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ABSTRACT2

Big data require new techniques to handle the information they come with. Here we consider3
four datasets (email communication, Twitter posts, Wikipedia articles and Gutenberg books) and4
propose a novel statistical framework to predict global statistics from random samples. More5
precisely, we infer the number of senders, hashtags and words of the whole dataset and how6
their abundances (i.e. the popularity of a hashtag) change through scales from a small sample of7
sent emails per sender, posts per hashtag and word occurrences. Our approach is grounded on8
statistical ecology as we map inference of human activities into the unseen species problem in9
biodiversity. Our findings may have applications to resource management in emails, collective10
attention monitoring in Twitter and language learning process in word databases.11

Keywords: Upscaling of large datasets, Regular patterns in human activity data, Statistics of complex human dynamics, Computer-12
mediated social activities, Popularity of Twitter hashtags13

1 INTRODUCTION
In ecology one of the most studied emerging patterns is the Relative Species Abundance (RSA), that gives14
the fraction of species with the same number of individuals. To determine large scale RSA features from15
the distribution of species abundances within a small random sample is a major challenge in ecology and16
through years plenty of methods have been proposed Good and Toulmin (1956); Harte et al. (2009); Chao17
and Chiu (2014); Slik et al. (2015); Orlitsky et al. (2016). The success of such methods depends on the18
following notable fact: different ecosystems like tropical forests or coral reefs Volkov et al. (2003, 2007);19
Slik et al. (2015); Tovo et al. (2017), despite their disparate locations and different evolutionary history,20
share a common log-series shape of the empirical RSA which implies that the number of different species21
grows as the logarithm of the population size (see Figure 1). In the present paper we adopted and extended22
a statistical framework which was firstly designed in ecology Tovo et al. (2017, 2019a) to get new insights23
into human activity databases with the aim of inferring global statistics of a dataset from a random sample24
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of it. Indeed, we consider four human activities with the following correspondence between species and25
individuals within each dataset: (1) Email communication Formentin et al. (2014, 2015): here we set the26
sender identity to label a species and the number of sent emails to be the number of individuals pertaining27
to a species; (2) Twitter posts Monechi et al. (2017): here hashtags play the role of species and the number28
of different tweets containing a certain hashtag represents its population size; (3) For Wikipedia articles29
Monechi et al. (2017) and (4) Gutenberg books Monechi et al. (2017) we use the following setting: each30
word is a different species while its abundance is given by the number of occurrences of the word in the31
dataset. We remark that this latter dataset is somehow different from the other three as it consists of word32
occurrences in a corpus, representing thus a construction of natural languages. However, also natural33
language can be considered as the result of complex interactions among individuals over a long period of34
time and that is why we included this dataset in our study on human activities. Once defined, as we did35
above, what correspond to species and individuals, the RSA of each dataset displays a Zipf tail Monechi36
et al. (2017) and the rate at which new elements appear shows a sublinear power-law growth, signature of37
the Heap’s law (see also Figure 1). Statistical regularities in human dynamics have been widely observed in38
many different contexts and a variety of models have been proposed to understand such recurrent patterns39
Barabási and Albert (1999); Barabási (2005); Alfi et al. (2007); Malmgren et al. (2008, 2009); Loreto et al.40
(2011); Bagrow et al. (2011); Loreto et al. (2012); Yasseri et al. (2012); Török et al. (2013); Gao et al.41
(2014); Deville et al. (2016); Grauwin et al. (2017); Yasseri et al. (2017); Karsai et al. (2018). In particular,42
Zipf’s laws have been observed since decades in computational linguistic and many models generating43
such laws have been proposed (see Baayen (2002) and Kornai (2007) for a review). However, in the present44
work we focus on inference, not modeling. In particular, we propose a statistical framework: 1) that gives45
reliable estimates for the number of users, hashtags, and words from a random sample of mails, posts and46
word occurrences (see Table 1). We refer to the inference of global quantities of interest from random47
samples as upscaling. Moreover, our framework predicts how the number of users/hashtags/words grows48
with the recorded activity (mails/posts/pages/books) (see Figure 2); 2) We infer how the abundance of a49
species may change across scales (see Table 2). This for example means that, observing a small portion of50
tweets and the popularity of a given hashtag among them, we can predict whether it will remain popular or51
not in the unseen part of the network.52

In our statistical model we make the hypothesis the RSA distribution of the four human activity datasets53
can be described by a negative binomial with a clustering coefficient in the range (−1, 0) (see also54
Supplementary Section S1.1). This choice, justified by the heavy tail of the observed RSAs (see Figure 3),55
has the major consequence that the RSA is form-invariant. Form-invariance should not be confused56
with scale-invariance, a property only satisfied by power-laws (see Supplementary Section S1.2). With57
form-invariance we mean that when a portion of individuals are randomly sampled, the resulting RSA is58
still negative-binomially distributed with a heavy tail showing the same exponent as of the whole dataset59
(see Figure 3 and Supplementary Section S1.2). Form-invariance property of the RSA allows us to build60
reliable estimators for the number of new features (new email users, new hashtags, new words) at each61
scale of the dataset starting from random samples of the whole databases. Our approach brings two main62
novelties/advantages. First, the choice to model the distribution of the occurrence frequencies according63
to a negative binomial distribution. In particular, the idea of exploiting its form-invariance property to64
obtain an effective yet simple estimator which explicitly depends on the scale is new. Actually, to our65
knowledge, upscaling has never been investigated for email communication and Twitter datasets whereas in66
linguistic different parametric and non parametric statistical models has been used to infer how the number67
of types grows as new samples are added Baayen (2002). Second, within our framework we also derive an68
estimator for how the type abundances change across scales. This problem, as far as we know, has not been69
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previously investigated although it could be of interest when interpreting abundances of types as a measure70
of popularity in social network data.71

72

2 RESULTS
To start with, we illustrate our approach, its potentiality and the kind of results it can provide as applied to73
e-mail communication. We consider the senders activity network where each node is a user and a directed74
link from node A to node B represents an email issued from user A to user B. We set the identity of a sender75
to label the species and the number of sent emails to be the individuals pertaining to a species. Thus, for76
instance, if user A has sent n emails we say that species A has n individuals. Suppose an observer have77
access to a small sample of sent emails, or, equivalently, to partial information on links and nodes of the78
email communication network. Our approach allows to infer the number of nodes (i.e. the number of users)79
and the link statistics of the whole network, thus revealing features previously unknown to the observer80
(see Figure 2).81
Correspondence between species/individuals and human activities can be set similarly for the remaining82
datasets (see Figure 1). Our statistical ecology approach gives the following results:83

• RSA universality and form-invariance. In each activity the RSA of the whole dataset turns out84
to be heavy tailed with an exponent between -1.8 and -1.4 (see Figure 3). Moreover, this exponent85
is maintained at different scales (see Supplementary Figures S1 and S2), supporting our choice of86
modeling the RSA by means of a form-invariant distribution that keeps fixed the tail exponent through87
scales.88

• Inference of unseen human activities. On the scale invariance property of the RSA we build a89
statistical framework which gives robust and accurate estimates for the number of email senders,90
Twitter hashtags, words of Wikipedia pages and Gutenberg books from a random sample of sent mails,91
posts and word occurrences (see Table 1). Moreover, our framework allows to reconstruct the growth92
of the number of users/hashtags/words with the recorded activity (mails/posts/pages/books), which93
represents another well-known pattern in ecological theory called the Species-Accumulation Curve94
(SAC) (see Figure 2).95

