

Finally, in the mixed-mass sector we choose17

17 The normalisation chosen here takes a different form to the one of [34] but reduces to it at −k = 0. It is chosen to 
simplify the form of the constraints imposed by unitarity.
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〈
T ȧa

q Y L
p

∣∣S∣∣Y L
p T ȧa

q

〉= (
x+

Lp − x+
Lq

x+
Lp − x−

Lq

x−
Lp − x−

Lq

x−
Lp − x+

Lq

)1/2 1

(σ •◦
LLpq)2

,

〈
Y L

q T ȧa
p

∣∣S∣∣T ȧa
p Y L

q

〉= (
x+

Lp − x+
Lq

x+
Lp − x−

Lq

x−
Lp − x−

Lq

x−
Lp − x+

Lq

)1/2 1

(σ ◦•
LLpq)2

, (4.23)

and using LR-symmetry and the relation (3.39) this implies

〈
T ȧa

q Y R
p

∣∣S∣∣Y R
p T ȧa

q

〉= (1 − 1
x+

Rpx−
Lq

1 − 1
x+

Rpx+
Lq

1 − 1
x−

Rpx+
Lq

1 − 1
x−

Rpx−
Lq

)1/2 1

(σ •◦
RLpq)2

,

〈
Y R

q T ȧa
p

∣∣S∣∣T ȧa
p Y R

q

〉= (1 − 1
x+

Lpx−
Rq

1 − 1
x+

Lpx+
Rq

1 − 1
x−

Lpx+
Rq

1 − 1
x−

Lpx−
Rq

)1/2 1

(σ ◦•
LRpq)2

. (4.24)

4.3.2. Unitarity
Owing to our choice of normalisation, the requirements of braiding an physical unitarity take 

a simple form

σ ••
qp = 1

σ ••
pq

= (
σ ••

pq

)∗
, σ̃ ••

qp = 1

σ̃ ••
pq

= (
σ̃ ••

pq

)∗
, σ ◦◦

qp = 1

σ ◦◦
pq

= (
σ ◦◦

pq

)∗
,

σ •◦
qp = 1

σ ◦•
pq

= (
σ •◦

pq

)∗
, σ ◦•

qp = 1

σ •◦
pq

= (
σ ◦•

pq

)∗
, ςqp = −ςpq = (ςpq)∗, (4.25)

where ∗ denotes complex conjugation.

4.3.3. Crossing symmetry
The crossing transformation acts by flipping the sign of momentum and making the energy 

negative:

p → p̄ = −p, E(p) → E(p̄) = −E(−p). (4.26)

Note that in the latter relation we also flip the sign of p in E(p). That sign is irrelevant in a 
parity-invariant theory, but it does affect the sign of the linear terms in the momenta in our case.

In general, it is convenient to describe the crossing transformation by introducing a rapidity 
variable that uniformises the dispersion relation. In relativistic theories, this can be done using 
a hyperbolic parametrisation, while for AdS5 × S5 strings one can use elliptic functions to de-
scribe a rapidity torus [64]. In both scenarios, crossing then amounts to an imaginary shift of the 
rapidity. It is less clear how to uniformise the dispersion relation here. On the other hand, we can 
realise (4.26) in terms of the Zhukovski variables by setting

x±
L (p̄) = 1

x±
R (p)

, x±
R (p̄) = 1

x±
L (p)

. (4.27)

The supercharges are not meromorphic in x±, so that we have to resolve a square-root ambiguity 
when performing crossing. We do this by setting

ηL(p̄) = i
+ ηR(p), ηR(p̄) = i

+ ηL(p). (4.28)

xR (p) xL (p)
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In order to write down the crossing equation, we need to define a charge conjugation matrix, 
which in our case will be the same as the one of [34]. Let us pick a basis(

Y L, ηL1, ηL2,ZL)⊕ (
Y R, ηR1, ηR2,ZR)⊕ (

T 11, T 21, T 12, T 22)⊕ (
χ̃1, χ1, χ̃2, χ2).

(4.29)

The charge conjugation matrix is

Cp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −icp

0 0 0 0 0 0 icp 0
0 0 0 0 0 icp 0 0
0 0 0 0 −icp 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.30)

where we note that the dependence on p in the massless sector comes through

cp = aL(p)

bR(p)
= − sgn

[
sin

p

2

]
, (4.31)

where the last equality uses that m = 0. This is reassuring as it indicates that if we treat separately 
left- and right-movers on the worldsheet, C is indeed a constant matrix. Note that, even if we 
are taking the massless modes to be in the left representation, we see the coefficients of the right 
representation appearing. This is not surprising as crossing exchanges the two kinematics.

We can now write down the crossing equation18

Cp ⊗ 1 · St1(p̄, q) · C −1
p ⊗ 1 · S(p, q) = 1 ⊗ 1, (4.32)

where we have introduced the short-hand S = ΠS defined in terms of the permutation Π , and tj
denotes transposition in the j th space. From this we can read off the constraints on the dressing 
factors.

In the massive sector we find

σ ••
LL(p, q)2σ̃ ••

RL(p̄, q)2 =
(

x−
Lq

x+
Lq

)2 (x−
Lp − x+

Lq)2

(x−
Lp − x−

Lq)(x+
Lp − x+

Lq)

1 − 1
x−

Lpx+
Lq

1 − 1
x+

Lpx−
Lq

,

18 There is one more crossing equation where crossing is performed in the second variable, which is equivalent to the 
one given here by unitarity.



T. Lloyd et al. / Nuclear Physics B 891 (2015) 570–612 597
σ ••
LR(p, q)2σ̃ ••

RR(p̄, q)2 =
(

x−
Rq

x+
Rq

)2
(
1 − 1

x+
Lpx+

Rq

)(
1 − 1

x−
Lpx−

Rq

)
(
1 − 1

x+
Lpx−

Rq

)2 x−
Lp − x+

Rq

x+
Lp − x−

Rq

. (4.33)

Note that the Zhukovski variables carry the appropriate flavours with respect to the phases. This 
is guaranteed by the fact that both the transformation (4.27) and the charge conjugation ma-
trix (4.30) swap left with right in the massive sector. Two additional equations can be written 
down by LR symmetry, exhausting the constraints of crossing in this sector.

