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Abstract

We show a new example of blow-up behaviour for the prescribed Q-curvature
equation in even dimension 6 and higher, namely given a sequence (Vk) ⊂ C0(R2n)
suitably converging we construct for n ≥ 3 a sequence (uk) of radially symmetric
solutions to the equation

(−∆)nuk = Vke
2nuk in R2n,

with uk blowing up at the origin and on a sphere. We also prove sharp blow-up
estimates. This is in sharp contrast with the 4-dimensional case studied by F.
Robert (J. Diff. Eq. 2006).

MSC: 35J92, 53A30.

1 Introduction to the problem

Given a domain Ω ⊂ R2n, we will consider sequence (uk) of solutions to the prescribed
Q-curvature equation

(−∆)nuk = Vke
2nuk in Ω, (1)

under the uniform (volume) bound∫
Ω

e2nukdx ≤ C, k = 1, 2, 3, . . . (2)

∗The authors are supported by the Swiss National Science Foundation projects n. PP00P2-144669,
PP00P2-170588/1 and P2BSP2-172064.
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and suitable bounds on Vk ∈ L∞(Ω).
Contrary to the two dimensional situation studied by Brézis-Merle [4], or the case of a

compact manifold of dimension 2n without boundary (see e.g. [8, 16, 20, 25]), where blow
up occurs only on a finite set S1, in an open Euclidean domain Ω of dimension 4 or higher
it is possible to have blow up on larger sets. More precisely, for a finite set S1 ⊂ Ω ⊂ R2n

let us introduce

K(Ω, S1) := {ϕ ∈ C∞(Ω \ S1) : ϕ ≤ 0, ϕ 6≡ 0, ∆nϕ ≡ 0}, (3)

and for a function ϕ ∈ K(Ω, S1) set

Sϕ := {x ∈ Ω \ S1 : ϕ(x) = 0}. (4)

Theorem A (Adimurthi-Robert-Struwe [1], Martinazzi [20]) Let Ω be a domain
in R2n, n > 1 and let (uk) be a sequence of solutions to (1)-(2), where Vk → V0 > 0 locally
uniformly in Ω for some V0 ∈ C0(Ω), and define the set (possibly empty)

S1 :=

{
x ∈ Ω : lim

r→0+
lim inf
k→∞

∫
Br(x)

Vke
2nukdx ≥ Λ1

2

}
, Λ1 := (2n− 1)!|S2n|.

Then up to extracting a subsequence one of the following is true.

i) For every 0 ≤ α < 1, (uk) converges in C2n−1,α
loc (Ω).

ii) There exists ϕ ∈ K(Ω, S1) and a sequence of numbers βk → ∞, such that, setting
S := S1 ∪ Sϕ we have

uk
βk
→ ϕ in C2n−1,α

loc (Ω \ S), 0 ≤ α < 1. (5)

In particular uk → −∞ locally uniformly in Ω \ S.

Definition 1.1 Given uk, S1 and Sϕ as in Theorem A, we shall call S1 the concentration
blow-up set and Sϕ the polyharmonic blow-up set. Similarly x ∈ S1 is called a concentra-
tion blow-up point and x ∈ Sϕ a polyharmonic blow-up point.

Recently the authors together with S. Iula proved a partial converse to Theorem A,
which we state in a simplified form.

Theorem B (Hyder-Iula-Martinazzi [13]) Consider 0 < Λ < Λ1

2
, Ω ⊂ R2n open,

n ≥ 2, ϕ ∈ K(Ω, ∅), and a sequence (Vk) ⊂ L∞(Ω) with 0 < a ≤ Vk ≤ b <∞. Then there
exists a sequence (uk) of solutions to (1) with∫

Ω

Vke
2nukdx = Λ,

such that S1 = ∅, (5) holds with S = Sϕ and uk → +∞ locally uniformly on Sϕ.
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The main question is whether one can extend Theorem B to include the case in which
concentration and polyharmonic blow-up sets coexist, i.e. S1 6= ∅ and Sϕ 6= ∅, which is a
possibility left open in Theorem A. In this paper we shall address the radially symmetric
case of dimension 2n ≥ 6. By C`

rad(BR) or Lprad(BR) we will denote the subspace of
radially symmetric functions in C`(BR) and Lp(BR).

1.1 The blow-up analysis

Let us first observe that in dimension 4 the radial case has been completely described by
F. Robert [27].

Theorem C (Robert [27]) On Ω = BR ⊂ R4, R > 0, let (Vk) ⊂ C0
rad(BR) be a se-

quence converging to V0 = 6 locally uniformly, and let (uk) be a sequence of radial solu-
tions to (1)-(2) with n = 2. Then, up to extracting a subsequence, either uk converges in
C3

loc(BR), or uk → −∞ uniformly locally in BR\{0}, Vkenuk ⇀ κδ0, for some κ ∈ [0, 16π2]
and we have one of the following blow-up behaviours:
i) uk(0) ≤ C for every k and κ = 0.
ii) uk(0) → ∞. Then if we set rk := 2e−uk(0) and ηk(x) := uk(rkx) + log(rk), we have 3
subcases.
ii.a) κ = 16π2 and ηk → η in C3

loc(R4), where η(x) = log
(

2
1+|x|2

)
,

ii.b) κ ∈ (0, 16π2) and ηk → η∞ in C3
loc(R4), where η∞(x) = 2κ

Λ1
log |x| − a|x|2 + o(log |x|)

as |x| → ∞ for some a > 0.

ii.c) κ = 0, r2
k∆uk(0)→ −∞ and for η̃k := ηk

r2k∆uk(0)
we have η̃k(x)→ |x|2

8
in C3

loc(R4).

Moreover in the cases ii.a) and ii.b) it holds

lim
L→∞

lim
k→∞

∫
Bδ\BLrk

Vke
4ukdx = 0, for every δ < R. (6)

One of the crucial elements in the proof of Theorem C is the estimate

|x|euk(x) ≤ C(δ), uniformly on Bδ for every δ < R. (7)

Unfortunately (7) does not hold in dimension 6 (and higher), not even for small δ, see e.g.
Examples 2 and 3 in Section 8, and in fact the blow-up behaviour is much richer, but we
will not examine it in detail. Instead we will focus on the follwing particular issue. By
scaling one of the many entire solution to

(−∆)2nu = (2n− 1)!e2nu in R2n, Λ := (2n− 1)!

∫
R2n

e2nudx <∞ (8)

(see [5]) one finds a sequence (uk) of solutions to (1)-(2) blowing up at 0. By Theorem B
one can also construct solutions blowing up on a sphere. The main question is whether
one can “glue” the first kind of solutions to the second kind of solutions to obtain solutions
with a concentration blow up at 0 and a polyharmonic blow up on a sphere.
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In the following theorem, we show that in dimension 6 if this occurs (case iv), then
the blow up at the origin is necessarily spherical, i.e. as in case iia) of Theorem C.

Theorem 1.1 Let Ω = BR ⊂ R6 for some R > 0 (with Ω = R6 if R = ∞). Let
(Vk) ⊂ L∞rad(BR) be positive radial functions with Vk → V0 in L∞loc(BR) for some positive
V0 ∈ C0(BR). Let (uk) be radial solutions to (1)-(2) with n = 3. Assume that we are in
case ii) of Theorem A. Then one of the following occurs.
i) S1 ∪ Sϕ = ∅.
ii) S1 ∪ Sϕ = {0}
iii) S1 = ∅ and Sϕ = {|x| = ρ} for some ρ ∈ (0, R).
iv) S1 = {0} and Sϕ = {|x| = ρ} for some ρ ∈ (0, R). In this case, up to replacing uk(x)
with uk(ρx) + log ρ and R by ρR, we can assume ρ = 1 and, up to adding the constant
1
6

log(V0(0)
120

) to uk, we can assume V0(0) = 120. Then uk(0)→∞,

uk(x)

βk

k→∞−−−→ −
(
1− |x|2

)2
in C5

loc(BR \ {0}) (9)

for some βk →∞ that satisfies
βk = o(e2uk(0)). (10)

Moreover for rk := 2e−uk(0) → 0

ηk(x) := uk(rkx) + log(rk)
k→∞−−−→ log

(
2

1 + |x|2

)
=: η(x) in C5

loc(R6), (11)

Finally we have the following quantization result:

lim
k→∞

∫
Bδ

Vke
6ukdx = Λ1 for every δ ∈ (0, 1). (12)

One of the claims of Theorem 1.1 is that it is not possible to have S1 = {0}, Sϕ =
{|x| = ρ1} ∪ {|x| = ρ2} for some 0 < ρ1 < ρ2 < R, which is a priori not ruled out by
Theorem A, since

ϕ(r) = − 1

r4
(ρ2

1 − r2)2(ρ2
2 − r2)2 ∈ K(BR, {0}).