• Popularity in social networks. In Twitter and in social networks in general, popularity is known to be96
relevant, for instance, to manipulate mass opinion or to share information. One naive way to measure97
the popularity of a hashtag is to count the number of times it appears in other users’ tweets. In our98
ecological interpretation, a hashtag represents a species, while the number of posts associated to it,99
gives the species’ abundance. Within our framework, we can infer how the abundance of a species100
changes across scales (see Table 2), thus allowing to monitor whether a locally popular hashtag will101
remain popular also in the undetected part of the network or not.102

In the following we give the key steps of our upscaling framework. Denote with N the population size103
and with S the number of species (i.e. senders, hashtags, words) of the whole database. Given a scale104
p∗ ∈ (0, 1), consider a random sample of size p∗N in which we recover Sp∗ ≤ S species. In the following105
we denote by P (n|p∗) the fraction of species with n individuals at scale p∗, i.e. the sample RSA. We106
assume that, at the global scale p = 1, P (n|1) is proportional to a negative binomial distribution, P(n|r, ξ),107
with parameters r ∈ (−1,+∞) \ {0} and ξ ∈ (0, 1):108

P (n|1) = c(r, ξ)P(n|r, ξ) for n ≥ 1 (1)
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where the normalizing factor c(r, ξ) = 1/(1 − (1 − ξ)r) takes into account that each of the S species109
consists of at least one individual at the global scale.110
RSAs given in (1) have the following features: 1) values of r ∈ (−1, 0) reflect in a heavy-tailed behavior of111
the RSAs. More precisely, the right tail of (1) has the form nr−1 exp(n log ξ) (see Supplementary Section112
S1.3), where the exponential cut-off disappears in the limit ξ → 1. In this latter case (1) describes a pure113
power-law tail behavior. Such heavy-tailed behavior well describes the observed RSA patterns in human114
activities (see Supplementary Figure S1). Moreover, the exponent α = 1− r matches very well with the115
empirical data (see also Figure 3). 2) Distribution (1) is form-invariant, meaning that the RSA P (n|p)116
maintains the same functional form at different scales p (see Supplementary Section S1.2), a property117
observed in the empirical RSAs of all the four databases (see Figure 3). In mathematical terms, the RSA118
at any scale p is again proportional to a negative binomial distribution with the same r and a rescaled119
parameter120

ξp = pξ/(1− ξ(1− p)). (2)

Properties 1) and 2) are the building blocks of our predictive statistical framework.121
Our goal is to infer the total amount of species S (senders, hashtags, words) present in the entire database122
given the number of species Sp∗ observed in a sample at the local scale p∗ and their corresponding123
abundance (number of mails, posts, occurrences). From this limited information, we can construct the124
empirical values of the RSA, P (n|p∗), and fit it to obtain the estimates r̂ and ξ̂p∗ of the parameters that125
best capture the behavior of the sampled data. Finally, thanks to the form-invariance property, one can126
obtain the value of the global parameter ξ̂ via eq. (2) (henceforth we will denote with ·̂ our estimation of127
any quantity ·).128
Let us observe that the probability that a given species present at p = 1 is missing at p < 1 corresponds to129
the fraction of unobserved species (S − Sp)/S. This value must be equal to P (0|p) = 1− c(r, ξ)/c(r, ξp),130
the probability for a species to have zero population in a sample of size pN (see Supplementary Section131
S1.4). Thus:132

Ŝ '
Sp∗

1− P (0|p∗)
' 1− (1− ξ̂)r̂

1− (1− ξ̂p∗)r̂
Sp∗ , (3)

where the last approximation is obtained by the definition of c(r, ξ) and expressing ξ̂ as a function of ξ̂p∗133
by inverting eq. (2).134
To test the reliability of estimator (3), we extracted, from each dataset, ten sub-samples each covering a135
fraction p∗ = 5% of the databases’ individuals (sent emails, posted hashtags, occurrences of words). We136
then inferred the total number of species (email senders, posted hashtags in Twitter data and different words137
in Wikipedia pages and Gutenberg books) from the empirical RSA constructed at p∗ = 5%. The average138
relative upscaling error is small in all four cases: about 0.1% for sent emails, 3% for Twitter hashtags, 6%139
for Wikipedia words and -2% for Gutenberg words. In Table 1 we report the average values of the fitted140
parameters together with the average relative percentage error between the predicted number of species, Ŝ,141
and the true one, S (mean and standard deviation are displayed for all datasets). See Supplementary Table142
S1 and Figures S3-S4 for the results obtained by considering different fractions p∗ of the four datasets as143
starting information.144
The second novelty that we introduce in our work is a method to estimate the variation of popularity, a145
fundamental concept arising naturally when investigating human dynamics Mestyán et al. (2013); Shen146
et al. (2014); Zhao et al. (2015); Yucesoy and Barabási (2016); Sinatra et al. (2016); Jia et al. (2017). Indeed,147
until now we exploited the information on the abundance of the observed species at the local scale only to148
estimate the number of unseen species, disregarding of their abundances. Instead, abundance information149
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can be used to predict, for example, the most active users of the email network, the commonest words150
in a book or the popularity of a hashtag in Twitter database. In particular, focusing on Twitter, various151
sophisticated measures of popularity based on semantic analyses have been proposed (see for instance152
Colladon (2018)). Here, by mean of the popularity of a hashtag we naively count the number of posts153
containing it that come to circulate within the network thanks to other users’ tweets. This information is154
encompassed within the RSA pattern. Indeed, hashtags posted a low number of times are those positioned155
in the left side of the curve, whereas hashtags with high popularity are located in its right tail. Our goal156
now is to derive an estimator for the change in popularity of hashtags from a portion p∗ of the observed157
tweets to the remaining 1− p∗ fraction of the unobserved tweets.158
Let us thus denote by L a fixed threshold of posts above which we consider a hashtag popular at the159
sampled scale p∗ and let us indicate with Sp∗(≥ L) the number of different hashtags having abundance160
at least L in the surveyed collection of posts. We wish to check whether these (locally) popular species161
result to be popular also in the unseen fraction of the network, 1− p∗. Let us then denote by K the fixed162
popularity threshold at the unsurveyed scale. We are looking for an estimator of the number of species163
having popularity at least K in the 1 − p∗ unseen part of the tweets, given that they have popularity at164
least L at scale p∗. These species, which we denote with Ŝ1−p∗(≥ K| ≥ L) are therefore globally popular165
within the network.166
From our theoretical framework, we derive an estimator of such a quantity (see Supplementary Section167
S1.5). We define Sp∗(l) to be the number of species having popularity exactly l at scale p∗ and S1−p∗(k|l)168
to be the number of species having popularity exactly k at scale 1 − p∗ given that they have popularity169
exactly l at scale p∗. Then we obtained the following estimator for S1−p∗(k|l) (see Supplementary Section170
S1.5 for details):171

Ŝ1−p∗(k|l) = Sp∗(l) ·
(k+l
l

)
p∗l(1− p∗)k

(k+l+r̂−1
k+l

)
ξ̂k+l(1− ξ̂)r̂(l+r̂−1

l

)
ξ̂lp∗(1− ξ̂p∗)r̂

= Sp∗(l)