In the massless sector we have

σ ◦◦(p, q)2σ ◦◦(p̄, q)2 = ςpq − 1

ςpq

x−
Lp − x+

Lq

x+
Lp − x+

Lq

x+
Lp − x−

Lq

x−
Lp − x−

Lq

, ςp̄q = ςpq − 1. (4.34)

It is interesting to note that

x−
Lp − x+

Lq

x+
Lp − x+

Lq

x+
Lp − x−

Lq

x−
Lp − x−

Lq

= x−
Rp − x+

Rq

x+
Rp − x+

Rq

x+
Rp − x−

Rq

x−
Rp − x−

Rq

at m = 0, (4.35)

so that the crossing equation for the massless phases does not depend on whether we decided to 
represent the massless modes as left or right particles.

Finally, in the mixed-mass sector we have

σ •◦
L (p, q)2σ •◦

R (p̄, q)2 = x−
Lp − x+

Lq

x+
Lp − x+

Lq

x+
Lp − x−

Lq

x−
Lp − x−

Lq

= σ ◦•
L (q,p)2σ ◦•

L (q̄,p)2, (4.36)

where in order to write down this equation only in term of left massless Zhukovski variables we 
have used (3.39). The same formula, together with LR symmetry, yields

σ •◦
R (p, q)2σ •◦

L (p̄, q)2 =
1 − 1

x+
Rpx+

Lq

1 − 1
x+

Rpx−
Lq

1 − 1
x−

Rpx−
Lq

1 − 1
x−

Rpx+
Lq

= σ ◦•
R (q,p)2σ ◦•

R (q̄,p)2. (4.37)

Note also that the form of this crossing equation is compatible with (4.19).

5. Discussion and outlook

In this paper we have determined the complete all-loop worldsheet S matrix of Type IIB 
string theory on AdS3 × S3 × T4 with mixed R–R and NS–NS three-form flux, up to the dressing 
factors. We further wrote down the crossing relations that these dressing factors have to satisfy. 
These may be used as a guiding principle in constructing the factors, together with semi-classical 
and perturbative input such as the one recently found in the massive sector in Refs. [46] and [65], 
respectively.

In constructing the S matrix we relied on the off-shell symmetry algebra A of the gauge-fixed 
theory and its representations. This method, initially advocated in the context of AdS5 × S5 [57], 
has recently been shown to be particularly well-suited in the study of massless, as well as mas-
sive, excitations and allowed for the construction of the all-loop S matrix for the pure R–R flux 
AdS3 × S3 × T4 theory [33,34]. Our present work demonstrates the versatility of this approach 
and provides strong evidence that, by using these methods, one will be able to tackle other classes 
of backgrounds such as AdS3 ×S3 ×S3 ×S1 [15,16,22–26,29], or the less-supersymmetric back-
grounds discussed in the context of integrability in Refs. [47,48,66–68]. It would be particularly 
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interesting to investigate these backgrounds as well as to consider backgrounds related to the IIB 
AdS3 × S3 × T4 ones considered here by T dualities. Such backgrounds will in fact have a dif-
ferent off-shell symmetry algebra A, as we expect fluxes to couple to the T4 directions and spoil 
the so(4) invariance that we used here; on the other hand, a similar integrable structure should 
exists there as well.

The analysis carried out here provides strong evidence for the validity of the q-dependent dis-
persion relation proposed in Ref. [44]. We find in particular that this form of dispersion relation 
is satisfied by both massive and massless modes.

The S-matrix construction presented here elucidates a feature pure-R–R S matrix. There, for 
massive particles, it was found that symmetries and unitarity leave two choices for the all-loop 
S matrix: one where the target space chirality is always transmitted, and one where it is always 
reflected [22,27]. Only the former option satisfies the Yang–Baxter equation and is compatible 
with tree-level perturbative calculations [69]. Interestingly, in the presence of NS–NS fluxes we 
find that the pure-reflection S matrix is immediately ruled out by symmetries, further motivating 
the choice of a reflectionless S matrix in Refs. [22,27].

The S matrix presented in this paper provides a two-parameter family (λ and q) of quantum 
integrable models. It is likely that this parameter space can be further enhanced by the study of 
so-called η-deformations [70–74]. This large parameter space, and the presence of novel massless 
modes deserves a detailed investigation in the context of integrability and may provide us with 
new inputs into the relationship between integrability and holography [75].

From our previous work [33,34] and the present paper we are lead to conclude that the solution 
of the spectral problem in AdS3/CFT2 is likely to be within reach using integrable methods. In 
particular it would be important to understand the mirror Thermodynamical Bethe Ansatz and 
Quantum Spectral Curve for these backgrounds [76–84]. Given this, it would be interesting to 
investigate other aspects of this class of dualities, such as scattering amplitudes, Wilson loops or 
entanglement entropy using integrable methods. It would also be important to connect the results 
presented here to the higher-spin holography of AdS3 backgrounds investigated in recent papers 
such as [85–89].

