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We obtain the all-loop worldsheet S matrix for fundamental excitations on AdS3 × S3 × T4 by studying
the off-shell symmetry algebra of the superspace action in light cone gauge. The massless modes,
unaccounted for in earlier works, are automatically included in our treatment. Their exact dispersion
relation is found to be nonrelativistic, of giant-magnon form, and their scattering is naturally well defined.
This opens the way to a complete investigation of AdS3=CFT2 integrability.
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Introduction.—Recent years have witnessed remarkable
progress in understanding the gauge-string correspondence
using integrability methods; see Refs. [1–3] for reviews.
Given the power of these methods to study nonprotected
quantities at any value of the coupling, it is particularly
interesting to apply them to the AdS3-CFT2 dual pairs.
Such pairs were amongst the first examples of holography
[4]. They feature the infinite-dimensional Virasoro sym-
metry algebra, allow for black-hole solutions [5], and play
an important role in string-theoretical black-hole microstate
counting [6].
In string theory, AdS3 × S3 × T4 emerges from the near-

horizon limit of a system of D1- and D5-branes. As a result,
the gauge theory has fundamental as well as adjoint matter
fields. The dual pair has an infinite-dimensionalN ¼ ð4; 4Þ
superconformal symmetry [7–10]. The background pre-
serves relatively little supersymmetry—16 supercharges—
and can be supported by a mixture of Ramond-Ramond
(RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes.
While the pure-NSNS background can be studied by
worldsheet conformal field theory (CFT) techniques
[11,12], it is the pure-RR one that naturally emerges from
the near-horizon limit of D-branes and so is expected to give
the description of the dual gauge theory in the strongly
coupled planar limit. The RR and NSNS descriptions are
related by the nonperturbative and nonplanar string-theory S
duality. Therefore, directly understanding the RR back-
ground is an important goal in the study of AdS3=CFT2.
Classical integrability for string theory on AdS3 × S3 ×

T4 was established in Refs. [13–15]. As was observed in
Ref. [13], the presence of flat directions in this background
gives rise to massless string modes, which, at first sight,
cannot be analysed using integrability methods. Classically,
this was addressed only recently [16], while so far quantum
integrability of the worldsheet theory was probed only
for massive modes [17–21]; see however Ref. [22] for a
description of massless modes in the weakly coupled spin

chain. Massless modes are notoriously problematic for
integrable scattering [23,24]. In this Letter we show how to
incorporate massless modes of pure-RR AdS3 × S3 × T4

strings into the integrability machinery by presenting the
complete all-loop S matrix for fundamental worldsheet
excitations.
In 1þ 1 dimensions, quantum integrability manifests

itself as factorization of the S matrix—any scattering
process decomposes into sequences of two-body ones
[25]. Consistency of this decomposition requires a cubic
identity for the two-body S matrix S, the celebrated
Yang-Baxter equation. Once S is known, the energy
spectrum of the theory can be found by Bethe ansatz
techniques. Here, the observable is the energy spectrum
of closed AdS3 × S3 × T4 strings in the planar limit.
Therefore, we consider the nonlinear σ model (NLSM)
from the (1þ 1)-dimensional worldsheet into AdS3 × S3×
T4, and compute its worldsheet S matrix.
To this end, we first study the symmetries of the light

cone gauge-fixed NLSM, in a limit where the closed-string
worldsheet cylinder decompactifies to a plane and S is
well defined.Unlikewhat happens inAdS5 × S5 [26,27], we
cannot use the coset description, since after gauge fixing
massless fermions do not have a conventional quadratic
kinetic term. Instead we will work with the Green-Schwarz
action [28]. In this way we find the algebraA of “off-shell”
symmetries—i.e., the ones of S—and use it to obtain the
all-loop kinematics and S matrix. We see in particular that
massless modes are nonrelativistic, with a giant-magnon
dispersion relation [29]. This facilitates our treatment and
distinguishes it from the relativistic case [23]—in particular,
no ad hoc scaling limit needs to be taken. Themore technical
details of our analysis will be presented elsewhere [30].
Off-shell symmetry algebra.—To find the algebra A