(
k + l + r̂ − 1

k

)
· p
∗l(1− p∗)kξ̂k+l(1− ξ̂)r̂

ξ̂lp∗(1− ξ̂p∗)r̂

(4)

An estimator for Ŝ1−p∗(≥ K| ≥ L) can thus be obtained by summing up (4) for all k ≥ K and for all172
l ≥ L. We tested the above estimator by fixing the (arbitrary) value of the threshold L equal to 25 and173
varying the value of K in the (arbitrary) range from 219 to 548 for ten sub-samples of Twitter database (for174
different choices of L and K see Supplementary Table S2). The average errors obtained in the predictions175
are displayed in Table 2. For all the considered cases, we achieved very good estimates, with an average176
relative percentage error below 0.2% in absolute value.177

3 DISCUSSIONS
To conclude, we show how our statistical ecology framework could be successfully applied to human178
activities. We tested our method in four databases: email sender activity, Twitter hashtags, words in179
Wikipedia pages and Gutenberg books. Once set the correspondence to what we consider species and180
individuals of a species, our approach reveals that the RSA is scale-free in each mentioned dataset181
with a heavy-tailed form maintained at different scales - with roughly the same exponent - through the182
different human activities considered (see Figure 3). This form-invariant property allows for a successful183
implementation of our predictive statistical framework. However, the heavy tail of the observed RSAs184
cannot be captured by a standard negative binomial distribution with r ∈ R+. Nevertheless, such behaviours185
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can be accommodated when allowing the clustering parameter r to take negative values, r ∈ (−1, 0) (see186
Materials and Methods and Supplementary Figure S1). This allows us to exploit the form-invariance187
property of the negative binomial distribution to propose an estimator for the statistics of the unseen human188
activity from small random samples. In particular, from the activity (sent emails per senders, posts per189
hashtags, word occurrences) in a small random samples, we infer the number of species (senders, hashtags,190
words) at the global scale. Moreover, we predict how the popularity of species changes with the scale,191
an issue of evident importance when thinking of social networks like Twitter. Finally, we compare our192
estimates with the true known values and in all the considered databases the relative error is small (see193
Table 1, Table 2 and Supplementary Section S2). This result confirms the ability of our theoretical method194
to capture hidden quantities of the human dynamics when only random samples are available. Our results195
pave the way for new applications in upscaling problems beyond statistical ecology.196

197

Indeed, our findings may have applications in different situations, spreading from resource management198
in emails to collective attention monitoring in Twitter and to language learning process in word databases.199
Let us see one example for each aforementioned context of how our framework could help in decision200
making processes related to different aspects of social activity networks. Let us start from the resource201
managing application. Suppose an internet/email provider starts a campaign to increase customers; for202
instance the provider wishes to double the number of subscribers. Now, in order to predict if more resources203
(e.g. number of servers in the email example) are necessary to supply the newly entered subscribers, the204
provider needs to infer the total amount of activity bursting thanks to these new users. Our method provides205
a possible solution to this inference problem. Indeed, by inverting eq. (3), which represents the well-known206
species-accumulation curve in theoretical ecology, one obtains an analytical link between the total amount207
of activity (e.g. number of sent emails) and the number of users. In particular, the activity does not grow208
linearly with the users, as one may naively guess. Thus, the information our framework provides on the209
species-accumulation curve may help the provider to decide how many further resources are needed for the210
expected number of new users. Clearly, this knowledge is useful either to avoid money waste in case no211
further resources are required, or to provide new structures/servers in advance in order to safely support the212
user activity and not to loose unsatisfied customers. Moreover, being aware of how many new structures213
are needed also helps balance their costs of installation, managing and maintenance with the profit coming214
from subscriptions.215
A second application regards attention monitoring and information spreading. Nowadays social networks216
constitutes a fundamental source for spreading information and disinformation as well. They have being217
exploited to influence the mass opinion and attention in many different social contexts, from politics to218
economy Margetts et al. (2015). It is enough to think about the influencer phenomenon arising in almost219
all social networks. In Twitter, popularity of a user may be read from the number of times a hashtag s/he220
initiated appears in other users’ tweets. In our ecological interpretation, a hashtag represents a species,221
while the number of posts associated to it gives the species’ abundance. Therefore, if the species s/he222
represents comes to be part of the right tail of the RSA distribution, it constitutes one of the community223
dominant species and thus we can say s/he is popular, whereas if it comes to fall at the left tail of the224
RSA, it is a hyper-rare species, thus not having received the desired attention. Therefore, in order to225
control someone’s position within the global network, it is necessary to have access to the RSA at the226
whole community scale. However, this datum is usually not provided by the social network managing227
organization. Twitter, for example, only releases information on the total number of tweets posted across228
time. Nevertheless, there are other services as the Sample Tweets APIs or the Decahose stream service229
which provide the clients with real-time random samples covering small percentages (up to 10%) of the230
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total tweets. With this information, our framework offers the possibility to fully reconstruct the global RSA231
as well as to monitor how the number of popular hashtags scales from the monitored sample up to the whole232
activity network. This latter information may also be useful for governments or public administrations in233
general to communicate important news (health information, emergency procedures, elections etc...) to234
the citizens. In particular, our method allows to know the number of further tweets one eventually needs235
to effectively spread the information, thus allowing to undertake the proper measures (a bigger publicity236
campaign to obtain more followers, the development of bot applications, etc.) to achieve the goal.237
Finally, our theoretical framework may also be exploited in language learning process monitoring. For238
example, let us suppose one is learning a foreign speech. S/he may then be interested in the number of239
books that are needed s/he needs to read in order to be sure to expand her/his own vocabulary in order for240
it to cover a fixed percentage of all the speech words. The species-accumulation curve emerging in this241
context thanks to our ecological correspondence between words/species and occurrences/abundances can242
thus be interpreted in a broader sense as a learning curve, with the total number of words encountered243
during the learning process (by dialogue experience, frontal lectures or personal readings) in the x-axis and244
the number of different words s/he manages to properly exploit in her/his speech in the y-axis.245

4 MATERIALS AND METHODS
4.1 Datasets246

In this study we considered four databases concerning human activities: emails, Twitter, Wikipedia and247
Gutenberg. Here we give a brief description of the data. For further details, see Formentin et al. (2014) for248
email dataset and Monechi et al. (2017) for Twitter, Wikipedia and Gutenberg data.249

250

Emails. This dataset is a collection of almost 7 millions emails, that corresponds to the activity of a251
Department of the Università degli Studi di Padova during two years: 2012 and 2013. The collected data252
are in the form {sender, receiver, timestamp}. For our analysis, we selected the first column of the table253
Formentin et al. (2014).254

255

Twitter. Our dataset consists of a table where each row is of the form {timestamp, hashtag, user}. For256
our purposes, we selected the second column of the table. Dataset can be found in http://kreyon.net/waves-257
of-novelties/ Monechi et al. (2017).258

259

Wikipedia and Gutenberg. Our data represents all words contained in a collection of Wikipedia pages260
and books. We label each different word with a different number. Note that the same word always maintain261
its correspondence to the same number, regardless of the Wikipedia page or book it belongs Monechi et al.262
(2017).263