Finally, our work suggests that connections between the integrable approach and other studies 
of the AdS3/CFT2 correspondence, that deserve to be explored more fully. Two links naturally 
suggest themselves. Firstly, the mixed-flux theory investigated in the present paper was analysed 
some time ago in the hybrid formalism [90] and it would be interesting to establish connections 
between those results and the work presented in this paper. For example, might one be able 
to see integrable structure in the framework of Ref. [90]? Secondly, type IIB string theory on 
AdS3 × S3 × T4 with only NS–NS flux was investigated in detail from the point of view of a 
WZW theory in Refs. [91–93], where worldsheet CFT methods were used to powerful effect. 
It would be intriguing to see if there is a way to take a q → 1 limit of our integrable structure 
in a controlled way. Uncovering the role of integrability in the pure NS–NS theory, as recently 
investigated in Ref. [94], might provide new connections between integrable and worldsheet CFT 
approaches.
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Appendix A. Conventions

In this appendix we give our conventions for indices. We denote worldsheet coordinates by 
α, β, . . . = τ, σ ; spacetime coordinates by indices m, n, . . . = 0, . . . , 9; and so(1, 9) tangent coor-
dinates by A, B, . . . = 0, . . . , 9. Indices I, J, . . . = 1, 2 denote the two sets of spacetime spinors.

We also use indices referring to representations of the algebra so(4)1 × so(4)2, as described 
in Ref. [34], where so(4)1 corresponds to rotations along the AdS3 × S3 directions transverse to 
the light-cone directions t and φ and so(4)2 corresponds to rotations along T4. We use indices 
a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 for the two Weyl spinors of so(4)1; and indices a, b, . . . = 1, 2
and ȧ, ḃ, . . . = 1, 2 for the two Weyl spinors of so(4)2. We use indices i, j , . . . = 1, . . . , 4 for 
the vector of so(4)1. We use the same indices for the transverse coordinates of AdS3 and S3

themselves (zi and yi respectively) with the understanding that z3 = z4 = y1 = y2 = 0.
We raise and lower spinor indices with epsilon symbols normalised as

ε12 = −ε12 = +1. (A.1)

We also occasionally write εij , by this we will always mean an expression of the following form

εij zi∂αzj = z1∂αz2 − z2∂αz1, εij yi∂αyj = y3∂αy4 − y4∂αy3. (A.2)

Similarly in our conventions

ż · ′
z = żi

′
zi = ż1

′
z1 + ż2

′
z2, ẏ · ′

y = ẏi
′
yi = ẏ3

′
y3 + ẏ4

′
y4. (A.3)

At various times we make use of so(4) gamma matrices. These are understood to be embedded 
inside 10d gamma matrices in the way described in Ref. [34]. Here we collect only those explicit 
choices for these gamma matrices from Ref. [34] that are needed in this paper. We have matrices 
(γ i)a ḃ , (γ̃ i)ȧb , (τ i)a ḃ and (τ̃ i)ȧb chosen to be

γ 1 = +σ3, γ 2 = −i1, γ 3 = +σ2, γ 4 = +σ1, γ̃ i = +(γ i
)†

τ 6 = +σ1, τ 7 = +σ2, τ 8 = +σ3, τ 9 = +i1, τ̃ i = −(τ i
)†

. (A.4)

We also define(
γ ij

)a
b = 1

2

(
γ i γ̃ j − γ j γ̃ i

)a
b,

(
γ̃ ij

)ȧ
ḃ = 1

2

(
γ̃ iγ j − γ̃ j γ i

)ȧ
ḃ. (A.5)

Appendix B. Killing spinors

In this appendix we present a derivation of the solution of the mixed-flux Killing spinor equa-
tions (2.7). It turns out to be helpful to re-write these equations in terms of two independent 
spinors ε1 and ε2 by introducing
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ε̃1 =
√

1 + q̃

2
ε1 −

√
1 − q̃

2
ε2, ε̃2 =

√
1 + q̃

2
ε2 +

√
1 − q̃

2
ε1. (B.1)

After some simple algebra the Killing spinor equations can then be written as((
∂m + 1

4
/ωm

)
δIJ +

(
q

8
/Hm + q̃

48
/F/Em

)
σ 3

IJ

)
εJ =

(
q

48
/F/Em − q̃

8
/Hm

)
σ 1

IJ εJ . (B.2)

Now we insert the form of the fluxes (cf. Eqs. (2.8) and (2.9)) and use the fact that the spinors εI

are anti-chiral with respect to Γ 012345 [34]. From this we find that the right-hand side of Eq. (B.2)
vanishes. Furthermore, we can combine the terms coming from each flux on the left-hand side 
into a single term proportional to the R–R flux. Altogether we can rewrite Eq. (B.2) as((

∂m + 1

4
/ωm

)
δIJ + σ 3

IJ

48q̃
/F/Em

)
εJ = 0. (B.3)

Since the R–R flux here is related to the flux of the pure R–R background by an overall rescaling 
by q̃ , this is precisely the equation satisfied by the Killing spinors of the pure R–R background 
[34].

Recall, that the q = 0 Killing spinors are given by

ε1 = M̂ε1
0, , ε2 = M̌ε2

0, (B.4)

where εI
0 are constant (9 + 1)-dimensional Majorana–Weyl spinors, which further satisfy

1

2

(
1 + Γ 012345)εI = 1

2

(
1 + Γ 012345)εI

0 = 0. (B.5)

The matrices M̂ and M̌ are given by

M̂ = M0Mt, M̌ = M−1
0 M−1

t , (B.6)

where

M0 = 1√
(1 − z2

1+z2
2

4 )(1 + y2
3+y2

4
4 )

(
1 − 1

2
ziΓ

iΓ 012
)(

1 − 1

2
yiΓ

iΓ 345
)

,

M−1
0 = 1√

(1 − z2
1+z2

2
4 )(1 + y2

3+y2
4

4 )

(
1 + 1

2
ziΓ

iΓ 012
)(

1 + 1

2
yiΓ

iΓ 345
)

, (B.7)

and

Mt = e− 1
2 (tΓ 12+φΓ 34), M−1

t = e+ 1
2 (tΓ 12+φΓ 34). (B.8)

In summary, the Killing spinors of the mixed-flux background, ε̃I , are given by a q-dependent 
linear combination of the q = 0 Killing spinors, εI , as given in Eq. (2.10).

