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We consider current-current deformations that generalize TT̄ ones, and show that they may be also
introduced for integrable spin chains. In analogy with the integrable QFT setup, we define the deformation
as a modification of the S matrix in the Bethe equations. Using results by Bargheer, Beisert and Loebbert
we show that the deforming operator is composite and constructed out of two currents on the lattice; its
expectation value factorizes like for TT̄. Such a deformation may be considered for any combination of
charges that preserve the model’s integrable structure.
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Introduction.—Exactly solvable models play a crucial
role in theoretical physics. Important examples arise in
lattice systems, such as spin chains, and in two-dimensional
quantum field theory (QFT). Integrable (quantum) spin
chains are known since the pioneering work of Bethe [1],
who showed how to characterize the spectrum of the
Heisenberg model in terms of a simple set of polynomial
equations. To date, the technique to solve this and other
more complicated spin chains goes under the name of
Bethe ansatz [2], see also Ref. [3] for a recent review. Bethe
ansatz methods found applications also in two-dimensional
QFTs—we talk then of integrable QFTs (IQFTs)—even
though the details there are more involved, as it may be
expected. Regardless, their physics is similar: integrable
spin chains as well as IQFTs possess an infinite number of
conserved charges, mutually commuting, which greatly
constrain their dynamics (see e.g., Refs. [4,5] for reviews of
integrability).
Integrable models are not easy to find. Therefore, it often

makes sense to construct new models as deformations of
known ones. For two-dimensional QFTs, one such way to
construct models is to consider current-current deforma-
tions, that is to say to define an α-deformed Hamiltonian
HðαÞ by the differential equation

d
dα

HðαÞ ¼ OXY ¼
Z

dxXμðx; αÞYνðx; αÞϵμν; ð1Þ

where Xμ and Yμ are conserved currents,

∂
∂tX

0 ¼ −
∂
∂xX

1;
∂
∂tY

0 ¼ −
∂
∂xY

1: ð2Þ

It can be shown following [6] that the composite operator
OXY is well defined at the quantum level by point-splitting
regularization. Moreover, its expectation value factorizes
on energy and momentum eigenstates,

hOXYi ¼
Z

dxhXμðαÞihYνðαÞiϵμν: ð3Þ

One well-studied setup is when both currents arise from
the same irrotational conserved current J μ. In this case
setting Xμ ≡ J μ and Yμ ≡ ϵμνJ ν gives rise to the so-called
JJ̄ deformations. These are very natural for two-dimen-
sional conformal QFTs (CFTs), as they preserve scale
invariance. The well-definedness of OXY and the factori-
zation (3) are quite natural then, as we are dealing with
chiral and antichiral currents.
More recently, another current-current deformation has

attracted much attention: the TT̄ deformation [7,8] con-
structed out of the stress-energy tensor Tμν. It can be
defined as in (1) by setting Xμ ¼ Tμ0 and Yμ ¼ Tμ1. The
resulting theory is Poincaré invariant, and it has numerous
intriguing properties. First of all, the factorization (3)
together with the relation of Tμν to energy and momentum
allows us to turn (1) into a flow equation for the energy
levels of the theory,

∂αHðR; αÞ ¼ HðR; αÞ∂RHðR; αÞ þ 1

R
P2: ð4Þ

Here HðR; αÞ is the energy of a given state in volume R in
the α-deformed theory, while P ¼ 2πn=R is the (quantized)
momentum, n ∈ Z. This yields the spectrum of any
deformed theory from the undeformed one. Moreover, this
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sort of deformation is very good at respecting symmetries,
such as supersymmetry [9–12], modular invariance [13],
and most remarkably integrability [7,8]. This means that if
the original theory is integrable—it possesses infinitely
many conserved charges that constrain its dynamics—then
the deformed theory is as well. This also applies if the
original theory is a CFT, by virtue of its integrable structure,
cf. [14–16]. Despite this constrained structure, our under-
standing of TT̄ deformations is far from complete. As the
deformation is irrelevant, the resulting theory is quite
unusual from a Wilsonian point of view. These deforma-
tions seem related to gravity [17–20], random geometries
[21], and string theory [8,22–27] (see also [28,29] for
earlier observations of the relation between strings and TT̄,
and [30–32] for relations with holography).
To obtainmore insight into such a deformationwemay try