we decompactify the worldsheet and take the theory off
shell by relaxing the level matching condition. The super-
isometries of the AdS3 × S3 × T4 string theory background
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form the algebra psuð1; 1j2ÞL ⊕ psuð1; 1j2ÞR [31], where
the labels L and R refer to the left- and right-moving
symmetries of the dual CFT2. Only those charges that
commute with the gauge-fixed Hamiltonian H sit in A.
This gives eight supercharges and four central elements H,
M, C, and C̄, as well as an soð4Þ ¼ suð2Þ• ⊕ suð2Þ∘
algebra, which arises in the decompactified theory because
the winding modes on the torus decouple. The chargeM is
a combination of angular momenta on AdS3 and S3. The
relaxed level matching condition yields the additional
central charges C and C̄, which are not part of the isometry
algebra and hence must vanish for physical on-shell states.
At vanishing winding such states satisfy Pjphysi ¼ 0,
where P is the worldsheet momentum operator.
To proceed we need to gauge fix the theory. We first

impose the light cone κ gauge

ðΓ0 þ Γ5ÞθI ¼ 0; I ¼ 1; 2; ð1Þ
where X0 ¼ t and X5 ¼ ϕ parametrize the global time in
AdS3 and a great circle along S3, respectively, θI are
(9þ 1)-dimensional Majorana-Weyl fermions of type IIB
string theory, and Γ are 32 × 32 Dirac Gamma matrices.
This κ gauge guarantees a conventional kinetic term for the
fermions, but is not compatible with the coset action [13].
We therefore have to work with the superspace action
[28,32,33]. To determine the structure of A it is sufficient
to consider terms at most quadratic in the fermions, for
which explicit expressions are given in Ref. [32].
Before κ-gauge fixing, the string theory action on

AdS3 × S3 × T4 is invariant under constant shifts of 16
(suitably defined) fermions. The supercharges can be found
using the Noether procedure. Upon fixing the light cone κ
gauge, half of the shifts breaks the gauge-fixing condition
(1) and need to be combined with a compensating κ
transformation, just like in flat space [34]. The eight
supercharges in A are of this kind.
To fix the bosonic gauge symmetry we work in the first-

order formalism. Introducing the light cone coordinates
X� ¼ 1

2
ðϕ� tÞ and the conjugate momenta P� we impose

the uniform light cone gauge [1,35]

Xþ ¼ τ; P− ¼ const; ð2Þ
where τ is the worldsheet time. The Virasoro constraints are
used to determine X− and Pþ as nonlocal expressions in
terms of the physical transverse fields. They are related to
H and P by

H ¼ −
Z þ∞

−∞
dσPþ; P ¼ 2

Z þ∞

−∞
dσ∂σX−: ð3Þ

To carry out this procedure explicitly we need to redefine
the fermions θI to make them neutral under the U(1)
isometries generated by t and ϕ translations [36]. This
yields a nonlocal piece in the supercharges. The super-
charges’ dependence on the massless fields Xμ, on

the conjugate momenta Pμ, and on the massless fermions
χI is

Qμ ¼
Z þ∞

−∞
dσeþΓ34X−ðPμ χ1 − ∂σXμ χ2Þ;

~Qμ ¼
Z þ∞

−∞
dσe−Γ

34X−ðPμ χ2 − ∂σXμ χ1Þ; ð4Þ

where μ ¼ 6; 7; 8; 9 runs over the T4 directions. This
gives us eight real supercharges. We can combine them
into two suð2Þ• doublets Qa

L and QRa and their complex
conjugates Q̄La ¼ ðQa

LÞ† and Q̄a
R ¼ ðQRaÞ†. The L and R

labels indicate which psuð1; 1j2Þ superisometry algebra
the charges originate from. The supercharges satisfy the
psuð1j1Þ4c:e: algebra

fQLa; Q̄b
Lg ¼ 1

2
δbaðHþMÞ; fQLa;Qb

Rg ¼ δbaC;

fQa
R; Q̄Rbg ¼ 1

2
δabðH −MÞ; fQ̄a

L; Q̄Rbg ¼ δabC̄; ð5Þ

The central charge C and its conjugate C̄ arise from the
nonlocal exponential factor in Eq. (4) and are related to the
worldsheet momentum by