Appendix C. Explicit expressions for the Lagrangian

In this appendix we write down the explicit form of the Lagrangian to quadratic order in 
fermions which are redefined in each of the two ways described in Section 2.3. We will make use 
of the following definitions for contraction of the vielbeins EA

m over AdS3 ×S3 and T4 separately
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/̄Em =
5∑

A=0

EA
mΓA, /̇Em =

9∑
A=6

EA
mΓA, (C.1)

and we will then define two different sets of rotated vielbeins for the two different sets of field 
redefinitions.

First, using the redefinition of the fermions coming from the combination of Eqs. (2.31)
and (2.32), we define the rotated vielbeins K̂A

m and ǨA
m via

/̂K = M̂−1/̄EM̂, /̌K = M̌−1/̄EM̌. (C.2)

With these rotations, Lkin is given by

Lkin = −iγ αβ

[
ϑ̄−

1 /̂Kα∂βϑ−
1 + 2ϑ̄+

1 /̇Eα∂βϑ−
1 + ϑ̄+

1 /̂Kα∂βϑ+
1

+ ϑ̄−
2 /̌Kα∂βϑ−

2 + 2ϑ̄+
2 /̇Eα∂βϑ−

2 + ϑ̄+
2 /̌Kα∂βϑ+

2

− q̃2

2
σ 3

IJ ϑ̄+
I Γ 012ϑ+

J EA
α EB

β ηAB

+ qq̃

2
ϑ̄+

2 M̌−1M̂Γ 012ϑ+
1 EA

α EB
β ηAB

+ qq̃

2
ϑ̄+

1 M̂−1M̌Γ 012ϑ+
2 EA

α EB
β ηAB

]
(C.3)

and LWZ is given by

LWZ = +iεαβ

[
q̃
(
ϑ̄−

1 M̂−1M̌/̌Kα∂βϑ−
2 + ϑ̄+

1 M̂−1M̌/̌Kα∂βϑ+
2

)
+ q̃

(
ϑ̄−

2 M̌−1M̂/̂Kα∂βϑ−
1 + ϑ̄+

2 M̌−1M̂/̂Kα∂βϑ+
1

)
+ q̃

(
ϑ̄−

1 M̂−1M̌/̇Eα∂βϑ+
2 + ϑ̄+

1 M̂−1M̌/̇Eα∂βϑ−
2

)
+ q̃

(
ϑ̄−

2 M̌−1M̂/̇Eα∂βϑ+
1 + ϑ̄+

2 M̌−1M̂/̇Eα∂βϑ−
1

)
+ q̃

2
ϑ̄+

1 M̂−1M̌(/̌Kα/̌Kβ + /̇Eα/̇Eβ)Γ 012ϑ+
2

+ q̃

2
ϑ̄+

2 M̌−1M̂(/̂Kα/̂Kβ + /̇Eα/̇Eβ)Γ 012ϑ+
1

+ q
(
ϑ̄−

1 /̂Kα∂βϑ−
1 + 2ϑ̄+

1 /̇Eα∂βϑ−
1 + ϑ̄+

1 /̂Kα∂βϑ+
1

)
− q

(
ϑ̄−

2 /̌Kα∂βϑ−
2 + 2ϑ̄+

2 /̇Eα∂βϑ−
2 + ϑ̄+

2 /̌Kα∂βϑ+
2

)]
. (C.4)

For a redefinition of the fermions coming from the combination of Eqs. (2.31) and (2.32), we 
define rotated vielbeins ÊA

m and ĚA
m via

/̂E = M−1
0 /̄EM0, /̌E = M0/̄EM−1

0 . (C.5)

We fix the light-cone kappa gauge (2.34) and define light-cone coordinates

E± = 1

2

(
E5 ± E0), x± = 1

2
(φ ± t). (C.6)

Lkin is then given by
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Lkin = −2iγ αβ

[
η̄1Ê

+
α Γ −(∂βη1 + Γ 12η1∂βx+)+ η̄2Ě

+
α Γ −(∂βη2 − Γ 12η2∂βx+)

+ χ̄1Ê
+
α Γ −(∂βχ1 − Γ 12χ1∂βx−)+ χ̄2Ě

+
α Γ −(∂βχ2 + Γ 12χ2∂βx−)

− q̃2

4
σ 3

IJ χ̄I Γ
012χJ EA

α EB
β ηAB

+ qq̃

4

(
χ̄1M

−2
0 Γ 012χ2 + χ̄2M

2
0Γ 012χ1

)
EA

α EB
β ηAB

]
(C.7)

and LWZ by

LWZ = 2iεαβ

[
q̃

4
χ̄1(/̂Eα/̂Eβ + /̇Eα/̇Eβ)M−2

0 Γ 012χ2 − q̃

4
χ̄2(/̌Eα/̌Eβ + /̇Eα/̇Eβ)M2

0Γ 012χ1

+ q̃

2
χ̄1/̌EαM−2

0

(
∂βχ2 + Γ 12χ2∂βx−)+ q̃

2
χ̄2/̂EαM2

0

(
∂βχ1 − Γ 12χ1∂βx−)

+ q̃χ̄1/̇EαM−2
0

(
∂βη2 − Γ 12η2∂βx+)+ q̃χ̄2/̇EαM2

0

(
∂βη1 + Γ 12η1∂βx+)

+ q̃

2
η̄1/̂EαM−2

0

(
∂βη2 − Γ 12η2∂βx+)+ q̃

2
η̄2/̌EαM2

0

(
∂βη1 + Γ 12η1∂βx+)

+ qη̄1Ê
+
α Γ −(∂βη1 + Γ 12η1∂βx+)− qη̄2Ě

+
α Γ −(∂βη2 − Γ 12η2∂βx+)

+ qχ̄1Ê
+
α Γ −(∂βχ1 − Γ 12χ1∂βx−)− qχ̄2Ě

+
α Γ −(∂βχ2 + Γ 12χ2∂βx−)]. (C.8)