But the most important claim of Theorem 1.1 is that the profile of uk near the origin
in case iv) must be spherical, in the sense that it corresponds to the pull-back of the
metric of S6 onto R6 via the stereographic projection (compare to [5]). For instance the
behaviour seen in cases iib) and iic) of Theorem C, are possible in Theorem 1.1 in case
ii) but not in case iv). The proof of (11) will use the following classification result from
[19], see also [12, 14, 15]:

Theorem D (C-S. Lin [15], Martinazzi [19]) Let u be a solution to (8). Then either
u is spherical, i.e. it has the form u(x) = log 2λ

1+λ2|x−x0|2 for some λ > 0, x0 ∈ R2n, or

u = v+p where p is an upper bounded polynomial of degree at most 2n−2 and ∆jv(x)→ 0
as |x| → ∞ for j = 1, . . . , n− 1.
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1.2 The existence part

According to Theorem 1.1, the only case in which we can expect gluing of a concentration
blow up with a polyharmonic blow up is case iv). That this can actually occur is the
claim of the next theorem, which we state in dimension 6, although it can be extended to
any even dimension 2n ≥ 6, see Section 4.

Theorem 1.2 Let (Vk) ⊂ C0
rad(R6) be positive functions with Vk → V∞ uniformly, where

V∞ ∈ C1(R6), V∞(0) = 120 (without loss of generality) and for some a, b ≥ 0

d

dr

(
V∞(r)

ear2+br4

)
≤ 0, r ∈ [0,∞). (13)

Then for every Λ ≥ Λ1 there exists a sequence (uk) ⊂ C6
rad(R6) of solutions to (1)-(2) with

n = 3 and Ω = R6 such that uk is as in case iv) of Theorem 1.1 with ρ = 1. Moreover
uk(1)→∞ as k →∞ and for every ε ∈ (0, 1)

lim
k→∞

∫
B1+ε\B1−ε

Vke
6ukdx = Λ− Λ1, (14)

lim
k→∞

∫
R6\(Bε∪(B1+ε\B1−ε)

Vke
6ukdx = 0. (15)

This existence theorem will be based on various ingredients. First of all the following,
slightly modified and simplified version of [11, Theorem 1.1]:

Theorem E (Hyder [11]) Let V ∈ C0
rad(R2n) ∩ L∞(R2n) be such that V (0) > 0 and

V ≥ 0 in R2n, n ≥ 3. Then for every Λ > 0 there exists u ∈ C2n
rad(R2n) solution to

(−∆)nu = V e2nu in R2n, Λ =

∫
R2n

V e2nudx.

Moreover, for every λ ∈ (0, 1/8n] one can express u in the form u(x) = v(x) + c − |x|4
where c ∈ R and v satisfies

v(x) =
1

γ2n

∫
R2n

log

(
1

|x− y|

)
V (y)e−2n|y|4e2n(v(y)+c)dy + λ∆v(0)(|x|4 − 2|x|2).

The above result, which also holds in odd dimension 5 and higher, completely solves
problems left open in [14, 22, 10], proving that in dimension 5 and higher one can find
conformally Euclidean metrics with constant Q-curvature and total Q-curvature arbitrar-
ily large, in contrast to the 4 dimensional case, where the total Q-curvature can be at
most Λ1 = 6|S4| as shown by [15]. Theorem 1.2 is naturally related to Theorem E because
in case iv) of Theorem 1.1, an amount Λ1 of Q-curvature concentrates at the origin, and
we expect to have additional curvature concentrating at Sϕ.

The strategy in the proof of Theorem 1.1 will be to take an arbitrary sequence λk → 0+

in Theorem E, and find corresponding solutions uk(x) = vk(x) + ck − |x|4. Then with the
help of a Pohozaev-type identity from [32] and of a quantization result from [21] (see also
[28]) one proves that λk∆uk(0)→ −∞ and this will finally lead to Theorem 1.2.
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1.3 A sharper blow-up analysis in the hybrid case

In order to obtain general existence results (see Section 9 for open questions), possibly
using the Lyapunov-Schmidt reduction, it might be useful to have precise information on
a model case to use as “ansatz”. In this spirit, pushing further the blow-up analysis of
Theorem 1.1, case iv), we obtain sharp global estimates which relate the behaviour near
the origin and the behaviour away from it. Moreover, using a linearization procedure
partly inspired from [17], we are able to give a better asymptotic expansion of uk near
the origin.

We will assume
Vk(r) = 120 +O(r2) as r → 0. (16)

As mentioned in Theorem 1.1, the choice of the particular constant 120 is not restrictive.

Theorem 1.3 Assume that we are in case iv) of Theorem 1.1 with Vk additionally sat-
isfying (16) and (up to a scaling) with ρ = 1. Then for every δ ∈ (0, R) we have

uk(r) = η̄k(r) + uk(0)(ϕ(r) + 1 + o(1)) on [0, δ] (17)

with o(1)
k→∞−−−→ 0, where η̄k(r) := η( r

rk
)− log(rk) = log

(
2/rk

1+r2/r2k

)
, and as a consequence

βk = uk(0)(1 + o(1)). (18)

Moreover, setting εk := uk(0)e−2uk(0) and fixing sk > 0 such that sk = ε
− 1

4
k o(1) we have

an expansion
ηk(x) = η(x) + εkψ0(x) + εk(1 + |x|4)o(1), (19)

with o(1)
k→∞−−−→ 0 uniformly for x ∈ Bsk , where

ψ0(x) = 8|x|2 − 48 log |x|+ o(log |x|), as |x| → ∞. (20)

A consequence of Theorem 1.3 is a new phenomenon strongly related to the gluing of
a concentration blow-up with a polyharmonic blow-up. While it is easy to construct a
concentration blow up as uk(x) = η(x/rk) + log(1/rk) with η as in (11), in this case using
(73) we have ∫

Bδ

120e6ukdx = Λ1

(
1− 640

δ6e6uk(0)
+

o(1)

e6uk(0)

)
.

i.e. in small neighborhoods of the origin the curvature concentrates to Λ1 from below. In
the case of gluing with a polyharmonic blow up we obtain the opposite result. In this
sense we see that the asymptotic behavior of the curvature concentrating at the origin is
nonlocal : it also depends on the behavior at larger scales.

Theorem 1.4 Under the assumptions of Theorem 1.1, case iv) with ρ = 1, and addition-
ally assuming (16), the limiting value Λ1 in (12) is reached from above. More precisely∫

Bδ

Vke
6ukdx = Λ1 + (24Λ1 + o(1))

uk(0)

e2uk(0)
for 0 < δ < δ∗ :=

√
1− 1√

3
. (21)
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We can compare (21) with an analog energy expansion for the Moser-Trudinger equa-
tion given by Mancini and the second author [18] for the equation

−∆u = λueu
2

in B1 ⊂ R2, u = 0 on ∂B1, (22)

building upon [17]. A sequence (uk) of positive (hence radial, by the moving-plane tech-
nique) solutions to (22) for some λk > 0, with uk(0)→∞ satisfies

4π +
4π + o(1)

u4
k(0)

≤
∫
Bδ

|∇uk|2dx ≤ 4π +
6π + o(1)

u4
k(0)

. (23)

In spite of the similarities in the arguments, (23) essentially depends on the Taylor expan-
sion of the nonlinearity ueu

2
, which enjoys only an approximate scale invariance, contrary

to the nonlinearity e6u.