C ¼ ihζ
2

ðeiP − 1Þ; ð6Þ

where the phase ζ ¼ e2iX
−ð−∞Þ depends on the boundary

conditions for the field X− [27] and h is the string tension.
For a single excitation, ζ can be absorbed by a rescaling,
but for multiexcitation states the relative phases are
relevant, as we will see later.
Representations.—The fundamental excitations of the

string—eight bosons and eight fermions—arrange them-
selves into short multiplets of the off-shell symmetry
algebra A, satisfying the shortening condition

H2 ¼ M2 þ 4C̄C: ð7Þ
SinceC vanishes at zero momentum, the eigenvaluem ofM
plays the role of a mass. There are two bosonic and two
fermionic excitationswithmassm¼þ1, andwe refer to them
as left-flavored because on shell they transform only under
the left supercharges. Similarly, there are four right flavored
excitations withm¼−1, and eight massless excitations with
m¼0. The corresponding multiplets are depicted in Figs. 1
and 2. There we see four psuð1j1Þ4c:e: bifundamental repre-
sentations (where the subscript c.e. stands for centrally
extended), supplemented by the action of suð2Þ• and
suð2Þ∘, the latter acting on massless excitations only.
The algebra (5) can be obtained from two copies of

psuð1j1Þ2c:e:. This consists of four conjugate supercharges
q̄L;R ¼ ðqL;RÞ†, satisfying

fqL; q̄Lg ¼ 1

2
ðhþmÞ; fqL;qRg ¼ c;

fqR; q̄Rg ¼ 1

2
ðh −mÞ; fq̄L; q̄Rg ¼ c̄: ð8Þ
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We can then set Q1
L ¼ qL ⊗ 1, Q2

L ¼ 1 ⊗ qL for the
left flavor, QR1 ¼ qR ⊗ 1, QR2 ¼ 1 ⊗ qR for the right,
and similarly for their conjugates. The bifundamental
representations of psuð1j1Þ4c:e: can be obtained from the
fundamental representations of psuð1j1Þ2c:e:. One such
representation, which we denote by ϱL ¼ ðϕLjψLÞ, is

qLjϕL
pi ¼ apjψL

pi; q̄LjψL
pi ¼ āpjϕL

pi;
qRjψL

pi ¼ bpjϕL
pi; q̄RjϕL

pi ¼ b̄pjψL
pi; ð9Þ

where the representation coefficients depend on the exci-
tation momentum p. Another representation, ϱR can be
obtained by exchanging the action of left and right
generators. Two more representations ~ϱL, ~ϱR, can be
obtained by exchanging bosons and fermions.
Using this, the left and right representations of Fig. 1 are

given by ϱL ⊗ ϱL and ϱR ⊗ ϱR respectively. On the former,
the central charges are

H ¼ ðapāp þ bpb̄pÞ1; C ¼ apbp1;

M ¼ ðapāp − bpb̄pÞ1; C̄ ¼ āpb̄p1; ð10Þ

while on the latter one should exchange ap ↔ bp, flipping
the sign of M. We then see that whole massive module
is invariant under relabeling L ↔ R, resulting in a Z2

left-right (LR) symmetry [17,19].
The two massless psuð1j1Þ4c:e: modules have a fermionic

highest weight, and up to a change of basis they can

equivalently be given by ϱL ⊗ ~ϱL or ϱR ⊗ ~ϱR [37],
provided that all representation parameters satisfy
apāp ¼ bpb̄p, i.e., that M vanishes. This is not only a
semiclassical input, but a consistency condition: suð2Þ∘
invariance requires M to take the same value on both
modules, while crossing invariance requires M to take
opposite values.
The explicit form (6) of C; C̄ and the shortening

condition (7) yield the dispersion relation [38,39]

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4h2sin2

p
2

r
: ð11Þ

In particular, for massless excitations the dispersion
Ep ¼ 2hj sinðp=2Þj is nonanalytic. This can be resolved
by treating worldsheet left and right movers separately, as
typical for massless two-dimensional excitations. One may
worry that masslessness is spoiled by quantum corrections,
as in other integrable models, e.g., Ref. [40]. This is
impossible unless some symmetry is broken, since a
dynamical mass would correct the eigenvalue of M.
We can construct the two-particle representations, on

which the S matrix acts, out of pairs of one-particle ones.
This introduces a nonlocal momentum dependence through
the phase ζ [26,27]. In a Hopf-algebra language, this
amounts to defining a deformed coproduct [19,27].
All-loop S matrix.—The two-body Smatrix Sðp; qÞmust