Appendix D. Supercurrents and bosonic Hamiltonian

In this appendix we give the bosonic Hamiltonian to quartic order, as well as the supercur-
rents to cubic order in bosons and first order in fermions. Some of these expressions are fairly 
lengthy. To make them a bit more manageable we have left out the indices when there is a simple 
contraction between two fields. The quartic order bosonic Hamiltonian is given by

H = +1

2

(
p2

z + p2
y + p2

x + ′
z2 + ′

y2 + ′
x2 + z2 + y2 − 2qεij (zi

′
zj + yi

′
yj )
)

+ 1

4

(
p2

z + p2
y + p2

x + ′
z2 + ′

y2 + ′
x2)((z2 − y2)+ qεij (

′
zizj − ′

yiyj )
)

+ 1

4
z2( ′

z2 − p2
z + qεij (

′
zizj + ′

yiyj )
)− 1

4
y2( ′

y2 − p2
y + qεij (

′
zizj + ′

yiyj )
)

− q

2
εij (pzi zj + pyi yj )(pz · ′

z + py · ′
y + px · ′

x). (D.1)

For the currents we give the expressions separately for the massless, massive and mixed massless-
massive parts, so that the full currents are given as the sum

jα
I = jα

I,massless + jα
I,massive + jα

I,mixed. (D.2)

The massless currents are given by

jτ
1,massless = iγ 34e+x−γ 34(+ẋi τ̃iχ1 − q̃

′
xi τ̃iχ2 − q

′
xi τ̃iχ1

)
,

j τ
2,massless = iγ 34e−x−γ 34(+ẋi τ̃iχ2 − q̃

′
xi τ̃iχ1 + q

′
xi τ̃iχ2

)
,

jσ = iγ 34e+x−γ 34(− ′
xi τ̃iχ1 + q̃ẋi τ̃iχ2 + qẋi τ̃iχ1

)
,
1,massless
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jσ
2,massless = iγ 34e−x−γ 34(− ′

xi τ̃iχ2 + q̃ẋi τ̃iχ1 − qẋi τ̃iχ2
)
. (D.3)

The massive currents are given by

jτ
1,massive = ie+x−γ 34

(
+(żi − ẏi

)
γiη1 + (

zi − yi
)
γi γ̃

34η1 − ( ′
zi − ′

yi
)
γi(q̃η2 + qη1)

− 1

2

((
z2 − y2)(żi − ẏi

)− 3

2

(
z2żi + y2ẏi

)+ (
z · żzi + y · ẏyi

))
γiη1

− 1

4

((
ż2 + ′

z2 + ẏ2 + ′
y2)(zi + yi

)− (
y2zi + z2yi

))
γi γ̃

34η1

− q̃

2

((
z2 − y2)( ′

zi − ′
yi
)− 1

2

(
z2 ′

zi + y2 ′
yi
)

+ 2(z · ′
z − y · ′

y)
(
zi − yi

)− (
z · ′

zzi + y · ′
yyi

))
γiη2

− q̃

2
(ż · ′

z + ẏ · ′
y)
(
zi + yi

)
γi γ̃

34η2

− q

4

((
z2 ′

zk + y2 ′
yk
)+ 2εij

(
zi żj − yi ẏj

)( ′
zk − ′

yk
)

+ 2εij

(
yi ′

yj żk + zi ′
zj ẏk

))
γkη1

− q

2

((
z · ż ′

zk + y · ẏ ′
yk
)− (

ẏ · ′
yzk + ż · ′

zyk
)

− εij

(
yi ′

yj zk + zi ′
zj yk

))
γkγ̃

34η1

)
, (D.4)

jτ
2,massive = ie−x−γ 34

(
+(żi − ẏi

)
γiη2 − (

zi − yi
)
γi γ̃

34η2 − ( ′
zi − ′

yi
)
γi(q̃η1 − qη2)

− 1

2

((
z2 − y2)(żi − ẏi

)− 3

2

(
z2żi + y2ẏi

)+ (
z · żzi + y · ẏyi

))
γiη2

− 1

4

((
ż2 + ′

z2 + ẏ2 + ′
y2)(zi + yi

)+ (
y2zi + z2yi

))
γi γ̃

34η2

− q̃

2

((
z2 − y2)( ′

zi − ′
yi
)− 1

2

(
z2 ′

zi + y2 ′
yi
)

+ 2(z · ′
z − y · ′

y)
(
zi − yi

)− (
z · ′

zzi + y · ′
yyi

))
γiη1

− q̃

2
(ż · ′

z + ẏ · ′
y)
(
zi + yi

)
γi γ̃

34η1

+ q

4

((
z2 ′

zk + y2 ′
yk
)− 2εij

(
zi żj − yi ẏj

)( ′
zk − ′

yk
)

− 2εij

(
yi ′

yj żk + zi ′
zj ẏk

))
γkη2

− q

2

((
z · ż ′

zk + y · ẏ ′
yk
)− (

ẏ · ′
yzk + ż · ′

zyk
)

− εij

(
yi ′

yj zk + zi ′
zj yk

))
γkγ̃

34η2

)
, (D.5)
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jσ
1,massive = ie+x−γ 34

(
−( ′

zi − ′
yi
)
γiη1 − (

zi − yi
)
γi γ̃

34η1 + (
żi − ẏi

)
γi(q̃η2 + qη1)

− 1

2

((
z2 − y2)( ′

zi − ′
yi
)+ 3

2

(
z2 ′

zi + y2 ′
yi
)− (

z · ′
zzi + y · ′

yyi
))

γiη1

− 1

2
(ż · ′

z + ẏ · ′
y)
(
zi + yi

)
γi γ̃

34η1

+ q̃

4

((
z2 − y2)(żi − ẏi

)− (
z2żi + y2ẏi

)
+ 2(z · ż − y · ẏ)