4.2 Power-law tails of the negative binomial with a negative clustering coefficient264

A negative binomial density function with parameters ξ and r > 0 results to capture very well265
empirical RSA patterns in tropical forests Tovo et al. (2017, 2019a). The observed RSAs in the analyzed266
human-activity databases, although displaying a similar universal character, do show a different behavior,267
characterized by heavy tails (see Figure 3). These heavy tails of the observed RSAs cannot be captured by268
a standard negative binomial distribution with r ∈ R+. Nevertheless, extending the clustering parameter269
region to take negative values, r ∈ (−1, 0), reflects in a power-law behavior of the RSA distribution tail270
with an exponential cut-off. To show this, let us consider a truncated negative binomial distribution of271
parameters r and ξ at the global scale (henceforth we will write P (n) for P (n|1)). The following theorem272
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holds true Walraevens et al. (2012); Flajolet and Sedgewick (2008).273
274

Theorem. Let Y (z) be the generating function of a discrete random variable having probability mass275
function P (·) with dominant singularity RY . Let β ∈ R \ {0, 1, 2, ...}. If for z → RY276

Y (z) ∼ cY (1− z/RY )β ,277

then the distribution P (n) satisfies278

P (n) ∼
cY n

−β−1R−nY
Γ(−β)

for n→∞,279

where Γ(·) is the Gamma function.280
281

Let us thus examine the probability generating function of our truncated negative binomial:282

Y (z) =
∞∑
n=0

P (n)zn,283

where P (n) is given in (1). Now, since we are interested in the singularities of Y (z), we can neglect the284
normalizing factor c(r, ξ). Moreover, as the tail of a truncated negative binomial is exactly the same of285
a standard negative binomial, here we simply disregard of the truncation and conduct the analysis for a286
standard negative binomial. It then turns out (see Supplementary Section S1.3 for details) that Y (z) has a287
singularity at z = 1/ξ and that it can be expressed as:288

Y (z) = cY (1− zξ)−r = cY (1− z/RY )β,289

where we set β = −r and RY = 1
ξ . Thus, Theorem above provides a characterization of the tails of the290

(truncated) negative binomial:291

P (n) ∼ cY n
r−1ξn

Γ(−β)
=

cY n
r−1en ln(ξ)

Γ(−β)
, n >> 1.292

The cut-off thus depends on ξ. In particular, the power-law range is greater for values of ξ close to 1.293
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Figure 1. From Ecology to Human Activities. The figure depicts the correspondence between
species/individuals in a natural ecosystem and users/sent emails, hashtags/posts, words/occurrences in each
one of the four datasets considered in the paper. Once the proper correspondence is established, it turns out
that both natural and artificial RSAs can be well described by a negative binomial distribution. In the latest
two columns, in order to show the typical shapes of the RSA and SAC curves for natural versus human
activity systems, we display the empirical patterns obtained for the Amazonia rainforest Tovo et al. (2017)
and Twitter dataset. In general, all human activity RSA curves can be accommodated by with a negative
value of r in the interval (−1, 0), whereas natural ecosystems prefer r > 0 (solid lines).
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Figure 2. Sketch of our theoretical framework. Consider the email senders’ network where each node
is a sender and a directed link from node A to node B is an email issued from user A to user B. We set the
identity of a sender to be the species and a sent email to be an individual of that species. For instance, if the
user A has sent n emails, then the species A has n individuals. If an observer has access to a fraction p∗
of the sent emails, s/he can partially recover the network (top-left) and the RSA curve at the local scale p
(bottom-left). Within our framework, this information suffices to infer the number of species and the RSA
curve at the global scale p = 1 (bottom-right). In terms of the network, the number of species corresponds
to the number of users or nodes and the RSA gives the degree statistics. In this sense, our method reveals
network features pertaining to the whole community activity initially unknown to the observer (top-right).
Moreover, we can predict how the number of users increases with the number of links recorded, (i.e. the
SAC curve in ecology), an information that may be used to optimize network design forecasting its growth.

Frontiers 13



Tovo et al. Upscaling human activity data

1 10 100 1000 104 105
1

10

100

1000

104
105
106

Number of Sent Mails

N
um
be
ro
fU
se
rs

Mails

1 10 100 1000 104 105 106
1

10

100

1000

104
105

Number of Occurrences
N
um
be
ro
fW

or
ds

Gutenberg

1 10 100 1000 104 105
1

10

100

1000

104
105

Number of Occurrences

N
um
be
ro
fW

or
ds

Wikipedia

1 10 100 1000 104 105
1

100

104

106

Number of Posts

N
um
be
ro
fH
as
ht
ag
s

Twitter
p = 1

p = 5%
p = 1

p = 5%

p = 1
p = 5%

p = 1
p = 5%

α = 1.795

α = 1.543 α = 1.426

α = 1.824

Figure 3. Universality and form-invariance of the empirical RSAs. Empirical RSA curves at the global
scale (p = 1) and the local scale (p = 5%) are shown. The patterns result scale-free in all the analysed
datasets, with a heavy-tailed form maintained through the different human activities and scales. This
scale-invariance property of the RSAs allows for a successful implementation of our theoretical framework.
In particular, our model predicts that the heavy-tail exponent α is related to the clustering parameter r
of the RSA negative binomial distribution via the relation α = 1 − r (see Materials and Methods and
Supplementary Section S1.3). In each plot, for a visual inspection, we inserted a black line with slope
−α = −1 + r̂, where r̂ have been obtained by fitting the local patterns at p = 5% through a negative
binomial (see also Table 1). We can see that such lines describe very well the heavy-tail regime of the
empirical RSAs at both local and global scale in all four cases. For the RSA fitting curves and predicted
patterns, see Supplementary Figure S1.
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TABLES

Table 1. Predicted relative errors. Upscaling results for the number of species of the four analysed
datasets from local samples covering a fraction p∗ = 5% of the corresponding global dataset. For each
human activity, we display the number of species (users, hashtags, words) and individuals (sent mails,
posts, occurrences) at the global scale together with the fitted RSA distribution parameters at the sampled
scale and the relative percentage error (mean and standard deviation) between the true number of species
and the one predicted by our framework. See Supplementary Figure S1 for the corresponding fitting curves
and predicted global RSA patterns.

Emails Twitter Wikipedia Gutenberg
Species 752, 299 6, 972, 453 673, 872 554, 193

Individuals 6, 914, 872 34, 696, 973 29, 606, 116 126, 289, 661
r −0.795 −0.824 −0.543 −0.426
ξp∗ 0.9999 0.9991 0.9985 0.9997

Relative Error 0.112 ± 0.385% 3.33 ± 0.17% 6.11 ± 0.118% -2.30 ± 0.23%

Table 2. Percentage errors for popularity change predictions in Twitter database. For a fixed L = 25
and different values of K (first and second column), we estimated, from ten different Twitter sub-samples
(p∗ = 5%), the number of species having abundance at least K at the unobserved scale 1−p∗ = 95% given
that they have abundance at least L at the sampled scale p∗ via estimator (4). The average among the ten
sub-samples of the true numbers of species, S1−p∗(≥ K| ≥ L), and of the ones predicted by our method,
Ŝ1−p∗(≥ K| ≥ L), among the ten sub-samples are displayed in the third and fourth columns, respectively.
Finally, in the last two columns, we inserted the mean and the variance of the relative error obtained in the
ten predictions. Similar results have been obtained for other values of L and K (see Supplementary Table
2).