to define it in the presumably simpler framework of quantum
mechanics, as opposed to QFT. Work in this direction,
inspired by holography, was done in [33]. Here we take a
different road, focusing on integrable models. Both IQFTs
and integrable spin chains are described by Bethe ansatz
techniques. Moreover, TT̄ deformations may be defined
using the Bethe ansatz [8,34]. This is even true for
generalized versions of TT̄, where the currents in (1) are
chosen among the infinitely many conserved commuting
charges of the theory, as suggested in [7] (one needs however
to use generalizations of the Bethe ansatz machinery [35]).
Below we introduce a spin-chain version of TT̄ defor-

mations (more generally, of current-current deformations)
starting from the Bethe ansatz, which we briefly review.
Our task is helped by previous studies of integrable spin-
chain deformations [36,37]. It is then easy to see that the
deforming operator obeys a discretized version of (1), and
that the spin-chain equivalent ofOXY also factorizes like in
(3). Still the resulting deformations are all but trivial, as we
discuss on some examples.
At a late stage of this work, Ref. [38] appeared; therein,

among other things, the relation between TT̄ deformations
and Refs. [36,37] was also noted and used to obtain a
discretized version of (1), which appears to agree with our
own (19).
Integrable deformations in the Bethe ansatz.—When we

consider an IQFT in large volume, that is with R ≫ 1=m if
m is the typical mass scale of the theory, the spectrum can
be approximately described by the Bethe-Yang equations in
terms of the S matrix Sðpj; pkÞ,

eipjR
YN
k≠j

Sðpj; pkÞ ¼ 1; j ¼ 1;…N; ð5Þ

for a state containing N particles of momenta p1;…pN .
Equation (5) holds for a single-flavor theory, where
Sðpj; pkÞ is a C number. More flavors can be described
using nested Bethe equations, see, e.g., [3], which for us is

merely a technical complication. The exact (finite-R)
spectrum is given by thermodynamic Bethe ansatz
(TBA) equations, which differ from the Bethe-Yang equa-
tions by terms of order e−mR [39,40]. We refrain from
introducing the TBA as it would obscure our exposition.
With these caveats in mind, (5) provides quantization
conditions for the momenta pj. The energy H can be then
computed when all particles are well separated,

H ¼
XN
j¼1

HðpjÞ; ð6Þ

where for a relativistic theoryHðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. We may

deform such a theory by multiplying Sðpj; pkÞ by a scalar
prefactor which preserves unitarity and the theory’s sym-
metries [34]—a so-called Castillejo-Dalitz-Dyson (CDD)
factor [41]. This may be written as a skew-symmetric
expression in the commuting conserved charges of the
theory [42,43]. This modifies (5) as

Sðpj; pkÞ → eiαðXjYk−XkYjÞSðpj; pkÞ; ð7Þ

where Xj is the value of some charge X on the state jpji,
and similarly Yj. Equations (5) and (7) may be rewritten in
terms of the original S-matrix as

eipjRþiαðXjY−YjXÞ
YN
k≠j

Sðpj; pkÞ ¼ 1: ð8Þ

Here X ¼ P
j Xj and Y ¼ P

j Yj are the total values of the
charges, cf. (6). A TT̄ deformation arises for Xj ¼ pj and
Yj ¼ HðpjÞ. Taking for simplicity P ¼ 0, we immediately
see that the total-energy contribution αH shifts the volume
R. The flow Eq. (4) may be derived from this construction,
or from the TBA construction (also for P ≠ 0) [8]. This
setup is even more general: X and Y can be any two
commuting charges acting diagonally on well-separated
multiparticle states jp1;…pNi: e.g., they may be flavor
charges, or they may belong to the infinite family of
mutually commuting charges of the IQFT. The general
setup [(7) and (8)] is our starting point for discussing spin-
chain deformations.
Bethe ansatz for integrable spin chains.—Let us review

the Bethe ansatz for spin chains. A good example is the
Heisenberg model (see, e.g., [2,3]) but much of what we
will say applies more generally. Consider a one-dimen-
sional model of R ordered sites, each hosting a spin in the
fundamental representation of suð2Þ, with local (nearest-
neighbor) interactions and Hamiltonian