(
zi − yi

)− 2
(
y · ẏzi + z · żyi

))
γiη2

− q̃

4

((
ż2 + ′

z2 + z2 + ẏ2 + ′
y2 + y2)(zi + yi

)− 3
(
z2zi + y2yi

))
γi γ̃

34η2

+ q

4

((
z2żk + y2ẏk

)− 2εij

(
zi żj − yi ẏj

)(
żk − ẏk

)
+ 2εij

(
zi ′

zj − yi ′
yj
)( ′

zk − ′
yk
))

γkη1

+ q

4

((
ż2 + ′

z2 − z2 + ẏ2 + ′
y2 − y2)(zk + yk

)+ 3
(
z2zk + y2yk

)
+ 2εij

(
yi ẏj zk + zi żj yk

))
γkγ̃

34η1

)
, (D.6)

jσ
2,massive = ie−x−γ 34

(
−( ′

zi − ′
yi
)
γiη2 + (

zi − yi
)
γi γ̃

34η2 + (
żi − ẏi

)
γi(q̃η1 − qη2)

− 1

2

((
z2 − y2)( ′

zi − ′
yi
)+ 3

2

(
z2 ′

zi + y2 ′
yi
)− (

z · ′
zzi + y · ′

yyi
))

γiη2

+ 1

2
(ż · ′

z + ẏ · ′
y)
(
zi + yi

)
γi γ̃

34η2

+ q̃

4

((
z2 − y2)(żi − ẏi

)− (
z2żi + y2ẏi

)
+ 2(z · ż − y · ẏ)

(
zi − yi

)− 2
(
y · ẏzi + z · żyi

))
γiη1

− q̃

4

((
ż2 + ′

z2 + z2 + ẏ2 + ′
y2 + y2)(zi + yi

)+ 3
(
z2zi + y2yi

))
γi γ̃

34η1

− q

4

((
z2żk + y2ẏk

)+ 2εij

(
zi żj − yi ẏj

)(
żk − ẏk

)
− 2εij

(
zi ′

zj − yi ′
yj
)( ′

zk − ′
yk
))

γkη2

+ q

4

((
ż2 + ′

z2 − z2 + ẏ2 + ′
y2 − y2)(zk + yk

)+ 3
(
z2zk + y2yk

)
− 2εij

(
yi ẏj zk + zi żj yk

))
γkγ̃

34η2

)
. (D.7)

The mixed currents are given by

jτ
1,mixed = ie+x−γ 34

(
−1

2

(
z2 − y2)(ẋiγ 34τ̃iχ1 + q̃

′
xiγ 34τ̃iχ2

)+ q̃ziyj ′
xkγ 34γij τ̃kχ2

+ 1(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η1 + q̃
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η2

4 2
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+ q

2

(
εij

(
zi ′

zj − yi ′
yj
)
ẋk − εij

(
zi żj − yi ẏj

) ′
xk
)
γ 34τ̃kχ1

− q

2
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η1

)
, (D.8)

jτ
2,mixed = ie−x−γ 34

(
−1

2

(
z2 − y2)(ẋiγ 34τ̃iχ2 + q̃

′
xiγ 34τ̃iχ1

)+ q̃ziyj ′
xkγ 34γij τ̃kχ1

+ 1

4

(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η2 − q̃

2
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η1

+ q

2

(
εij

(
zi ′

zj − yi ′
yj
)
ẋk − εi

(
zi żj − yi ẏj

) ′
xk
)
γ 34τ̃kχ2

− q

2
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η2

)
, (D.9)

jσ
1,mixed = ie+x−γ 34

(
−1

2

(
z2 − y2)( ′

xiγ 34τ̃iχ1 − q̃ẋiγ 34τ̃iχ2
)− q̃ziyj ẋkγ 34γij τ̃kχ2

− q̃

4

(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η2 − 1

2
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η1

− q

2

(
εij

(
zi żj − yi ẏj

)
ẋk − εij

(
zi ′

zj − yi ′
yj
) ′
xk
)
γ 34τ̃kχ1

+ q

4

(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η1

)
, (D.10)

jσ
2,mixed = ie−x−γ 34

(
−1

2

(
z2 − y2)( ′

xiγ 34τ̃iχ2 − q̃ẋiγ 34τ̃iχ1
)− q̃ziyj ẋkγ 34γij τ̃kχ1

+ q̃

4

(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η1 + 1

2
(ẋ · ′

x)
(
zi + yi

)
γi γ̃

34η2

− q

2

(
εij

(
zi żj − yi ẏj

)
ẋk − εij

(
zi ′

zj − yi ′
yj
) ′
xk
)
γ 34τ̃kχ2

+ q

4

(
ẋ2 + ′

x2)(zi + yi
)
γi γ̃

34η2

)
. (D.11)

Appendix E. Poisson brackets

In this appendix we present the Poisson bracket expressions for fermions that are used in com-
puting A in Section 2.4. The fermionic Poisson bracket is symmetric and has the non-vanishing 
elements{

(η1)
ȧȧ, (η1)

ḃḃ
}

PB = − i

4
(1 + A1)ε

ȧḃεȧḃ,
{
(η1)

ȧȧ, (η2)
ḃḃ
}

PB = − i

4
(A2)

ȧ
ċε

ċḃεȧḃ,{
(η2)

ȧȧ, (η2)
ḃḃ
}

PB = − i

4
(1 − A1)ε

ȧḃεȧḃ,
{
(χ1)

aa, (χ2)
bb
}

PB = − i

4
(A3)

a
cε

cbεab,{
(χ1)

aa, (χ1)
bb
}

PB = − i

4
(1 + A1)ε

abεab,
{
(η1)

ȧȧ, (χ2)
bb
}

PB = − i

4
(A4)

ȧȧ
ccε

cbεcb,{
(χ2)

aa, (χ2)
bb
}

PB = − i

4
(1 − A1)ε

abεab,
{
(η2)

ȧȧ, (χ1)
bb
}

PB = + i

4
(A4)

ȧȧ
ccε

cbεcb,

(E.1)
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where the coefficients Ai are given to quadratic order by

A1 = −1

2
εij (zi żj − yi ẏj ),

A2 = − q̃

2
γ̃ 34(z · ′

z − y · ′
y) + q̃

2
γ̃ 34γ̃ ij (zi

′
yj + ′

ziyj ),

A3 = + q̃

2
γ 34(z · ′

z + y · ′
y) + q̃

2
γ 34γ ij (zi

′
yj − ′

ziyj ),

A4 = + q̃

2
γ̃ i τ̃ k(zi − yi)

′
xk. (E.2)

We note that these Poisson brackets are modified in a very simple way from the pure R–R Poisson 
brackets: the terms mixing the fermions η1 and χ1 with η2 and χ2 are rescaled by a factor q̃ .