L K S1−p∗(≥ K| ≥ L) Ŝ1−p∗(≥ K| ≥ L) Relative Error Variance
25 219 5, 977 5, 976.80 0.0018131 0.0000282
25 329 5, 943 5, 950.31 0.0448228 0.01097890
25 439 5, 667 5, 688.88 0.0896268 0.0609518
25 548 5, 064 5, 055.71 −0.1793290 0.0877951
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Supplementary Material

S1 THEORETICAL FRAMEWORK

S1.1 Statistical model

Once it has been defined what are species and individuals of a species in each of the four human activities
considered, we can proceed in the explanation of our statistical model from an ecological perspective.
We denote with N the total population size and with S the number of different species populating an
ecosystem.
The species abundance distribution (SAD) at a scale p depicts the number of species in a subpopulation of
size pN having exactly n individuals. In the following we will quote as RSA the corresponding probability
distribution, denoted by P (n|p).
Let us now consider the whole system, i.e. the entire population. We assume that, at the global scale p = 1,
the RSA distribution is proportional to a negative binomial with parameters r and ξ. It reads:

P (n|1) = c(r, ξ) · P(n|r, ξ) for n ≥ 1 (S1)

where P(n|r, ξ) is the well known negative binomial density function with parameters r and ξ, i.e.

P(n|r, ξ) =

(
n+ r − 1

n

)
ξn(1− ξ)r

and where the normalizing factor c(r, ξ) takes into account the fact that each of the existing S species at
the global scale consists of at least one individual:

c(r, ξ) =

[ ∞∑
n=1

(
n+ r − 1

n

)
ξn(1− ξ)r

]−1

=
1

1− (1− ξ)r
.

Through the paper we always consider the generalized negative binomial distribution where the binomial
coefficient is expressed by means of Gamma functions, i.e.

(n+r−1
n

)
= Γ(n+r)

Γ(n+1)Γ(r) .
The reason why we chose to model the RSA distribution with a negative binomial will be clear in few lines.
For the moment, let us anticipate that the negative binomial has two properties that are essential for the
development of our estimators: it is form-invariant (see Section S1.2) and, varying the values of ξ and r, it
can describe very well different tail behaviors, from exponential to power-law (see Section S1.3).

S1.2 Form-invariance of the RSA distribution

Zooming at a sub-scale p, i.e. considering a subpopulation of size pN , we will recover Sp ≤ S species.
Note that Sp may depend on which pN individuals we select. In other words, different samples of the same
size may lead to different values of Sp. We wish to derive the distribution of the local RSA P (k|p) under
the hypothesis of random sampling.
Under random sampling, it can be proven that, if the RSA at the global scale is distributed according
to (S1), then the local RSA at a local scale p is again proportional to a negative binomial, with rescaled

1
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parameter ξp and same r:

P (k|p) =


c(r, ξ) · P(k|r, ξp) k ≥ 1

1− c(r, ξ)/c(r, ξp) k = 0
(S2)

with
ξp =

pξ

1− ξ(1− p)
. (S3)

The fact that the RSA maintains the same functional form at different scales will be central in our framework.
We will refer to this property as form-invariance. We remark that form-invariance should not be confused
with scale-invariance. In fact, this latter is defined as the following property: a distribution f is said to
be scale-invariant if f(px) = g(p)f(x) where g(p) is a multiplicative scale-dependent constant. It can be
proven that power-laws are the only distributions satisfying this property. In contrast, with form-invariant
we mean a distribution which maintains the same functional form under random sampling.
We wish now to prove that relation (S2) holds.
Suppose that a species consists of n individuals among the whole population. Under random sampling, the
conditional probability that the species has k individuals at the sub-scale p, given that it has total abundance
n at the global scale, is given by a binomial distribution of parameters n and p:

Pbinom(k|n, p) =

(
n

k

)
pk(1− p)n−k k = 0, ..., n

and Pbinom(k|n, p) = 0 if k > n. Let us now prove that the RSA at the local scale P (k|p) is indeed
distributed according to (S2).
We start by noticing that, in order to compute the probability that a species has abundance k ≥ 1 at a local
scale p, we need to condition on the fact that the species has abundance n at the whole scale p = 1, and
then to sum over n, i.e.

P (k|p) =
∑
n≥k
Pbinom(k|n, p)P (n|1)

=
∑
n≥k

(
n

k

)
pk(1− p)n−k · c(ξ, r)

(
n+ r − 1

n

)
ξn(1− ξ)r

= c(ξ, r)

(
k + r − 1

k

)(
pξ

1− ξ(1− p)

)k (
1− ξ

1− ξ(1− p)

)r

= c(ξ, r)

(
k + r − 1

k

)
ξkp (1− ξp)r

= c(ξ, r) · P(k|r, ξp),

with ξp given in (S3). For k = 0 we have

P (0|p) = 1−
∑
k≥1

Psub(k|p) = 1− c(ξ, r)
∑
k≥1

P(k|r, ξp) = 1− c(ξ, r)

c(ξp, r)
.

2



Supplementary Material

Our method proceeds as follows: after fitting the parameters ξ̂p∗ and r̂ from the empirical RSA observed at
a local scale p∗, we upscale them so to obtain an estimation of the global parameter ξ̂ at p = 1 by inverting
(S3). The formula reads explicitly:

ξ =
ξp∗

p∗ + ξp∗(1− p∗)
. (S4)

Note that this form-invariance holds between any two scales q ≤ p. Indeed, from

ξp =
pξ

1− ξ(1− p)
and ξq =

qξ

1− ξ(1− q)

we obtain

ξq =
qξ

1− ξ(1− q)
=

q
ξp

p+ξp(1−p)

1− ξp
p+ξp(1−p)(1− q)

=
qξp

p+ ξp(1− p)− ξp(1− q)

=
qξp

p− ξp(p− q)
=

q
pξp

1− ξp(1− q
p)
.

With the same argument, for any q ≥ p it holds

ξq =
ξp

p
q + ξp(1− p

q )
. (S5)

Hence what really matters is the relative ratio of the two scales.

S1.3 Power-law tails of P(n|r, ξ) with r ∈ (−1, 0)

A negative binomial density function with parameters ξ and r > 0 results to capture very well empirical
RSA patterns in tropical forests Tovo et al. (2017, 2019). The observed RSAs in the analyzed human-activity
databases, although displaying a similar universal character, do show a different behavior, characterized
by heavy tails (see Figure S2 and Figure 3 of the main text). These heavy tails of the observed RSAs
cannot be captured by a standard negative binomial distribution with r ∈ R+. Nevertheless, they can
be accommodated when allowing the clustering parameter r to take negative values, r ∈ (−1, 0), thus
enabling us to adapt and generalize the theoretical work of Tovo et al. (2017) to portray regular statistics of
human activities and to use information on local scales to predict hidden features of the human dynamics at
the global scale.
We wish now to show that the extension of the parameter region reflects in a power-law behavior of the RSA
distribution tail with an exponential cut-off, which well describes the observed patterns in human activities.
We point our that both the parameters intervene in the shape of the RSA patterns, being r responsible
for the power-law tail with exponent α = 1 − r and ξ for the position of the exponential truncation of
the distribution. Note that, although this section is purely theoretical, the predicted exponent α = 1− r
matches very well our findings when we empirically fit the data (see also Figure 3 of the main text).
We start by considering our truncated negative binomial distribution of parameters r and ξ at the global
scale (henceforth we will write P (n) for P (n|1), thus omitting the explicit dependence on the scale p = 1):

P (n) = c(r, ξ)

(
n+ r − 1

n

)
ξn(1− ξ)r, (S6)
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The following theorem holds true Walraevens et al. (2012); Flajolet and Sedgewick (2008).