Notation We will often use the following constants:

γ6 = 26π3, ω6 := |S6| = 16

15
π3, ω5 := |S5| = π3, Λ1 = 27π3 for n = 3, (24)

where ∆3 log |x| = γ6δ0 in R6.
For sequences (ak) and (bk) with bk > 0

ak ≈ bk if
1

C
ak ≤ bk ≤ Cak,

ak = O(bk) if |ak| ≤ Cbk,

ak = o(bk) if lim
k→∞

ak
bk

= 0,

where C > 0 is independent of k.
In the proofs we will often extract subsequences without explicitly mentioning it.

Moreover, with a slight abuse of notation, we will use the notation u(x) and u(r) or u(|x|)
to denote the same radially symmetric function u.

2 Proof of Theorem 1.1

2.1 The possible blow-up sets S

Consider Theorem A. Clearly either S1 = ∅ or S1 = {0}. We consider the two cases
separately.

Case S1 = ∅. It is not difficult to see that all radial functions in K(BR, ∅) are of the form

ϕ(x) = a+ b|x|2 + c|x|4
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and this easily leads to either Sϕ = ∅ (case i) of the theorem) or Sϕ = {0} (case ii) of the
theorem) or Sϕ = {|x| = ρ} for some ρ ∈ (0, R) (case iii) of the theorem).

Case S1 = {0}. If Sϕ = ∅, then we are in case ii) of the theorem. If Sϕ 6= ∅, since
Sϕ ⊂ BR \ {0} and ϕ is radial, we can assume that {|x| = ρ} ⊂ Sϕ for some ρ ∈ (0, R),
and to simplify the notation we can assume, up to a scaling, ρ = 1. In the next lemma we
collect some important information about the sign and the zeroes of uk, ∆uk and ∆2uk
and their derivatives for k large, compare to Figure 1.

Lemma 2.1 Assume that

S1 = {0} and {|x| = 1} ⊂ Sϕ. (25)

Then for k large there exist θ1,k, θ̃1,k, θ2,k, θ̃2,k, θ3,k, θ4,k ∈ (0, R) with

θ2,k < θ1,k < θ̃1,k
k→∞−−−→ 1, θ2,k < θ3,k < θ̃2,k, θ4,k < θ3,k,

such that

u′k(θ1,k) = u′k(θ̃1,k) = ∆uk(θ2,k) = ∆uk(θ̃2,k) = (∆uk)
′(θ3,k) = ∆2uk(θ4,k) = 0

and the following holds.

∆2uk > 0 on (0, θ4,k), ∆2uk < 0 on (θ4,k, R) (26)

(∆uk)
′ > 0 on (0, θ3,k), (∆uk)

′ < 0 on (θ3,k, R) (27)

u′k < 0 on (0, θ1,k) ∪ (θ̃1,k, R), u′k > 0 on (θ1,k, θ̃1,k). (28)

Moreover uk(0) → ∞, and uk → −∞ uniformly on (θ1,k, 1 − ε) ∪ (1 + ε, R) for every
ε > 0. Finally Sϕ = {|x| = 1}.

Proof We will use that
∆3uk < 0, (29)

which follows from (1) since Vk > 0, and repeatedly apply

w′(r) =
1

ω5r5

∫
Br

∆w(x)dx, w ∈ W 2,p
rad, (30)

where we can take p > 6, so that w′ ∈ C0(0, R). We will also need (2), (5) and

sup
Bε

uk →∞ for every ε > 0, (31)

which follows from S1 = {0}.
Since ϕ ≤ 0 in (0, R) and ϕ(1) = 0, we can choose δ ∈ (0, 1) such that

ϕ(1− δ) < 0, ϕ′(1− δ) > 0, ϕ(1 + δ) < 0, ϕ′(1 + δ) < 0. (32)

8



From (29) and (30) we infer that

(∆2uk)
′ < 0 on (0, R). (33)

Step 1 We claim that ∆2uk(0) > 0. If this were not the case, using (30) and (33) we
would obtain (∆uk)

′ < 0 on (0, R). We will see that this contradicts (32). Indeed if
∆uk(0) ≤ 0, then ∆uk < 0 on (0, R), hence by (30) we have u′k < 0 on (0, R), but then
also ϕ′ ≤ 0 on (0, R), contradicting (32). If ∆uk(0) > 0, then u′k > 0 on (0, tk) for some
tk ∈ (0, R]. By (31) and (2) we must have tk → 0. Using (30) we then infer that u′k < 0
on (tk, R) hence ϕ′ < 0 on (0, R), again contradicting (32). Then Step 1 is proven.

Step 2 We claim that (∆uk)
′ changes sign only once from positive to negative, there

exists θ4,k ∈ (0, R) such that ∆2uk(θ4,k) = 0, and ∆uk has at most 2 zeroes. Indeed,
thanks to Step 1 and (30) we know that (∆uk)

′(r) > 0 for r > 0 small. If (∆uk)
′ > 0

on (0, R), again using (30) with arguments similar to those of Step 1 we would obtain a
contradiction. Using the monotonicity of ∆2uk and (30), there must exist θ4,k such that
(26) holds, and once (∆uk)

′ becomes negative, it remains so.

Step 3 We claim that ∆uk has exactly 2 zeroes, 0 < θ2,k < θ̃2,k < 2. Otherwise,
considering Step 2, we would either have ∆uk ≤ 0, hence u′k ≤ 0 on (0, R), contradicting
(32), or ∆uk(0) > 0, hence u′k ≥ 0 in a neighborhood of 0 and then with (30) and (2) we
see that θ1,k → 0 and u′k < 0 on (θ1,k, R), contradicting (32).

Step 4 We claim that u′k has exactly 2 zeroes 0 < θ1,k < θ̃1,k < R, so that (28) is
satisfied. Indeed from Step 3 and (30) it follows that u′k has at most 2 zeroes, but using
that u′k(1 − δ) > 0, u′k(1 + δ) < 0 (which follow from (5) and (32)) and (31) we see that
u′k must have at least 2 zeroes.

Step 5 We claim that uk(0)→∞ and Sϕ = {|x| = 1}. The first claim follows from Step
4 and (31). The second one from Step 4 and (5), since if {|x| = 1} ∪ {|x| = ρ} ⊂ Sϕ for
some 1 6= ρ ∈ (0, R), then u′k would have at least 4 zeroes in (0, R).

Step 6 To conclude it remains to observe that θ̃1,k → 1, which easily follow from Step
5, and that uk → −∞ uniformly in (θ1,k, 1− ε)∪ (1 + ε, R) for every ε > 0, which follows
from ϕ(r) < 0 on (0, R) \ {1} and from (28). �

We have therefore proven that only the 4 given cases in Theorem 1.1 can occur. In
the next subsections we shall focus on case iv) and prove (9), (10), (11) and (12).

2.2 Proof of (9), (10) and (11)

We shall now assume that we are in case iv) of Theorem 1.1, i.e. S1 = {0} and Sϕ =
{|x| = 1}.

Lemma 2.2 We have

∆2uk(r) ≤
C

r4
for r ∈ (0, R)
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Figure 1: The graphs of uk, ∆uk and ∆2uk in the case S1 = {0}, Sϕ = {|x| = 1}.
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Figure 2: Graph of Δu and ΔΔu
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and

0 < −∆uk(r) ≤
C

r2
for r ∈ (0, θ2,k),

where θ2,k is as in Lemma 2.1.

Proof Using (30) and the fundamental theorem of calculus we write for |x| ≤ θ4,k

∆2uk(x) =

∫ θ4,k

|x|

1

ω5r5

∫
Br

Vk(y)e6uk(y)dydr

≤ C

∫ θ4,k

|x|

1

r5
dr ≤ C

|x|4
,

and for |x| > θ4,k the inequality is obvious. This yields for |x| ≤ θ2,k

−∆uk(x) =

∫ θ2,k

|x|

1

ω5r5

∫
Br

∆2uk(y)dydr ≤ C

|x|2
.