H ¼
X
j

hj;jþ1: ð9Þ
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In the suð2Þ-invariant (Heisenberg) case, hj;jþ1 is essen-
tially the permutation operator which swaps two neighbor-
ing spins. It turns out that like in IQFT, in infinite volume
R ¼ ∞,H is just one of infinitely many conserved charges
Hn, all mutually commuting. They can all be generated by
expanding a “transfer matrix,” see, e.g., [2,3]. Higher
charges Hn are longer and longer range so that n both
labels the charge and indicates its range (in this sense
H≡H2). When R is finite and we impose periodic
boundary conditions, we may write down a set of Bethe
ansatz equations [1–3]. Formally this reads exactly like (5).
Now pj are momenta of some magnons—fictitious exci-
tations over an arbitrary vacuum. In practice, the vacuum
state is given by the single lowest-spin state in the Hilbert
space (all spins “pointing down”); this is not necessarily the
lowest-energy state.Amagnonofmomentump corresponds
to overturning a single spin in a plane-wave configuration of
definite momentum. Remark that, while this system is not
relativistic, it enjoys translation invariance. In particular, the
shift operator U which moves each site to the right,
j ↦ ðjþ 1Þ, commutes with all Hn (both when R ¼ ∞
and for periodic boundary conditions); the spin chain is
homogeneous. On a multimagnon state we have that

Ujp1;…; pNi ¼ e−iðp1þ���þpNÞjp1;…; pNi: ð10Þ

The energy of a state is still given by (6), up to a constant
shift due to the vacuum energy which we will disregard.
Similar formulae hold for the Hns, in terms of densities
HðnÞðpÞ which may be determined from the transfer matrix,
see, e.g., [44] for a few examples. Importantly, the
dispersion relation for the various charges is no longer
relativistic but it takes a periodic form, e.g., HðpÞ ≈ sin2 p.
This periodicity is a signature of the lattice structure;
indeed, had we explicitly introduced a spacing between
the lattice sites, this would have featured in the dispersion.
CDD deformations of a spin chain.—Given that formally

both IQFTs and (certain) integrable spin chains are
described by Bethe equations, it is tempting to try to
generalize TT̄ deformations to spin chains through the
CDD deformation (7)–(8). A natural question is what the
deformed Hamiltonian HðαÞ might be and whether it
describes a bona fide spin chain. Thankfully, this question
was answered in broad generality in Refs. [36,37]. There
the authors consider all deformations that preserve inte-
grability and order by order in α give rise to a local
homogenous spin chain—whose Hamiltonian is sum over a
finite-range density like (9). In practice, they consider
deformations induced by

d
dα

HnðαÞ ¼ i½OðαÞ;HnðαÞ�; ð11Þ

where the operator OðαÞ should be judiciously chosen so
that the right-hand side is a local homogeneous operator.

The undeformed Hns give initial conditions. The upshot
[37] of this definition is that by Jacobi identity

d
dα

½HnðαÞ;HmðαÞ� ¼ i½OðαÞ; ½HnðαÞ;HmðαÞ��: ð12Þ

Hence the original algebra is preserved by such a defor-
mation (in particular when ½Hn;Hm� ¼ 0). Moreover, (11)
may be formally integrated

HnðαÞ ¼ Hnð0Þ þ i
Z

α

0

dα0½Oðα0Þ;Hnðα0Þ�; ð13Þ

and solved perturbatively in small α [37], yielding longer-
range terms at each order. The authors of [36,37] list several
choices of OðαÞ. Remarkably, there is one that corresponds
to (7)–(8), and is given by a bilocal operator

O ¼ ½XjY� ¼
X
a≲b

xayb ¼
X
a≲b

ybxa; ð14Þ

defined on an infinite chain. This features the two local-
operator densities xa, yb acting at sites a, b with finite
range. The sum denoted by “≲” is such that the two
densities do not overlap, and hence commute [45]. Under
this condition, it can be shown [37] that (14) generates
precisely the CDD factor (7) when used in Eq. (11), with Xj

in (7) satisfyingXjpji¼Xjjpji (and similarly Yj). Remark
that this construction is rigorous for infinite chains. The α
expansion gives increasing-range operators, so that for
finite chain the construction is correct until the operator
range exceeds the chain length (“wrapping order”) [37].
The deforming operator.—To make contact with ordi-