be invariant under A. Furthermore, it must satisfy braiding
and physical unitarity, crossing symmetry, and the afore-
mentioned Yang-Baxter equation [1,3]. Here these con-
ditions are restrictive enough to fix S up to few scalar
factors denoted by σ, which must obey nontrivial
constraints.
Scattering processes involving massless particles may

appear ill defined. In relativistic theories indeed massless
wave packets travel at the speed of light, and in 1þ 1
dimension naively cannot scatter if they move in the
same direction [23]. Here, instead, the nonrelativistic
dispersion (11) at zero mass yields the group velocity
∂Ep=∂p ¼ �2h cosðp=2Þ. Therefore, massless wave pack-
ets with different momenta generically scatter.
The two-body S matrix naturally decomposes into the

massive (••), mixed (•∘; ∘•), and massless (∘∘) sectors,
depending on the masses of the excitations scattering,

S ¼
�
S•• S∘•

S•∘ S∘∘

�
: ð12Þ

In each sector it further breaks into several blocks, each
scattering psuð1j1Þ4c:e: irreducible representations. Some of
the scalar factors multiplying each block are then related
by LR or suð2Þ∘ symmetry. Exploiting the bifundamental
nature of the representations, we write the blocks as graded
tensor products of suð1j1Þ2c:e:-invariant S matrices. These
were computed in Ref. [17] for the representations ϱL; ϱR
at any value of the mass. We denote them by SLL,

FIG. 1. Each of the two (left and right) massive
psuð1j1Þ4c:e: multiplets consists of two bosons Y, ZL;R and
of two fermions ηL;Ra , the latter carrying the fundamental
suð2Þ• index a. For clarity we only indicate the supercharges
that do not vanish on shell.

FIG. 2. The two massless psuð1j1Þ4c:e: multiplets, in the
representation ðϱL ⊗ ~ϱLÞ⊕2. Overall we have four bosons Taα

and four fermions χα; ~χα, where a and α are fundamental indices
of suð2Þ• and suð2Þ∘. Again we show only some supercharges.
Note that suð2Þ∘ relates the two psuð1j1Þ4c:e: modules.
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SRR;SRL;SLR. The remaining S matrices involving ϱ ~L
are obtained from these by a similarity transformation
exchanging the boson and the fermion, yielding, e.g., S ~LL.
Massive sector: We have four blocks

S•• ¼
�
σ••SLL ⊗̂ SLL ~σ••SRL ⊗̂ SRL

~σ••SLR ⊗̂ SLR σ••SRR ⊗̂ SRR

�
; ð13Þ

where ⊗̂ denotes the graded tensor product. On the
diagonal we have left-left and right-right scattering.
Owing to LR symmetry the corresponding S matrices
coincide. On the antidiagonal we have opposite-flavor S
matrices, also related by LR symmetry. There are then just
two independent scalar factors in the massive sector: σ•• and
~σ••. This agrees with Ref. [19], where the massive sector
was studied in a spin-chain framework [41].
Mixed sector: This involves massive-massless and

massless-massive scattering. In the former case we find

S•∘ ¼ σ•∘½ðSLL ⊗̂ SL ~LÞ ⊕ ðSRL ⊗̂ SR ~LÞ�⊕2: ð14Þ

The direct sum inside the square brackets corresponds
to scattering with either of two psuð1j1Þ4c:e: massive
modules—left or right. These two S matrices are then
identified after imposing LR symmetry, which is possible
because the second excitation is massless. Since scattering
can occur with two different psuð1j1Þ4c:e: massless modules
we have two copies of the expression inside the square
brackets. These must be equal by suð2Þ∘ symmetry. Owing
to these symmetries we are left with a single undetermined
scalar factor σ•∘. Similar considerations apply to massless-
massive scattering, yielding

S∘• ¼ σ∘•½ðSLL ⊗̂ S ~LLÞ ⊕ ðSLR ⊗̂ S ~LRÞ�⊕2; ð15Þ

where we have another scalar factor σ∘•.
Massless sector: Here the S matrix factorizes as

S∘∘ ¼ σ∘∘Ssuð2Þ ⊗ ðSLL ⊗̂ S ~L ~LÞ; ð16Þ

where the factors in brackets are fixed by the psuð1j1Þ4c:e:
invariance. We have a single scalar factor σ∘∘ and an
suð2Þ∘-invariant S matrix