THEOREM S1.1. Let Y (z) be the generating function of a discrete random variable having probability
mass function P (·) with dominant singularity RY . Let β ∈ R \ {0, 1, 2, ...}. If for z → RY

Y (z) ∼ cY (1− z/RY )β , (S7)

then the distribution P (n) satisfies

P (n) ∼
cY n

−β−1R−nY
Γ(−β)

for n→∞, (S8)

where Γ(·) is the Gamma function.

We wish to apply this theorem to our truncated negative binomial distribution. Let us first recall that
a singularity of a complex function is a point in the complex plane where the function is not analytic.
Examples are poles, square-root branch points and branch cuts.
We now start by examining the probability generating function:

Y (z) =
∞∑
n=0

P (n)zn, (S9)

where P (n) is given in (S6). Observe that, since we wish to investigate the singularities of Y (z), the
normalizing factor c(r, ξ) does not play any significant role. Moreover, the tail of a truncated negative
binomial is exactly the same of a standard negative binomial, hence we simply disregard of the truncation
and conduct the analysis for a standard negative binomial.
Since we aim at finding the lowest-norm singularity of the probability generating function Y (z), we
proceed with the computation by replacing the term P (n) in (S9) with its definition (S6):

Y (z) =
∞∑
n=0

(
n+ r − 1

n

)
ξn(1− ξ)rzn

=
∞∑
n=0

(
n+ r − 1

n

)
(zξ)n(1− zξ)r · (1− ξ)r

(1− zξ)r

=
(1− ξ)r

(1− zξ)r
·
∞∑
n=0

(
n+ r − 1

n

)
(zξ)n(1− zξ)r.

For zξ < 1, i.e. for z < 1
ξ , the sum converges to 1 as we are summing over N the marginals of a standard

negative binomial of parameters r and zξ.
Thus we are left with

Y (z) =
(1− ξ)r

(1− zξ)r
= cY (1− zξ)−r.
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It turns out that Y (z) has a singularity at z = 1/ξ.
We now wish to express Y (z) as in (S7) to apply the theorem. In our case:

Y (z) = cY (1− zξ)−r = cY (1− z/RY )β,

where we set β = −r and RY = 1
ξ . Thus, Theorem (S1.1) provides a characterization of the tails of the

(truncated) negative binomial:

P (n) ∼ cY n
r−1ξn

Γ(−β)
=

cY n
r−1en ln(ξ)

Γ(−β)
, n >> 1. (S10)

S1.4 Estimator for the total number of species and SAC

We proceed now in the description of our procedure. Recall that our method only uses the information
available at a sub-sample covering a fraction p∗ of the entire system. Therefore, we only have information
on the abundances of the Sp∗ species present within the surveyed area. We now wish to determine the
relationship between the total number of species S in the entire population, i.e. at p = 1, and the number of
observed species at the sub-scale p∗.
Note that the probability that a species among the existing S has null abundance at scale p∗ corresponds to
the fraction of unsurveyed species. Hence we obtain

P (k = 0|p∗) '
S − Sp∗

S
. (S11)

Arranging the latter equation, we get a formula to predict the total number of species:

Ŝ
eq (S11)

=
Sp∗

1− P (k = 0|p∗)

eq (S2)
= Sp∗

1− (1− ξ̂)r̂

1− (1− ξ̂p∗)r̂

eq (S4)
= Sp∗

1−

(
1−

ξ̂p∗

p∗ + ξ̂p∗(1− p∗)

)r̂
1− (1− ξ̂p∗)r̂

.

(S12)

Thus we derived a formula to estimate the total number of species of a community given a sample at scale
p∗.
Let us note that we can do more. Indeed, for any q ∈ (p∗, 1) we can apply the same chain of equations as
above with some slight modifications to estimate Ŝq:

Ŝq = Sp∗

1−

(
1−

ξ̂p∗
p∗

q + ξ̂p∗(1− p∗

q )

)r̂
1− (1− ξ̂p∗)r̂

= Sp∗

1−

 p∗
(

1− ξ̂p∗
)

p∗ + ξ̂p∗ (q − p∗)

r̂

1− (1− ξ̂p∗)r̂
. (S13)
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Hence we obtained an explicit formula for the species-accumulation curve for every q ≤ 1 from the local
up to the global scale.
Moreover we can express the RSA distribution at the global scale by plugging the estimated parameters ξ̂
and r̂ into (S1).

S1.5 Popularity and abundance variation through scales

Note that until now we studied the abundance distribution of the observed species at the local scale, but
only to estimate the number of unseen species, disregarding of their abundances. However, abundance
information may of relevance in some contexts. For example, if one is interested in measuring the popularity
of hashtags in Twitter, one naive way to do that is to count the number of times it has been posted. A
second novelty we introduced in our work is indeed a method to estimate the variation of popularity in
social networks. Let us first recall our previous findings using a more detailed notation which turns out to
be essential in the following.

DEFINITION S1.2. For every s = 1, ..., S, we indicate with np
∗
s , n

1−p∗
s the abundance of species s in

the observed (resp. unobserved) fraction p∗ (resp. 1− p∗) of the population.

• First, let us introduce the statistics:

Sp∗ =
S∑
s=1

1{np
∗

s >0}

whose expected value can be computed as follows:

E [Sp∗ ] = E

[
S∑
s=1

1{np
∗

s >0}

]
=

S∑
s=1

E
[
1{np

∗
s >0}

]
=

S∑
s=1

P
(
np

∗
s > 0

)

= S · P (k > 0|p∗) = S · [1− P (k = 0|p∗)] .

• Arranging the latter equation, we can isolate the quantity we are interested to estimate:

S =
E [Sp∗ ]

1− P (k = 0|p∗)
. (S14)

• An estimator of S can be thus obtained by replacing the mean E [Sp∗ ] by the observable Sp∗:

Ŝ =
Sp∗

1− P (k = 0|p∗)
(S15)

With no surprise, we recover the same result as in (S12). We wish to stress that this new formulation
allows us to push further our investigation, as we are going to show.

We wish now to apply the same procedure to different statistics.
Recall that we are sampling Sp∗ species at scale p∗ from a pool consisting of N individuals belonging to S
different species. If a species s is not observed in the sample at scale p∗, we say that s is a “new” species.
The meaning of this definition can be easily explained. If you imagine to further sample your population,
you can either pick individuals belonging to species already observed or you can discover indeed “new”

6



Supplementary Material

species.
Let us then consider the following statistics for the new species:

Snew
1−p∗ =

S∑
s=1

1{np
∗

s =0,n1−p∗
s >0}. (S16)

The following chain of equality turns out to be meaningful in the following:

Snew
1−p∗ =

S∑
s=1

1{np
∗

s =0,n1−p∗
s >0} =

S∑
s=1

1{np
∗

s =0,n1s>0}

=
S∑
s=1

1{np
∗

s =0} =
S∑
s=1

(
1− 1{np

∗
s >0}

)
= S − Sp∗ .