�

The following estimates can be seen as an extention of Lemma 3.5 in [27], whose
method of proof goes back to [29].

Lemma 2.3 Let 0 < δ < 1 be fixed. Then there exists C = C(δ) > 0 (C(δ) can be made
independent of δ if δ lies in a compact subset of [0, 1)) such that

i) reuk(r) ≤ C for every 0 ≤ r ≤ δ.

ii) |(∆uk)′(r)− r
6
∆2uk(δ)| ≤ C

r3
, 0 < r ≤ δ.

iii)
∣∣∣u′k(r) + δ2 ∆2uk(δ)

72
r − ∆2uk(δ)

96
r3 − ∆uk(δ)

6
r
∣∣∣ ≤ C

r
, 0 < r ≤ δ.
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Proof Since uk → −∞ uniformly in (θ1,k, δ), we have i) for θ1,k ≤ r ≤ δ. For 0 < r < θ1,k

we use that uk is monotone decreasing. Indeed,

r6e6uk(r) ≤ C

∫
Br

e6uk(y)dy ≤ C.

To prove ii) and iii) we use Greens representation formula. We have

∆uk(x) = −
∫
Bδ

G(x, y)∆2uk(y)dy + ∆uk(δ)

= −
∫
Bδ

Vke
6uk(z)

(∫
Bδ

G(x, y)G(y, z)dy

)
dz −∆2uk(δ)

∫
Bδ

G(x, y)dy + ∆uk(δ)

= −
∫
Bδ

Vke
6uk(z)

(∫
Bδ

G(x, y)G(y, z)dy

)
dz −∆2uk(δ)

δ2 − |x|2

12
+ ∆uk(δ), (34)

where G is the Green function for −∆ on Bδ with Dirichlet boundary condition. Hence,
together with i)∣∣∣(∆uk)′(r)− r

6
∆2uk(δ)

∣∣∣ ≤ C

∫
Bδ

e6uk(z)

(∫
Bδ

|∇xG(x, y)|G(y, z)dy

)
dz, r := |x|

≤ C

∫
Bδ

e6uk(z)

∫
Bδ

dy

|x− y|5|y − z|4
dz

≤ C

∫
Bδ

e6uk(z) 1

|x− z|3
dz.

For x 6= 0 we split the domain Bδ into

Bδ = ∪3
i=1Ai, A1 := B |x|

2

, A2 = (B2|x| ∩Bδ) \ A1, A3 := Bδ \ (A1 ∪ A2).

Using that
1

|x− z|
≤ 2

|x|
for every z ∈ A1 ∪ A3,

and together with i), we bound∫
Bδ

e6uk(z) 1

|x− z|3
dz ≤ C

|x|3

∫
A1∪A3

e6uk(z)dz + C

∫
A2

1

|z|6
1

|x− z|3
dz ≤ C

|x|3
.

11



This proves ii). From the identity (30) and by (34) one gets∣∣∣∣u′k(r) + δ2 ∆2uk(δ)

72
r − ∆2uk(δ)

96
r3 − ∆uk(δ)

6
r

∣∣∣∣
≤ 1

ω5r5

∫
Br

∫
Bδ

Vke
6uk(z)

(∫
Bδ

G(x, y)G(y, z)dy

)
dzdx

≤ C

r5

∫
Br

∫
Bδ

e6uk(z) 1

|x− z|2
dzdx

≤ C

r5

∫
Br

1

|x|2
dx

≤ C

r
,

hence also iii) is proven. �

Proof of (9) (completed). By assumptions uk
βk
→ ϕ in C5

loc(BR \ ({0} ∪ {|x| = 1})).
We know that ϕ ∈ C∞rad(BR \ {0}) solves the ODE

∆3ϕ = 0 in (0, R), ϕ(1) = 0 ϕ′(1) = 0, ϕ 6≡ 0 and ϕ ≤ 0.

Therefore, ϕ is of the form

ϕ(r) = c1 + c2r
2 + c3r

4 +
c4

r4
+
c5

r2
+ c6 log r, (35)

for some constants c0, . . . , c6. This yields

ϕ′(r) + δ2 ∆2ϕ(δ)

72
r − ∆2ϕ(δ)

96
r3 − ∆ϕ(δ)

6
r = −4c4

r5
− 2c5

r3
+
c6

r
+

2c5r

3δ4
− 8c5r

9δ2
+
c6r

3

6δ4
.

Dividing by βk in iii) of Lemma 2.3 and using (5) we obtain

−4c4

r5
− 2c5

r3
+
c6

r
+

2c5r

3δ4
− 8c5r

9δ2
+
c6r

3

6δ4
≡ 0,

which implies that c4 = c5 = c6 = 0. Now the condition ϕ(1) = ϕ′(1) = 0 gives c1 = c3

and c2 = −2c3, that is, ϕ(r) = c3(1 − r2)2. Since ϕ ≤ 0 we must have c3 < 0, and up to
replacing βk with |c3|βk we obtain c3 = −1.

It remains to prove that the convergence in (9) holds in BR \ {0} (and not just in
BR \ ({0} ∪ {|x| = 1})). It follows easily from the monotonicity of ∆2uk and from
∆2uk
βk
→ ∆2ϕ uniformly locally in BR \ ({0} ∪ {|x| = 1}) that

∆2uk
βk
→ ∆2ϕ uniformly locally in BR \ {0}.

12



Then using (74) we obtain

∆uk
βk
→ ∆ϕ,

uk
βk
→ ϕ uniformly locally in BR \ {0},

and using (1) and (30) again, we also infer the C5-convergence claimed in (9). �

In the following βk → ∞ is such that we have (9). The following is a simple conse-
quence of Lemma 2.1 and (9).

Corollary 2.4 We have θi,k = o(1) for i = 1, . . . , 4, where θi,k is as in Lemma 2.1.

Lemma 2.5 Let (uk) be radial solutions to (1)-(2) in Ω = BR0, R0 > 0, with Vk as in
Theorem 1.1, satisfying

uk(x) ≤ uk(0) on Bε, (36)

for some ε ∈ (0, R0). Assume further that uk(0) → ∞, ∆uk(0) ≤ 0 and that there are
αk →∞, τ ∈ (0, R0) and constants C1 and C2 (depending on τ) such that

∆uk(τ) = αk(C1 + o(1)) (37)

∆2uk(τ) = αk(C2 + o(1)), (38)

and

C3 := C1 −
C2τ

2

12
> 0. (39)

Then for rk := 2e−uk(0) we have αkr
2
k = o(1) and (11) holds.

Proof From (36) we infer

ηk ≤ ηk(0) = log 2 for |x| ≤ ε

rk
, (40)

hence
|(−∆)3ηk(x)| ≤ C for |x| ≤ ε

rk
. (41)

We now want to use (41) together with elliptic estimates applied to the function ∆ηk and
then to ηk. With τ ∈ (0, 1) fixed such that (37)-(39) hold, we obtain from (34)

∆ηk(x) + r2
k

(
∆2uk(τ)τ 2

12
−∆uk(τ)

)
= r4

k

∆2uk(τ)|x|2

12
− r2

k

∫
Bτ

e6uk(z)Vk(z)

∫
Bτ

G(rkx, z)G(y, z)dydz.

and integrating on BR∫
BR

|∆ηk(x)− r2
kαk(C3 + o(1))|dx ≤ Cr4

kαkR
8 + C

∫
BR

∫
Bτ

e6uk(z)Vk(z)
r2
k

|rkx− z|2
dzdx

≤ Cr4
kαkR

8 + CR4. (42)

13



We now claim that lim supk→∞ r
2
kαk <∞. Indeed, assume by contradiction that for a

subsequence r2
kαk →∞. Set η̃k := ηk

r2kαk
. Then by (41), (42) and elliptic estimates ∆η̃k is

uniformly bounded in L∞loc(R6), and using (40) and the Harnack inequality one has η̃k → η̃
in C5

loc(R6) where η̃ satisfies

∆3η̃ = 0 in R6,

∫
BR

|∆η̃(x)− C3|dx = 0.