nary TT̄ deformations, let us work out an explicit form of
the flow equation (11) for the Hamiltonian (i.e., for n ¼ 2).
The right-hand side depends on i½H;xa� ¼ ðd=dtÞxa and
ðd=dtÞyb (recall that H≡H2 is the generator of time
evolution),

d
dα

HðαÞ ¼ −
X
a≲b

�
xa

dyb
dt

þ yb
dxa

dt

�
: ð15Þ

Recall that xa and yb commute (14). To evaluate this
expression, it is convenient to introduce a discretized
version of the continuity equation (2),

dxa

dt
¼ −Δχa ≡ χa−1 − χa; ð16Þ

where χa is the current corresponding to xa at site a,
similarly ya and ηa. Plugging (16) into (15), one of the two
sums telescopes, and we find

dH
dα

¼
X
a

Oxyða; rÞ≡
X
a

ðyaþrχa − ηaþr−1xaÞ: ð17Þ
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To obtain this form, we assumed that the xa and yb were
separated by a range r in (14) and that we may discard the
current flow at the end on the (infinite) chain. This equation
is reminiscent of the “current-current” deformation (1); it
would match it if we could define a Lorentz vector
XμðaÞ ¼ ðxa; χaÞ—a current with “discrete” conservation
law (16). Even though this is improper, as the theory is not
Lorentz invariant, it is worth noting that the expression in
(17) satisfies all the nice properties of current-current
operators pointed out in [6]. The expectation value
hψ jOxyða; rÞjψi on an eigenstate of H does not depend
on r; more precisely

ΔðrÞhψ jOxyða; rÞjψi ¼ 0: ð18Þ

Equation (18) followsalmostverbatim fromZamolodchikov’s
arguments [6] up to trading the space derivative for its discrete
version Δ, and using the fact that the spin chain is homo-
geneous. Therefore we can set r ¼ 0 in (17),

d
dα

hψ jHðαÞjψi ¼
X
a

hψ jyaχa − ηa−1xajψi; ð19Þ

which closely reminds (1) [46]. Additionally, by r independ-
ence and the fact that the spin-chain is homogenous, one can
show that the expectation value of Oxyða; rÞ factorizes and

hψ jOxyjψi
R

¼ hψ jyjψihψ jχjψi − hψ jηjψihψ jxjψi; ð20Þ

wherewe suppressed thedependenceona inxa, etc., thanks to
translation invariance. This holds on the eigenstates jψi ofH
(and of X and Y, which we assumed to commute with it).
Equation (20) also holds on to any state of the position-space
basis, because the two operators do not act on the same sites.
Flow of higher charges.—The machinery of Ref. [37]

allows us to study the variations of any of the mutually
commuting chargesHn, not just ofH. The main difference
is that in deriving (15) we will encounter commutators like
i½Hn;xa�. These may be interpreted as the time evolution
generated from the “Hamiltonian” Hn, similarly to the
“Hamiltonians” which generate the invariant tori for the
Liouville-Arnol’d theorem in classical mechanics (cf. [47]).
It was put forward in Ref. [38] based on earlier work
[48,49] that generalized current operators may be intro-
duced with respect to these flows (the relation between such
currents and long-range chains was noted in [49]). Once
that is observed, all steps leading to Eq. (19) may be
repeated verbatim, and all properties of Oxyða; rÞ will hold
by the same arguments.
Deformation by spin and energy.—As a first example,

we consider the Heisenberg chain and take the two
operators appearing in (14) to be the suð2Þ spin along
one preferred direction, and the Hamiltonian density,
respectively:

xa ¼ sa; yb ¼ hb;bþ1: ð21Þ

The spin S commutes with H and all other Hn. When
integrating (13) we encounter a simplification:

d
dα

S ¼ 0: ð22Þ

Still ðd=dαÞH ≠ 0. The effect of such a deformation in the
Bethe ansatz is to introduce a CDD factor of the form
ðsjHk − skHjÞ. Up to a normalization, Hj ≈ sin2ðpjÞ; as
for sj, each magnon increases the spin by one unit,
sj ¼ þ1. Therefore we get the (asymptotic) Bethe equa-
tions