Ssuð2Þðp; qÞ ¼
1

1þ iðwp − wqÞ
½Πþ iðwp − wqÞ14�; ð17Þ

with Π the permutation operator and wp a real function of
the momentum p. This is the Heisenberg-model S matrix,
where wp plays the role of a generalized rapidity.
Unitarity: The S matrix satisfies braiding and physical

unitarity, which result in constraints on the scalar factors.
These are solved by taking σ••; ~σ••, and σ∘∘ to be exponen-
tials of antisymmetric phases in a suitable normalization,
and by simply relating σ•∘ to σ∘•.

Crossing symmetry: The crossing transformation maps
a representation to its conjugate, flipping the sign of all
central charges including momentum and energy. This
requires analytic continuation to an unphysical channel
[1,3,42]. It is defined through the charge conjugation
matrix C, which decomposes on the representations,
C ¼ C• ⊕ C∘. The massive-sector block C• was given in
Ref. [19], and yields C∘ by a similarity transformation and
by requiring compatibility with suð2Þ∘ [30]. Such trans-
formation is momentum dependent, so that C∘

p depends
discontinuously on the worldsheet chirality through
sgn½sinðp=2Þ�—a signature of the massless modes.
Crossing invariance of S requires

ð1 ⊗ C−1q Þ · St2ðp; q̄Þ · ð1 ⊗ CqÞ · Sðp; qÞ ¼ 1 ⊗ 1; ð18Þ

with t2 meaning transposition in the second space and q̄
analytic continuation. This matrix equation results in five
equations for the scalar factors. Two of them constrain σ••

and ~σ••, and were solved in Ref. [43]. Each of the other
three equations involves one of the remaining scalar factors
σ•∘; σ∘•, and σ∘∘. Crossing also constrains the function wp,
setting wp̄ ¼ wp − i.
Outlook.—In this Letter we have determined, up to a

number of phases, the complete all-loop S matrix for
fundamental excitations of pure-RR AdS3 × S3 × T4

strings. An immediate next step is solving the crossing
equations for σ∘•; σ•∘ and σ∘∘ as done for σ•• and ~σ•• in
Ref. [43]. This will likely present us with new analytic
structures andmay require further insights from perturbative
calculations. It would be also interesting to write down the
Bethe-Yang equations for the asymptotic spectrum and to
see how theN ¼ ð4; 4Þ symmetry is realized there. Finding
the bound-state spectrum and S matrix would then lead to
the string hypothesis and mirror thermodynamical Bethe
ansatz for the exact spectrum. The success of the integra-
bility approach on the AdS3 side strongly suggests that an
analogous description should exist for the CFT2. It would
be important to uncover it, perhaps building on Ref. [44].
It should be possible to extend this approach to consider

orbifolds and integrable deformations of this background—
as it was successfully done for AdS5 × S5. This might lead to
new insights into AdS3 black holes [5,6] and their integra-
bility properties [45]. The methods presented in this Letter
can also be applied to AdS3 × S3 × S3 × S1 superstrings
[8,17,18], whose dual CFT remains elusive [46,47]. There,
higher spin theories were recently considered [48], and
integrabilitymayhelp investigating their relationwith strings.
In Ref. [12] it was shown that the slð2; RÞ Wess-

Zumino-Witten model contains, in addition to conventional
discrete representations, continuous representations. These
describe so-called long strings [49,10] in string theory on
AdS3 ×M7 with NSNS flux. It would be very interesting to
understand the way such states appear in the RR back-
ground presently studied. Because of type IIB S duality
we expect these states to be nonperturbative in the RR
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background. Semiclassically, the long string states are
D-strings living at the boundary of AdS3 and it would
be very interesting to see whether the integrability tech-
niques developed in this Letter can be extended to study
the spectrum of open string states ending on such D-strings,
and how integrability and continuous representations can
be combined together.
Another interesting direction is to consider backgrounds

with mixed RR andNSNS fluxes [15,20,21]. This may offer
new insights on the relation between the infinitely many
conserved charges from integrability with the Virasoro ones
appearing in the worldsheet CFT—perhaps along the lines
of what happens in relativistic models [24]—as well as on
how S duality is implemented.
We are confident that there will be significant develop-

ment in these directions in the near future.
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