This shows that ∆η̃(0) = C3 > 0, which contradicts ∆uk(0) ≤ 0. This proves our claim.
Now, up to a subsequence we set a := limk→∞ r

2
kαk < ∞. With the same elliptic

estimates used for η̃k we get ηk → η∞ in C5
loc(R6) where η∞ satisfies

(−∆)3η∞ = 120e6η∞ in R6,

∫
R6

e6η∞dx <∞.

Moreover, ∫
BR

|∆η∞(x)− C3a|dx ≤ CR4 for every R > 0. (43)

By Theorem D we can write η∞ = v + p with ∆v(x) → 0 as |x| → ∞ and p is
a (radially symmetric) upper bounded polynomial of degree at most 4. In particular
lim|x|→∞∆p(x) ≤ 0. Since a ≥ 0, from (43) we infer that a = 0, which is only possible
if ∆p ≡ 0, that is, p is constant. By Theorem D, also observing that η∞(0) = log 2, we
conclude that η∞ = η, so that (11) is proven. �

Proof of (10) and (11) (completed) It follows from Lemma 2.1 and (9) that (36)
holds. From (9) we get (37)-(39) with

αk = βk, C1 = 24− 32δ2, C2 = −384, C3 = 24,

for any δ ∈ (0, 1), so that (11) follows at once from Lemma 2.5. Moreover, the claim
αkr

2
k = o(1) of Lemma 2.5 is equivalent to (10). �

2.3 Proof of (12)

Lemma 2.6 Let p ∈ (1, 2), δ ∈ (0, 1) be fixed. Let the assumptions of Lemma 2.5 be in
force and additionally assume that there exists 0 < θk = o(1) such that

0 ≤ −u′k(r) ≤
C

r
on (0, θk) and u′k(r) ≥ 0 on (θk, δ). (44)

Then for each k large there exists tk ∈ (0, θk] such that following hold:

i) rpeuk is monotone decreasing on (cprk, tk) for some constant cp > 0.
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ii) rk = o(tk) as k →∞,

iii) uk(tk) ≤ uk(θk) + C.

Finally, if uk(δ)→ −∞, we conclude

lim
k→∞

∫
Bδ

Vke
6ukdx = Λ1. (45)

Proof For the proof of i) and ii) we shall follow [27]. We set cp =
√

1 + p
2−p . For any

L > cp and for r ∈ (cprk, Lrk), using (11), which follows from Lemma 2.5, we get

(rpeuk(r))′(r) =
(
prp−1 + rpu′k(r)

)
euk(r)

= rp−1 (p+ ρrku
′
k(ρrk)) e

uk(r), ρ :=
r

rk
∈ (cp, L)

= rp−1

(
p+ ρ

(
−2ρ

1 + ρ2
+ o(1)

))
euk(r)

< rp−1

(
p− 2

1 + ρ2
+ o(1)

)
euk(r)

< 0,

where o(1)→ 0 as k →∞ uniformly on ρ ∈ (cp, L). We set

tk := inf{r ∈ (cprk, θk) : (rpeuk(r))′(r) = 0}.

It is easy to see that tk is well defined, rk = o(tk) and rpeuk(r) is monotone decreasing on
(cprk, tk).

Now we prove iii) in few steps.

Step 1 tke
uk(tk) → 0.

It follows from i) that reuk is monotone decreasing on (cprk, tk). Using that rk = o(tk)
and (11) we obtain for any L > cp and for k large

tke
uk(tk) ≤ Lrke

uk(Lrk) = L

(
2

1 + L2
+ o(1)

)
, o(1)

k→∞−−−→ 0. (46)

Taking k →∞ and then taking L→∞ one has Step 1.

Step 2 There exists C > 0 such that θk ≤ Ctk.
We assume by contradiction that θk

tk
→ ∞. Then for any ε > 0 we have u′k(rtk) < 0

for r ∈ (ε, 1
ε
) and k ≥ k0(ε) large, thanks to (44). Then, setting

ūk(r) = uk(rtk)− uk(tk).
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we get for k ≥ k0(ε)

0 < −ū′k(r) ≤
C

r
, r ∈ (ε, 1

ε
). (47)

Hence, ūk → ū∞ in C0
loc(0,∞). By (46) we have

(−∆)3ūk(r) = Vk(tkr)t
6
ke

6uk(tk)e6ūk = o(1)e6ūk

with o(1) → 0 locally uniformly for r ∈ [0,∞), thanks to Step 1. Then, by elliptic
estimates ūk → ū∞ also in C5

loc(0,∞) where ∆3u∞ ≡ 0 in R6 \ {0}

|ū∞(r)| ≤ C

r
, for r ∈ (0,∞), ū∞(1) = 0, ū′∞(1) = −p.

Since ū∞ is radial, it is of the form given in (35), and hence ū∞(r) = −p log r. Using that
rk = o(tk) and (11) one has

64p+ o(1) = −t5k(∆2uk)
′(tk) =

1

ω5

∫
Btk

Vke
6ukdx ≥ Λ1

ω5

+ o(1) = 128 + o(1),

a contradiction as p < 2.

Step 3 uk(tk) ≤ uk(θk) + C.
Since taking ε sufficiently small (47) holds for every r ∈ (ε, θk

tk
), we have

uk(tk) = uk(θk)−
∫ θ1,k

tk

1

ū′k(r)dr

≤ uk(θk) + C log
θk
tk

≤ uk(θk) + C,

thanks to Step 2.

Step 4 (45) holds for δ such that uk(δ)→ −∞.
Since uk(θk) < uk(δ) for k large, we conclude

uk(tk) ≤ uk(θk) + C ≤ uk(δ) + C → −∞ as k →∞.

Splitting the domain Bδ into

Bδ = ∪3
i=1Ai, A1 := BLrk , A2 := Btk \BLrk , A3 := Bδ \Btk ,

we write ∫
Bδ

Vke
6ukdx =

3∑
i=1

Ii, Ii :=

∫
Ai

Vke
6ukdx.
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Using the monotonicity of uk we infer

max
[tk,δ]

uk = max{uk(tk), uk(δ)}
k→∞−−−→ −∞,

which gives I3 → 0 as k → ∞. For L large we have rpeuk(r) monotone decreasing on
(Lrk, tk), and hence

I2 ≤ C

∫
A2

|x|6pe6uk(x) 1

|x|6p
dx ≤ C(Lrk)

6e6uk(Lrk) k→∞−−−→ C

(
L

1 + L2

)6

,

so that
lim
L→∞

lim
k→∞

I2 = 0.

Finally
lim
L→∞

lim
k→∞

I1 = Λ1

by (11). The proof of (45) follows immediately. �

Proof of (12) (completed). In the proof of (11) we have already verified that the
assumptions of Lemma 2.5 are in force. We claim that also (44) holds with θk = θ1,k,
where θ1,k is given by Lemma 2.1.

Indeed for k sufficiently large, since ∆ϕ(1
2
) > 0, (9) implies that ∆uk(

1
2
) > 0, hence

by (27) we have ∆uk > 0 on (θ2,k,
1
2
]. Together with Lemma 2.2 this gives

−∆uk(r) ≤
C

r2
on (0, 1

2
],

hence −u′k ≤ C
r

on (0, 1
2
]. Then (44) follows.

Now observe that (9) implies uk(δ) → −∞ for δ ∈ (0, 1). Then (12) follow from
Lemma 2.6 �

3 Proof of Theorem 1.2

Let Vk, V∞ and P (r) := −ar2−br4 be as in the statement of Theorem 1.2. If we can find ũk
satisfying the requests of the theorem with Vk replaced by Ṽk := Vke

P , then uk := ũk + P
6

will satisfy the requests of the theorem with the original Vk. Therefore there is no loss of
generality in assuming that P ≡ 0, i.e. V ′∞ ≤ 0.