We can recover an estimator for the “new” species from estimator (S15) for S.
This remark seems trivial, and the chain of equation above appears redundant. Nevertheless, it is crucial for
the development of our work. We stress that the statistics Snew

1−p∗ uses both the information at the sample
scale p∗ and the information contained in the unseen fraction of the population 1 − p∗. In contrast, the
statistics for Sp∗ only consider the observed individuals.
Given now the statistics (S16) representing the number of species unobserved in the sample of size p∗N
but present in the remaining population of size (1− p∗)N . We wish to recover an estimator for the new
species Snew

1−p∗ . We thus compute the expected value of the corresponding statistics:

E
[
Snew

1−p∗
]

= E
S∑
s=1

1{np
∗

s =0,n1−p∗
s >0} = S · P

(
np

∗
s = 0, n1−p∗

s > 0
)

= S · P
(
np

∗
s = 0, n1

s > 0
)

= S · P
(
np

∗
s = 0

)
︸ ︷︷ ︸
P (k = 0|p∗)

.

The expected value turns out to be a product of two factors: P (k = 0|p∗) = P(np
∗
s = 0), which can be

computed via (S2), and S, a quantity we can estimate via (S15). Hence we derive the following estimator:

Ŝnew
1−p∗ =

Sp∗

1− P (k = 0|p∗)
· P (k = 0|p∗).

This procedure captures the techniques which allows us to derive other useful estimators.
In particular, this turning point leads us to new statistics that consider also the popularity.
Let us start from the statistics:

Snew
1−p∗(l) =

S∑
s=1

1{np
∗

s =0,n1−p∗
s =l}. (S17)

Note that if we get an expression for Snew
1−p∗(l), than we can easily extend the result to

Snew
1−p∗(≥ L) =

·∑
l=L

Snew
1−p∗(l).
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Moreover, results from the previous section can be included here, simply noticing that:

Snew
1−p∗ = Snew

1−p(≥ 1) =
·∑

l=1

Snew
1−p∗(l).

We proceed as before by computing the expected value:

E
[
Snew

1−p∗(l)
]

= E
[∑S

s=1 1{np
∗

s =0,n1−p∗
s =l}

]
= S · P

(
np

∗
s = 0, n1−p∗

s = l
)

= S · P
(
np

∗
s = 0, n1

s = l
)

= S · P
(
np

∗
s = 0|n1

s = l
)

︸ ︷︷ ︸
Binomial(n1

s, p
∗)

P
(
n1
s = l

)︸ ︷︷ ︸
P (l|1)

,

where in the third equality we used the following relation:

P
(
np

∗
s = x, n1−p∗

s = y
)

= P
(
np

∗
s = x, n1

s = x+ y
)
.

Let us note now the following facts:

• From the sampling binomial distribution, it holds that P
(
np

∗
s = 0|n1

s = l
)

= (1− p∗)l;

• P
(
n1
s = l

)
= P (l|1) is given by (S1);

• S is unknown and we thus need an estimator for it.

Again, we can use the results of the previous subsection to define Ŝ =
Sp∗

1− P (k = 0|p∗)
and hence to

obtain
Ŝnew

1−p∗(l) = Ŝ · (1− p∗)l · P (l|1) =
Sp∗

1− P (k = 0|p∗)
· (1− p∗)l · P (l|1), (S18)

which is the estimator for the new species with abundance l.
Thus, as a first partial result, we obtained an estimator for the popularity of the new species.
Let us now consider the statistics:

S1−p∗(l→ k) =
S∑
s=1

1{np
∗

s =l,n1−p∗
s =k}, (S19)

which represents the number of species having contemporarily abundance l at the observed scale p∗ and
abundance k at the unobserved scale 1− p∗. Note that we can compute the number of species having an
abundance that lies within a population interval by summing up on different values of l and k. We proceed
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by computing the expected value of the statistics (S19):

E [S1−p∗(l→ k)] = E
[∑S

s=1 1{np
∗

s =l,n1−p∗
s =k}

]
= S · P

(
np

∗
s = l, n1−p∗

s = k
)

= S · P
(
np

∗
s = l, n1

s = k + l
)

= S · P
(
np

∗
s = l|n1

s = k + l
)

︸ ︷︷ ︸
Binomial(n1

s, p
∗)

P
(
n1
s = k + l

)︸ ︷︷ ︸
P (k + l|1)

.

Now we have the following:

• From the sampling binomial distribution, it holds that P
(
np

∗
s = l|n1

s = k + l
)

=

(
k + l

l

)
p∗l(1− p∗)k;

• P
(
n1
s = k + l

)
= P (k + l|1) = c(r, ξ)

(
k + l + r − 1

k + l

)
ξk+l(1− ξ)r;

• S is unknown. However, we can estimate it via Ŝ =
Sp∗

1− P (k = 0|p∗)
.

Hence we obtained

Ŝ1−p∗(l→ k) = Ŝ · P
(
np

∗
s = l|n1

s = k + l
)
· P (k + l|1)

=
Sp∗

1− P (0|p∗)
·
(
k + l

l

)
p∗l(1− p∗)k · c(r, ξ̂)

(
k + l + r̂ − 1

k + l

)
ξ̂k+l(1− ξ̂)r̂.

Estimator Ŝ1−p∗(l → k) above gives the number of species with abundance l at the observed scale p∗

and abundance k at the unobserved scale 1 − p∗. Note that this estimator is independent of the number
of species with abundance l at scale p∗; indeed, we are using the sample at scale p∗ only to estimate the
parameters ξp∗ and r, which we need to predict Ŝ. Hence we are only using partial information at the local
scale.
We wish now to take into account the information about the number of species with abundance l at the
surveyed scale, Sp∗(l). In particular, we are looking for an estimator of the species with abundance k in
the unobserved fraction 1 − p∗ of the population, given that they have abundance l in the sample at the
observed scale p∗.
We thus define Sp∗(l) :=

∑S
s=1 1{np

∗
s =l}.

In the following we will need to use quantities of the type P(n1−p∗
s = k|np

∗
s = l).

Using Bayes’ theorem, we obtain

P(n1−p∗
s = k|np

∗
s = l) = P(n1

s − n
p∗
s = k|np

∗
s = l)

= P(n1
s − l = k|np

∗
s = l)

= P(n1
s = k + l|np

∗
s = l)

=
P(np

∗
s = l|n1

s = k + l)P(n1
s = k + l)

P(np
∗
s = l)

.

Note that we all the probabilities appearing in the latter formula are known, since:
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• P
(
np

∗
s = l|n1

s = k + l
)

=

(
k + l

l

)
p∗l(1− p∗)k is the sampling binomial distribution;

• P
(
n1
s = k + l

)
= P (k + l|1) = c(r, ξ)

(
k + l + r − 1

k + l

)
ξk+l(1− ξ)r is the global truncated negative

binomial distribution of parameters r and ξ as in (S1);

• P
(
np

∗
s = l

)
= P (l|p∗) = c(r, ξ)

(
l + r − 1

l

)
ξ∗lp (1− ξp∗)r is again a truncated negative binomial

with rescaled parameter ξp as in (S2).

Let us now retrace the same steps as for Ŝ1−p∗(l→ k) for the conditional estimator Ŝ1−p∗(k|l). We start
from the statistics

S1−p∗(k|l) =
S∑
s=1

1{np
∗

s =l}1{n1−p∗
s =k,np

∗
s =l} =

Sp∗(l)∑
s=1

1{n1−p∗
s =k|np

∗
s =l}.

We proceed by computing the expected value

E [S1−p∗(k|l)] = Sp∗(l) · P
(
n1−p∗
s = k|np

∗
s = l

)
= Sp∗(l) ·

P
(
np

∗
s = l|n1

s = k + l
)
P
(
n1
s = k + l

)
P
(
np

∗
s = l

) .