Appendix F. Tensor-product representations

The superalgebra su(1|1)2
c.e. features the supercharges QL, QR and their conjugates QL, QR

satisfying the relations (3.14). The supercharges

QL
1 = QL ⊗ 1, QL

2 = 1 ⊗ QL, QR1 = QR ⊗ 1, QR2 = 1 ⊗ QR,

QL1 = QL ⊗ 1, QL2 = 1 ⊗ QL, QR
1 = QR ⊗ 1, QR

2 = 1 ⊗ QR, (F.1)

satisfy the algebra psu(1|1)4
c.e. of Eq. (3.1), and carry an (anti)fundamental su(2)• index.

We can construct bi-fundamental representations of psu(1|1)4
c.e. out of pairs of fundamental 

representations of su(1|1)2
c.e. of Section 3.1.3. Consider the representation �L ⊗ �L, and identify

Y L = φL ⊗ φL, ηL1 = ψL ⊗ φL, ηL2 = φL ⊗ ψL, ZL = ψL ⊗ ψL. (F.2)

This yields precisely the left representation (3.5). Similarly, the right representation is found from 
�R ⊗ �R by setting

Y R = φR ⊗ φR, ηR
1 = ψR ⊗ φR, ηR

2 = φR ⊗ ψR, ZR = ψR ⊗ ψR. (F.3)

Finally, for the massless modes we use the representation (�L ⊗ �̃L)⊕2 and identify

T 1a = (
ψL ⊗ ψ̃L)a, χ̃a = (

ψL ⊗ φ̃L)a, χa = (
φL ⊗ ψ̃L)a,

T 2a = (
φL ⊗ φ̃L)a, (F.4)

where the index a labels the two irreducible psu(1|1)4
c.e. modules.

Appendix G. Oscillator representation of the charges

The mixed-flux currents at quadratic order in fields are given in Eq. (2.36). Let us write the 
fermions in components as follows:

(η1)
ȧḃ =

(
−e+iπ/4η̄L2 −e+iπ/4η̄L1

e−iπ/4ηL
1 −e−iπ/4ηL

2

)
, (η2)

ȧḃ =
(

e−iπ/4ηR2 e−iπ/4ηR1

−e+iπ/4η̄R
1 e+iπ/4η̄R

2

)
,

(χ1)
ab =

(
−e+iπ/4χ̄+2 e+iπ/4χ̄+1

−e−iπ/4χ+1 −e−iπ/4χ+2

)
, (χ2)

ab =
(

e−iπ/4χ−1 e−iπ/4χ−2

−e+iπ/4χ̄−2 e+iπ/4χ̄−1

)
.

(G.1)
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We introduce complex bosonic coordinates

Z = −z2 + iz1, Z̄ = −z2 − iz1, Y = −y3 − iy4, Ȳ = −y3 + iy4,

X11 = −x6 + ix7 = (
X22)†, X12 = x8 − ix9 = −(X21)†, (G.2)

with conjugate momenta

PZ = 2Ż, PZ̄ = 2 ˙̄Z, PZ = 2Ż, PȲ = 2 ˙̄Y,

P11 = P
†
22 = 2Ẋ22, P12 = −P

†
21 = −2Ẋ21. (G.3)

These satisfy the commutation relations[
Z(σ1),PZ̄(σ2)

]= [
Z̄(σ1),PZ(σ2)

]= iδ(σ1 − σ2),[
Y(σ1),PȲ (σ2)

]= [
Ȳ (σ1),PY (σ2)

]= iδ(σ1 − σ2),[
Xȧa(σ1),Pḃb(σ2)

]= iδȧ

ḃ
δa
b δ(σ1 − σ2), (G.4)

and the anti-commutation relations{
η̄Lȧ(σ1), ηL

ḃ(σ2)
}= {

η̄R
ḃ(σ1), ηRȧ(σ2)

}= δḃ
ȧ δ(σ1 − σ2),{

χ̄+a(σ1),χ
b+(σ2)

}= {
χ̄−a(σ1),χ

b−(σ2)
}= δb

aδ(σ1 − σ2). (G.5)

Let us associate the components of the currents (j τ
I )aȧ to charges QL

ȧ and QRȧ which carry 
a natural su(2) structure. Explicitly,

QL
1 = −

∫
dσ
(
jτ

1

)21
, QL

2 = +
∫

dσ
(
jτ

1

)22
,

QR1 = −
∫

dσ
(
jτ

2

)12
, QR2 = −

∫
dσ
(
jτ

2

)11
. (G.6)

The Hermitian conjugates of these,

QLȧ = (
QL

ȧ
)†

, QR
ȧ = (QRȧ)

†, (G.7)

are then given in terms of the remaining components of the currents by:

QL1 = +
∫

dσ
(
jτ

1

)12
, QL2 = +

∫
dσ
(
jτ

1

)11
,

QR
1 = +

∫
dσ
(
jτ

2

)21
, QR

2 = −
∫

dσ
(
jτ

2

)22
. (G.8)

The explicit form of these charges, at quadratic order in the fields are:

QL
ȧ = e−iπ/4

∫
dσ

[
1

2
PZηL

ȧ + Z′(iq̃η̄R
ȧ − qηL

ȧ
)+ iZηL

ȧ

− εȧḃ

(
i

2
PȲ η̄Lḃ + Ȳ ′(q̃ηRḃ − iqη̄Lḃ) + Ȳ η̄Lḃ

)
− 1

2
εȧḃPḃaχ+a − (

Xȧa
)′(

iq̃χ̄−a + qεabχ+b
)]

,

QRȧ = e−iπ/4
∫

dσ

[
1
PZ̄ηRȧ + Z̄′(iq̃η̄Lȧ + qηRȧ) + iZ̄ηRȧ
2
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+ εȧḃ

(
i

2
PY η̄R

ḃ + Y ′(q̃ηL
ḃ + iqη̄R

ḃ
)+ Y η̄R

ḃ

)
− 1

2
Pȧaχ−a + εȧḃ

(
Xḃa

)′(
iq̃χ̄+a + qεabχ−b

)]
. (G.9)

We will now introduce creation and annihilation operators for both bosons and fermions and 
use them to rewrite the supercharges. For the massive bosons we have

aLz(p) = 1√
2π

∫
dσ√
ωL

p

(
ωL

pZ̄ + i

2
PZ̄

)
e−ipσ ,

aRz(p) = 1√
2π

∫
dσ√
ωR

p

(
ωR

pZ + i

2
PZ

)
e−ipσ ,

aLy(p) = 1√
2π

∫
dσ√
ωL

p

(
ωL

pȲ + i

2
PȲ

)
e−ipσ ,

aRy(p) = 1√
2π

∫
dσ√
ωR

p

(
ωR

pY + i

2
PY

)
e−ipσ , (G.10)

with creation operators given by complex conjugation. The annihilation operators for the massive 
fermions are

dLȧ(p) = +e+iπ/4

√
2π

∫
dσ√
ωL

p

εȧḃ

(
f L

p ηL
ḃ + igL

pη̄R
ḃ
)
e−ipσ ,

dR
ȧ (p) = −e+iπ/4

√
2π

∫
dσ√
ωR

p

εȧḃ
(
f R

p ηRḃ + igR
p η̄Lḃ

)
e−ipσ . (G.11)

The corresponding creation operators are found by taking the complex conjugate and raising or 
lowering the su(2) indices as appropriate. The representation parameters f L

p , f R
p , gL

p , gR
p and the 

dispersion ωL
p , ωR

p are given in Section 3.2.1. In the same way, for the massless bosons we define

aȧa(p) = 1√
2π

∫
dσ√
ω̃p

(
ω̃pXȧa + i

2
Pȧa

)
e−ipσ , (G.12)

where Xȧa = (Xȧa)†. For the massless fermions we define

d̃a(p) = e−iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃pχ̄+a − ig̃pεabχ−b

)
e−ipσ ,

da(p) = e+iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃pεabχ+b − ig̃pχ̄−b

)
e−ipσ . (G.13)

All these operators satisfy canonical (anti)commutation relations.
In terms of these creation and annihilation operators, the supercharges become:

QL
ȧ =

∫
dp
[(

dL
ȧ†aLy + εȧḃa

†
LzdLḃ

)
f L

p + (
a

†
RydR

ȧ + εȧḃd
†
Rḃ

aRz

)
gR

p

+ (
εȧḃd̃a†a ˙ + aȧa†da

)
f̃p

]
,
ba
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QRȧ =
∫

dp
[(

d
†
RȧaRy − εȧḃa

†
RzdR

ḃ
)
f R

p + (
a

†
LydLȧ − εȧḃdL

ḃ†aLz

)
gL

p

+ (
da†aȧa − εȧḃa

ḃa†d̃a

)
g̃p

]
. (G.14)

Appendix H. Parametrisation of the S-matrix elements

In this appendix we define the coefficients of the su(1|1)2
c.e. S-matrix elements introduced in 

Section 4.1. We have

ALL
pq = 1, BLL

pq =
(

x−
Lp

x+
Lp

)1/2 x+
Lp − x+

Lq

x−
Lp − x+

Lq

,

CLL
pq =

(
x−

Lp

x+
Lp

x+
Lq

x−
Lq

)1/2 x−
Lq − x+

Lq

x−
Lp − x+

Lq

ηL
p

ηL
q

, DLL
pq =

(
x+

Lq

x−
Lq

)1/2 x−
Lp − x−

Lq

x−
Lp − x+

Lq

,

ELL
pq = x−

Lp − x+
Lp

x−
Lp − x+

Lq

ηL
q

ηL
p

, F LL
pq = −

(
x−

Lp

x+
Lp

x+
Lq

x−
Lq

)1/2 x+
Lp − x−

Lq

x−
Lp − x+

Lq

, (H.1)

and

ALR
pq =

√√√√x+
Lp

x−
Lp

1 − 1
x+

Lpx−
Rq

1 − 1
x−

Lpx−
Rq

, CLR
pq = 1,

BLR
pq = −2i

h

√√√√x−
Lp

x+
Lp

x+
Rq

x−
Rq

ηL
pηR

q

x−
Lpx+

Rq

1

1 − 1
x−

Lpx−
Rq

, DLR
pq =

√√√√x+
Lp

x−
Lp

x+
Rq

x−
Rq

1 − 1
x+

Lpx+
Rq

1 − 1
x−

Lpx−
Rq

,

F LR
pq = 2i

h

√√√√x+
Lp

x−
Lp

x+
Rq

x−
Rq

ηL
pηR

q

x+
Lpx+

Rq

1

1 − 1
x−

Lpx−
Rq

, ELR
pq = −

√√√√x+
Rq

x−
Rq

1 − 1
x−

Lpx+
Rq

1 − 1
x−

Lpx−
Rq

. (H.2)

Note that the appearance of h in these last formulae is an artefact of our definition of ηp . Once 
we express this in terms of x±, there is no explicit dependence on h.

The remaining S-matrix elements follow by left–right symmetry.
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