Taking λ = λk ∈ (0, 1
24

] in Theorem E we have that for every Λ > 0 there exists a
solution uk ∈ C5

rad(R6) to

uk(x) = vk − |x|4 + ck

=
1

γ6

∫
R6

log

(
1

|x− y|

)
Vk(y)e−6|y|4e6(vk(y)+ck)dy

+ λk∆vk(0)(|x|4 − 2|x|2)− |x|4 + ck
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such that

Λ =

∫
R6

Vk(y)e6uk(y)dy. (48)

In particular uk solves the integral equation

uk(x) =
1

γ6

∫
R6

log

(
1

|x− y|

)
Vk(y)e6uk(y)dy + λk∆uk(0)(1− |x|2)2 − |x|4 + c̃k, (49)

where
c̃k := ck − λk∆uk(0).

Computing the Laplacian at the origin on both sides of (49) yields

(1 + 24λk)∆uk(0) = − 4

γ6

∫
R6

Vk(y)e6uk(y)

|y|2
dy, (50)

hence
∆uk(0) < 0. (51)

We will now prove Theorem 1.2 by fixing Λ > Λ1, letting λk → 0+. The case Λ = Λ1

can be easily deduced by first taking Λ > Λ1 and then letting Λ → Λ+
1 slowly enough

with a diagonal procedure.
The first step will be proving that λk∆uk(0)→ −∞ (so that −λk∆uk(0) plays the role

of βk from Theorem A and Theorem 1.1). A crucial tool will be the following Pohozaev-
type identity, from [31, Lemma 2.4] (see also [32, Theorem 2.1]) for w solving

w(x) =
1

γ6

∫
R6

log

(
|y|
|x− y|

)
K(y)e6w(y)dy + c

with |x · ∇K(x)| ≤ C, and

α :=

∫
R6

Kenwdy,

we have

α

γ6

(
α

γ6

− 2

)
=

1

3γ6

∫
R6

(y · ∇K(y)) e6w(y)dy,

which, observing that 2γ6 = Λ1, can be recast as

2α

Λ1

(α− Λ1) =
1

3

∫
R6

(y · ∇K(y)) e6w(y)dy. (52)

Lemma 3.1 Let Λ > Λ1. Let (uk) be a sequence of radial solutions to (49)-(48) with Vk
as in Theorem 1.2. Then λk∆uk(0)→ −∞.
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Proof We proceed by steps.
Step 1 uk(x) ≤ 16 + uk(2)− |x|4 for |x| ≥ 2.

Differentiating under the integral sign and observing that ∆ log 1
|·−y| ≤ 0, from (49),

we obtain
∆ũk ≤ 0, ũk(x) := uk(x)− λk∆uk(0)(1− |x|2)2 + |x|4,

and by (30) we have that ũk is monotone decreasing. This proves Step 1, thanks to (51).

Step 2 For every δ > 0 we have supBδ uk →∞.
Assume by contradiction that supk supBδ uk < ∞ for some δ > 0. Then by (48)-(50)

one has |∆uk(0)| ≤ C, which implies that λk∆uk(0) → 0. Then, by Theorem A, up to
a subsequence either (uk) is bounded in C5,σ

loc (R6) for σ ∈ [0, 1), or there exists βk → ∞
such that

uk
βk
→ ϕ := c1 + c2r

2 + c3r
4 in C5

loc(R6), ϕ ≤ 0, ϕ 6≡ 0,

for some c1, c2, c3 ∈ R. We claim that the latter case does not occur. Otherwise, differ-
entiating under the integral sign in (49), one gets

∫
Br
|∆uk|dx ≤ C(r), hence ∆ϕ ≡ 0

in R6, that is, ϕ ≡ c1 < 0. Then uk → −∞ locally uniformly in R6, and by Step 1,∫
R6 Vke

6ukdx → 0, a contradiction to (48). Thus, up to a subsequence, uk → u∞ in
C5

loc(R6). We claim that u∞ satisfies

u∞(x) =
1

γ6

∫
R6

log

(
1

|x− y|

)
V∞(y)e6u∞(y)dy − |x|4 + c =: ū∞(x),

with

α :=

∫
R6

V∞e
6u∞dx = Λ, c := lim

k→∞
c̃k.

It follows from Step 1 that u∞(x) ≤ C−|x|4 on R6. Using this one can show that uk → ū∞
in C0

loc(R6), and hence u∞ = ū∞.
To show that α = Λ we use Step 1. Indeed, as uk(2) ≤ C

α = lim
L→∞

lim
k→∞

∫
BL

Vke
6ukdx = Λ− lim

L→∞
lim
k→∞

∫
BcL

Vke
6ukdx = Λ.

Since V ′∞ ≤ 0, applying (52) with w = u∞ + |x|4 and K = V∞e
−|x|4 one gets α < Λ1, a

contradiction as α > Λ1.

Step 3 λk∆uk(0)→ −∞
We assume by contradiction that λk∆uk(0) ≥ −C for some C > 0. Then, differenti-

ating in (49) and using Fubini’s theorem, we get for every R0 > 0∫
B2R0

|∇uk(x)|dx ≤ C(R0).
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Therefore, by [21, Theorem 1] (see also [28]), as uk is radially symmetric∫
BR0

Vke
6ukdx→ Λ1.

Set now ε0 = 1
2
(Λ− Λ1) and fix R0 = R0(ε,Λ) such that∫

BcR0

Vke
6ukdx ≤ C

∫
BcR0

e−|x|
4

dx < ε0.

Then we obtain

Λ =

∫
BR0

Vke
6ukdx+

∫
BcR0

Vke
6ukdx <

Λ + Λ1

2
+ o(1),

which is a contradiction. �

Lemma 3.2 Under the same assumptions of Lemma 3.1, we have that uk(0) → ∞ and
(11)-(12) hold with rk = 2e−uk(0) and any δ ∈ (0, 1).

Proof We proceed by steps.
Step 1 There exists a radius ξk → 1 such that ξk is a local maxima of uk. Indeed
differentiating (49) under the integral sign we obtain

u′k(r) =
1

ω5r5

∫
Br

∆uk(x)dx

= C
1

r5

∫
R6

Vk(y)e6uk(y)

∫
Br

dx

|x− y|2
dy − 1

ω5r5

∫
Br

∆
(
−λk∆uk(0)(1− |x|2)2 + |x|4

)
dx

=
O(1)

r
− 4λk∆uk(0)r(1− r2)− 4r3. (53)

Then, using Lemma 3.1 we infer

u′k
k→∞−−−→ +∞ uniformly locally in (0, 1)

and
u′k

k→∞−−−→ −∞ uniformly locally in (1,∞).

This proves the claim.

Step 2 We claim that uk(0) → ∞. Indeed a simple application of (30), together with
∆3uk < 0 implies that uk can have at most two local maxima (compare to the proof
of Lemma 2.1). From (51) and the previous step we infer that 0 and ξk are these local
maxima. Since ξk → 1, the claim now follows at once from Step 2 of Lemma 3.1.

Step 3 We claim that uk satisfies (11). Indeed, as uk(0) → ∞, uk(0) is the global
maximum of uk on [0, 1

2
] and uk → −∞ locally uniformly in (0, 1

2
]. Then we can apply
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Lemma 2.5 with αk = −λk∆uk(0) → +∞ (by Lemma 3.1), C1 = 24 − 32τ 2, C2 = −384
and C3 = 24 for some τ ∈ (0, 1

2
] to obtain that (11).

Step 4 (12) hold for every δ ∈ (0, 1).
Let us verify that the assumptions of Lemma 2.6 are satisfied for any fixed δ ∈ (0, 1).

From Step 1 and Step 2 we can find θk ∈ (0, 1) such that (44) holds, while the assumptions
of Lemma 2.5 have already been verified. Moreover uk(θk) ≤ uk(δ) → −∞. Then (12)
follows from Lemma 2.6. �

Proof of Theorem 1.2 (completed). Taking into account Lemma 3.2, if we show that
uk(1)→∞, then we are in case iv) of Theorem 1.1 with ρ = 1.