eipjRþiαðHjN−HÞ YN
k≠j

Sðpj; pkÞ ¼ 1; ð23Þ

while (6) remains unchanged. One immediate consequence,
obvious from the form of our deformation, is that suð2Þ
invariance is broken [50]. Such deformations were studied
in [44] for the XXZ model, which has no suð2Þ symmetry
from the get-go, but may be considered for any model with
flavor symmetry at the price of breaking it to its Cartan
subalgebra.
Deformations by higher charges.—References [36,37]

focus on deformations by arbitrary combinations of the
higher charges, i.e.,

O ¼ ½HnjHm�; n; m ≥ 2: ð24Þ

In principle these arbitrary deformations are defined in
terms of the same “current-current” operator (19). In
practice we expect the deformation to be fairly unwieldy
already at first orders in α. It is worth remarking that even in
QFT analogous deformations are only partially understood.
In particular, recent efforts to describe generalized TT̄
deformations involving higher charges have pointed to the
necessity of introducing a “mirror” (in the sense of
Refs. [51,52]) generalized Gibbs ensemble [53].
Deforming even a simple theory (say, a free CFT) in this
fashion leads to highly nontrivial models, see, e.g., [35]. It
might be easier to consider the case of, e.g., ½SjHn�, as
again (22) will hold.
Deformations by momentum and energy.—Finally we

come to the case which should most closely correspond to
TT̄ deformations, i.e., that of [PjH]. This immediately
appears problematic. First, P is not a symmetry generator of
the theory. Indeed, only finite shifts (as opposed to
infinitesimal ones) may be realized on a spin chain.
Momentum is related to the logarithm of the shift operator
U, cf. (10). Defining such an operator would require
picking a branch. This is nicely illustrated by the would-
be deformation of the Bethe equations,
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eipjðRþαHÞ−iαHjP
YN
k≠j

Sðpj; pkÞ ¼ 1: ð25Þ

Even if we decided to restrict for simplicity to cyclically
invariant chains for which P ¼ 0, we are still faced with a
problem. These “Bethe equations” are not invariant under a
periodic shift p → pþ 2π, because αH (unlike R) is not
quantized. As a result these equations do not define a lattice
system in the usual sense, even for small deformations. It
might be worth studying this problem in a “covering space”
of sorts, to resolve the branches of the logarithm, bearing in
mind that the construction of Ref. [37] is not directly
applicable here because P is not local. CDD factors leading
to equations like (25) do appear in many interesting models,
chiefly in the AdS3=CFT2 correspondence [54–57], see
Ref. [58] for a review. In that case there are even explicit
examples of integrable string backgrounds whose finite-
volume spectrum is described by the Bethe-Yang equations
exactly [22,59,60]—the TBA trivializes. Because of the
absence of wrapping effects and in view of the simplicity of
the Bethe-Yang equations, these systems call for a quantum-
mechanical (as opposed to QFT) interpretation, which the
present framework might provide.
Conclusions and outlook.—We have seen that, exploiting

their Bethe-ansatz formulation, current-current deformations
akin to TT̄ may be defined for spin chains in the framework
developed by Bargheer, Beisert, and Loebbert [36,37]. The
discretized current-current composite operator (19) satisfies
the same properties of Zamolodchikov’s TT̄ [6]. This points
at the possibility of studying these types of deformations on
one-dimensional lattices.
These deformations are well defined for infinitely long

chains [36,37] (otherwise, the deformation would “wrap”
the chain). It is perhaps most interesting to exploit this
framework with a continuum limit in mind. This looks like
an interesting but highly nontrivial challenge. In that limit it
should also be possible to recover the momentum operator,
which so far does not seem to find a place in this discretized
models. It would be interesting to understand the role of
momentum better due to its importance for AdS3=CFT2

integrability [22,54–60]. It is more straightforward con-
ceptually, though perhaps cumbersome, to work with the
higher chargesHn; these are the counterparts of the higher-
spin charges in IQFTs, which can also be studied by
generalized Bethe ansatz techniques [35]. A major advan-
tage of the deformation (19), together with its factorization
property, is the possibility at least in principle of writing
flow equations similar to (4) and to the generalized ones
discussed in [35,61]. It would be interesting to study these
issue further and relate the IQFT and spin-chain pictures.
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