Note that empirically P
(
np

∗
s = l

)
= Sp∗(l)/S, so that we can recover E [S1−p∗(l→ k)] .

Let us now insert into the above formula the probabilities computed by using the fitted parameters:

Ŝ1−p∗(k|l) = Sp∗(l) ·

(
k + l

l

)
p∗l(1− p∗)k ·

(
k + l + r̂ − 1

k + l

)
ξ̂k+l(1− ξ̂)r̂(

l + r̂ − 1

l

)
ξ̂lp∗(1− ξ̂p∗)r̂

,

where the terms c(r, ξ̂) in the numerator has cancelled out with the one at the denominator.
Estimator Ŝ1−p(k|l) is theoretically unbiased.
Note that, again, we can pass from punctual estimation to cumulative ones, by summing up over all l and k
values above some fixed thresholds L and K, respectively:

Ŝ1−p∗(≥ K| ≥ L) =
∑
l≥L

∑
k≥K

Ŝ1−p∗(k|l) (S20)

Estimator (S20) is the one we are going to test in our databases.

S2 ADDITIONAL RESULTS AND FIGURES

In this section we collect some additional results not presented in the main text.

S2.1 Upscaling results from sample scale p∗ = 3%

In the main text we showed the results we obtained with our upscaling method when sampling a fraction
p∗ = 5% of the four databases. We performed the same tests also for a local scale p∗ = 3%, with similar
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Figure S1: Best-fit and predicted patterns from a local sample scale p∗ = 5%. Empirical RSA curves
at global scale (p = 1) and local scale (p∗ = 5%) are shown. In each panel, coloured lines over the local
RSAs represent the distribution obtained via a best-fit of the empirical pattern with a negative binomial
having r ∈ (−1, 0). Lines over the global RSA distributions represent our prediction for the RSAs at the
global scales obtained via our upscaling equations for both the parameters and the biodiversity. In each
panel, insets showing the corresponding global cumulative RSA (both empirical and predicted) are added.

results.
First of all, as shown in Figure S2, also for the case p∗ = 3% we observe the form-invariance property of
the empirical RSAs for all the considered human activity datasets.
Moreover, as for p∗ = 5%, we tested the reliability of estimator (S12) in predicting the total number of
species in the different networks when only a random portion of them is extracted. Table S1 displays the
relative percentage error we obtained for the different databases together with the total dataset composition
and the values of the parameters fitted from the empirical RSAs at p∗ = 3%.

S2.2 Upscaling results for popularity change

In the main text we exhibited in Table 2 the results for the predictions of popularity (via the conditional
estimator S20) in the unsurveyed fraction 1− p∗ = 0.95 of the population for a fixed value of the local
popularity threshold L = 10. In Table S2 we show the results obtained for different values of L and K.
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Figure S2: Universality and form-invariance of the empirical RSAs. Empirical RSA curves at the global
scale (p = 1) and the local scale (p∗ = 3%) are shown. RSA is scale-free in all the four datasets analyzed,
with a power-law form maintained through the different human activities and scales. RSA form-invariance
property is at the core of our theoretical framework.

Emails Twitter Wikipedia Gutenberg
Species 752, 299 6, 972, 453 673, 872 554, 193

Individuals 6, 914, 872 34, 696, 973 29, 606, 116 126, 289, 661
r −0.788 −0.828 −0.549 −0.422
ξp∗ 0.9997 0.9976 0.9987 0.9994

Relative Error -2.74% 4.41% 8.22% -3.52%
Table S1. Predicted relative errors. Upscaling results for the number of species of the four analysed
datasets from a local sample covering a fraction p∗ = 3% of the global database. For each database, we
display the number of species (users, hashtags, words) and individuals (sent mails, posts, occurrences) at
the global scale, together with the fitted RSA distribution parameters at the sampled scale and the relative
percentage error between the true number of species and the one predicted by our framework.

S2.3 Local Analysis

We also tested how estimator (S12) performs on different spatial sub-scales. In this case, due to the huge
amount of data, we chose to work with a smaller datasets for a systematic analysis. In particular, we
considered as global four samples of the original datasets each covering a fraction p∗ = 5% of the total
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Table S2. Percentage errors for popularity change predictions in Twitter database. For L =
10, 40, 55 (first column) and different values of K(second column), we estimated, from ten different
Twitter samples (at p = 5%), the number of species having abundance at least K at the unobserved scale
1 − p∗ = 95% given that they have abundance at least L at the sampled scale p∗ (see estimator 4 of the
main text). The average true number of species S1−p∗(≥ K| ≥ L) and the average one predicted by our
method among the ten sub-samples are displayed in the third and fourth columns, respectively. Finally, in
the last two columns, we inserted the mean and the variance of the relative error obtained among the ten
predictions.

L K S1−p∗(≥ K| ≥ L) Ŝ1−p∗(≥ K| ≥ L) Relative Error Variance
10 77 14, 266 14, 274.38 −0.0029 0.0012
10 115 14, 113 14, 105.65 0.0534 0.0151
10 154 13, 551 13, 544.76 0.2457 0.0428
10 192 12, 509 12, 584.32 0.4679 0.0731
10 231 11, 305 11, 366.66 0.5372 0.0965
40 362 3, 749 3, 748.99 −0.0001 ≈ 0
40 543 3, 742 3, 741.96 0.0393 0.0058
40 724 3, 591 3, 578.83 −0.0715 0.0668
40 905 3, 096 3, 091.45 0.0368 0.0660
40 1, 086 2, 600 2, 582.75 −0.5634 0.0370
55 504 2, 673 2, 673.00 ≈ 0 ≈ 0
55 756 2, 672 2, 670.96 −0.0141 0.0013
55 1, 008 2, 569 2, 567.71 −0.0978 0.0565
55 1, 260 2, 195 2, 199.11 0.0023 0.0557
55 1, 512 1, 806 1, 820.01 0.1286 0.2070

amount of data (see Figure S3).
We then randomly sub-sampled the reduced 5% databases at different sub-scales p∗∗ ranging from 10% to
90% and applied our framework to predict the number of species observed at p∗ (here considered as p = 1).
In Figure S3, bottom panels, we displayed the relative percentage error graphs between the true number
of species, S∗, and the one predicted from the local information at the different sub-scales p∗∗. We see
that, for all datasets and sub-scales, our method always led to an error below 5%. Moreover, it displays an
intuitive decreasing behavior as the available information increases, a desirable property for an estimator.
We performed the same analysis also starting from a sample at the scale p∗ = 3%, obtaining comparable
results (see Figure S4).
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Figure S3: Relative percentage errors at different sub-scales from p∗ = 5%. Starting from a sample
at p∗ = 5% of each human activity database, we sub-sampled it at different spatial sub-scales p∗∗ ∈
{10%, . . . , 90%} of p∗ and computed the relative percentage error between the number of predicted species,
Ŝ∗, and the true number of species, S∗, observed in the sample at p∗, here considered as the global scale
(p∗ = 1).
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Figure S4: Relative percentage errors at different sub-scales from p∗ = 3%. Starting from a sample
at p∗ = 3% of each human activity database, we sub-sampled it at different spatial sub-scales p∗∗ ∈
{10%, . . . , 90%} of p∗ and computed the relative percentage error between the number of predicted species,
Ŝ∗, and the true number of species, S∗, observed in the sample at p∗, here considered as the global scale
(p∗ = 1).
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