From (49) we bound

uk(1) ≥ 1

γ6

∫
|e1−y|>1

log

(
1

|e1 − y|

)
Vk(y)e6uk(y)dy − 1 + c̃k,

where e1 = (1, 0, . . . , 0) is a unit vector. By Step 1 of Lemma 3.1∫
|e1−y|>1

log

(
1

|e1 − y|

)
Vk(y)e6uk(y)dy = O(1).

We claim that c̃k →∞. In order to prove the claim we set

Cr := {x = (x1, x̄) ∈ R6 : |x̄| ≤ rx1}.

Since uk is radial and satisfies (48), we can choose r0 > 0 small such that∫
C2r0

Vke
6ukdx ≤ Λ1

4
.

Hence, for x ∈ Cr0 \B 1
2

uk(x) ≤ C +
1

γ6

∫
C2r0

log

(
1

|x− y|

)
Vk(y)e6uk(y)dy + λk∆uk(0)(1− |x|2)2 + c̃k.

Then by Jensen’s inequality and Fubini’s theorem∫
Cr0\B 1

2

Vk(x)e6uk(x)dx ≤ Ce6c̃k

∫
C2r0

fk(y)

‖fk‖

∫
Cr0

Vk(x)
e6λk∆uk(0)(1−|x|2)2

|x− y|p
dxdy

= e6c̃ko(1),

thanks to Lemma 3.1, where fk := Vke
6uk , ‖fk‖ := ‖fk‖L1(C2r0 ) and p := 6

γ6
‖fk‖ < 6.

Observing that by Lemma 3.2

0 < Λ− Λ1 =

∫
R6\B 1

2

Vke
6uk + o(1) ≤ C(r0)

∫
Cr0\B 1

2

Vke
6ukdx+ o(1),
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we conclude our claim.
This proves that uk(1)→∞, hence we are in case iv) of Theorem 1.1. Then from (9)

and Step 1 of Lemma 3.1 it follows∫
B1+ε\B1−ε

Vke
6ukdx = Λ− Λ1 + o(1)

for every ε ∈ (0, 1). �

4 The case of dimension 2n ≥ 6

Similar to Theorem 1.2 one can prove the following.

Theorem 4.1 Let (Vk) ⊂ C0
rad(R2n) be positive functions with Vk → V∞ uniformly, where

V∞ ∈ C1(R2n), V∞(0) = (2n− 1)! and for some a, b ≥ 0

d

dr

(
V∞(r)

ear2+br4

)
≤ 0, r ∈ [0,∞). (54)

Then for every Λ ≥ Λ1 there exists a sequence (uk) ⊂ C2n
rad(R2n) of solutions to (1)-(2)

with Ω = R2n such that uk(0)→∞ and uk(1)→∞ as k →∞, and for every ε ∈ (0, 1)

lim
k→∞

∫
B1+ε\B1−ε

Vke
2nukdx = Λ− Λ1, (55)

lim
k→∞

∫
R2n\(Bε∪(B1+ε\B1−ε)

Vke
2nukdx = 0. (56)

Proof Again using the existence result of [11], for n ≥ 3, λk ∈ (0, 1
8n

) and Λ > Λ1 =
(2n− 1)!|S2n| we find a solution to

uk(x) =
1

γ2n

∫
R2m

log

(
1

|x− y|

)
Vk(y)e2muk(y)dy + λk∆uk(0)(1− |x|2)2 − |x|4 + c̃k, (57)

such that ∆uk(0) < 0 and ∫
R2n

Vke
2nukdx = Λ.

Differentiating under the integral sign, and using that

∆3 log
1

|x|
= −8(m− 2)[(m− 5)2 − 1]

|x|6
in Rm,

we see that
∆3uk < 0 in R2n.
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We now send λk → 0+ and want to show that uk(0)→∞ and uk(1)→∞. This can
be done in the following steps.

Step 1 λk∆uk(0) → −∞. In particular, supBδ(0) uk → ∞ for every δ > 0. This can be
proven with the same argument of Lemma 3.1.

Step 2 There exists βk →∞ such that

uk
βk
→ ϕ in C2n−1

loc (R2n \ S), ϕ = −c1(1− |x|2)2 + c2,

for some c1 ≥ 0, c2 ≤ 0, where S = {0} ∪ Sϕ.
From (57) we see that ϕ should be of the form ϕ = −c1(1 − |x|2)2 + c2 for some

c1, c2 ∈ R. Since ϕ ≤ 0 on R2n, we get c1 ≥ 0 and c2 ≤ 0.

Step 3 (Monotonicity) uk has two local maximum points, namely 0 and a point ξk → 1.
Indeed, since ∆uk(0) < 0, 0 is a local maxima and the existence of ξk follows as in Step 1
of Lemma 3.2. To show that uk can not have another point of local maxima we need to
use that ∆3uk < 0 in R2n. First we show that the same conclusion of Lemma 2.1 holds.
We can repeat the same proof simply replacing (32) by

uk(1± δ)→ −∞, u′k(1− δ)→∞, u′k(1 + δ)→ −∞,

which follows from (57).

Step 4 uk(0)→∞ and uk(0) = supB 1
2

uk. This follows trivially from the above steps.

Step 5 Blow-up at the origin is spherical. This can be proven as in Lemma 2.5.

Step 6 There is concentration at the origin. This can be done as in subsection 2.3.

Step 7 uk(1) → ∞. It suffices to show that the constant (appearing in (57)) c̃k → ∞.
The proof is exactly as the case of dimension 6. �

5 Proof of Theorem 1.3

5.1 Proof of (17) and (18)

We will now establish some relations among θi,k, βk and uk(0) that will lead to the proofs
of (17) and (18). We start with a preliminary lemma.

Lemma 5.1 For every 0 < ξk < ξ̃k with rk = o(ξk) and ξ̃k = o(θ4,k) we have

∆2uk(x) =
32 + o(1)

|x|4
on Bξ̃k

\Bξk .

In particular, ∫
Bt

∆2uk(x)dx = 16ω5(1 + o(1))t2 for ξk ≤ t ≤ ξ̃k.
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Proof Using (11), (12) and recalling that Λ1

ω5
= 128 we obtain for ξk ≤ |x| ≤ ξ̃k

∆2uk(x) =

∫ θ4,k

|x|

1

ω5t5

∫
Bt

Vk(y)e6uk(y)dydt

= (Λ1 + o(1))

∫ θ4,k

|x|

1

ω5t5
dt

= (32 + o(1))
1

|x|4
.

The second part follows from the first part and Lemma 2.2. �

From the definition of θi,k one has ∆
i
2uk(θi,k) = 0 for i = 2, 4 and (∆

i−1
2 uk)

′(θi,k) = 0
for i = 1, 3.

Lemma 5.2 We have

i) θi,ke
uk(0) →∞ for i = 0, 1, 2, 3, 4.

ii) βkθ
4
4,k → 1

12
.

iii) βkθ
2
2,k → 1

3
.

iv) θ3,k ≈ θ4,k

v) θ1,k ≈ θ2,k

Proof i) follows from the definition of θi,k and (11).

Since ∆2(1− r2)2 = 384, by (9) and (12) we have

0 = ∆2uk(θ4,k) = ∆2uk
(

1
2

)
+

∫ 1
2

θ4,k

1

ω5r5

∫
Br

Vke
6ukdxdr

= (−384 + o(1))βk + (Λ1 + o(1))

∫ 1
2

θ4,k

1

ω5r5
dr

= (−384 + o(1))βk + (Λ1 + o(1))
1

4ω5θ4
4,k

+ C,

hence

lim
k→∞

βkθ
4
4,k =

Λ1

1536ω5

=
1

12
,

and this proves ii).
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To prove iii) fix ε > 0 arbitrarily small. Then by Lemma 2.2 and (9) we get

(24− 32ε2 + o(1))βk = ∆uk(ε)−∆uk(θ2,k)

=

∫ ε

θ2,k

1

ω5t5

∫
Bt

∆2uk(x)dxdt (58)

≤ C

θ2
2,k

.

This shows that βkθ
2
2,k ≤ C, and in particular θ2,k = o(θ4,k), thanks to ii). Therefore, we

can choose ξk ∈ (θ2,k, θ4,k) such that θ2,k = o(ξk) and ξk = o(θ4,k).
We write the integral in (58) as I1 + I2 where

I1 :=

∫ ξk

θ2,k

1

ω5t5

∫
Bt

∆2uk(x)dxdt, I2 :=

∫ ε

ξk

1

ω5t5

∫
Bt

∆2uk(x)dxdt.

Using Lemma 5.1 we compute

I1 = 16(1 + o(1))

∫ ξk

θ2,k

1

t3
dt =

8 + o(1)

θ2
2,k

.

Using that −Cβk ≤ ∆2uk(x) ≤ C
|x|4 we bound

|I2| ≤ Cε2βk +
C

ξ2
k

= Cε2βk +
o(1)

θ2
2,k

.

Now iii) follows from (58) as ε > 0 is arbitrary and θ2
2,kβk ≤ C.

We now prove iv). From Lemma 2.1 we have θ4,k < θ3,k. Taking r = θ3,k in ii) of
Lemma 2.3 we have θ4

3,kβk ≤ C, and hence θ3,k = O(θ4,k), thanks to ii).

Finally, we prove v). From Lemma 2.1 we have θ2,k < θ1,k. Taking r = θ1,k in iii) of
Lemma 2.3 we have θ2

1,kβk ≤ C, and hence θ1,k = O(θ2,k), thanks to iii). �

Lemma 5.3 We have

lim
k→∞

∆uk(θ3,k)

βk
= ∆ϕ(0) = 24.

Proof Since ∆ϕ(
√

3
2

) = 0, there exists a sequence θ̃2,k →
√

3
2

such that ∆uk(θ̃2,k) = 0.
Hence, by Lemma 2.1 we infer

0 ≤ −∆2uk(r) ≤ −∆2uk(θ̃2,k), for θ3,k ≤ r ≤ θ̃2,k,

and with (9) we get

∆uk(θ3,k) =

∫ θ̃2,k

θ3,k

1

ω5t5

∫
Bt

(−∆2uk(x))dxdt ≤ −∆2uk(θ̃2,k)
θ̃2

2,k − θ2
3,k

12
= (24 + o(1))βk.

The lemma follows immediately by (9). �
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Proof of (17) and (18) (completed). According to Lemma 5.2 we have θ2,k = o(θ4,k),
hence we can choose sk ∈ (θ2,k, θ4,k) such that θ2,k = o(sk) and sk = o(θ4,k). We claim
that

∆2uk(r) = (1 + o(1))∆2η̄k(r), 0 ≤ r ≤ sk.

Indeed assume by contradiction that there exists µk ∈ [0, sk] such that

|∆2uk(µk)−∆2η̄k(µk)| ≥ ε|∆2η̄k(µk)| for some ε > 0.

It follows from (10) that rk = o(µk). Therefore, by Lemma 5.1

∆2uk(µk) =
32 + o(1)

µ4
k

,

and since

∆2η̄k(µk) =
32 + o(1)

µ4
k

,

we get a contradiction. Therefore, for 0 ≤ r ≤ sk

∆uk(r) =

∫ r

θ2,k

1

ω5t5

∫
Bt

∆2uk(y)dydt

=

∫ r

θ2,k

1

ω5t5

∫
Bt

(1 + o(1))∆2η̄k(y)dydt

= (1 + o(1))(∆η̄k(r)−∆η̄k(θ2,k))

= (1 + o(1))(∆η̄k(r) + 24βk) + o(βk),

where the last equality follows from iii) of Lemma 5.2 and ∆η̄k(θ2,k)θ
2
2,k → −8.

We now claim that

∆uk(x) = (1 + o(1))(∆η̄k(x) + βk∆ϕ(x)) + o(βk) on any compact set K b BR.

Indeed assume by contradiction that for some µk ∈ K

|∆uk(µk)−∆η̄k(µk)− βk∆ϕ(µk)| ≥ ε(|∆η̄k(µk)|+ βk).

From the first part we have that µk ≥ sk. As βk ≈ θ−2
2,k and θ2,k = o(sk), we must have

∆η̄k(µk) = o(βk). By (9) we get µk → 0. Hence

|∆uk(µk)− βk∆ϕ(µk)| ≥
ε

2
βk.

It follows from Lemma 5.3 that

∆uk(µk) ≤ 24βk −
ε

4
βk,
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and in fact, µk < θ3,k, thanks to the monotonicity of ∆uk and (9). Using that θ2,k =
o(sk) = o(µk), and recalling that βk ≈ θ−2

2,k and ∆2uk(x) ≤ C
|x|4 we obtain

ε+ o(1)

4
βk ≤ ∆uk(θ3,k)−∆uk(µk) =

∫ θ3,k

µk

1

ω5t5

∫
Bt

∆2uk(x)dxdt ≤ C

µ2
k

= o(βk),

a contradiction.
Therefore given δ ∈ (0, R) fixed, and using uk(0) = η̄k(0), we get for r ∈ (0, δ)

uk(r) = uk(0) +

∫ r

0

1

ω5t5

∫
Bt

(1 + o(1))(∆η̄k(x) + βk∆ϕ(x))dxdt+ o(βk)

= uk(0) + (1 + o(1))(η̄k(r)− η̄k(0) + βk(ϕ(r)− ϕ(0))) + o(βk + uk(0))

= η̄k(r) + βk(ϕ(r) + 1) + o(βk + uk(0)). (59)

By (9) we have uk(
1
2
) = (1 + o(1))βkϕ(1

2
), and hence, from (59) we infer

βk + η̄k(
1
2
) + o(βk + uk(0)) = 0.

Since η̄k(
1
2
) = (−1 + o(1))uk(0), (18) follows at once. Then (17) follows from (59). �

5.2 Linearization and proof of (19)-(20)

Let ηk and η be as in (11). We set

ψk(x) :=
1

ε̃k
(ηk(x)− η(x)) , (60)

where (notice that r2
k

√
βk → 0 by (10))

ε̃k := max
{
|∆η(0)−∆ηk(0)|, |∆2η(0)−∆2ηk(0)|, r2

k

√
βk

}
k→∞−−−→ 0. (61)

We will show later that ε̃k ≈ r2
kβk ≈ εk := uk(0)e−2uk(0). For any R0 > 0 we have

|ε̃kψk(x)| = |ηk(x)− η(x)| = o(1) on BR0 .

Therefore for x ∈ BR0 , using (16), so that

Ṽk(x) := Vk(rkx) = 120 +O(r2
k),

we compute with a Taylor expansion

(−∆)3ψk =
e6η

ε̃k

[
Ṽke

6εkψk − 120
]

=
e6η

ε̃k

[
(120 +O(r2

k))(1 + 6ε̃kψk + o(εkψk))− 120
]

= 720e6ηψk(1 + o(1)) + o(1),
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where we also used that O(ε̃−1
k r2

k) = o(1). Since

ψk(0) = 0, |∆ψk(0)| ≤ 1, |∆2ψk(0)| ≤ 1,

by ODE theory ψk converges up to a subsequence to ψ in C5
loc(R6) where ψ is a radial

solution to
(−∆)3ψ = 720ψe6η in R6, (62)

with ψ(0) = 0.
The following proposition collects some crucial properties about the solutions to (62).

We shall prove it in Section 7.

Proposition 5.4 Let ψ be a radial solution to (62). Then

ψ(x) = P (|x|)− α log |x|+ o(log |x|), as |x| → ∞, (63)

where P (r) = ar2 + br4 + d for some a, b, d ∈ R, o(log |x|) satisfies

∇jo(log |x|) = o(|x|−j) as |x| → ∞, for 1 ≤ j ≤ 5, (64)

and

α =
720

γ6

∫
R6

ψ(y)e6η(y)dy = 6a+ 48b.

Finally, if a = b = 0, then ψ(r) = γ 1−r2
1+r2

for some γ ∈ R.

Remark 1 Notice that ψ ≡ 0 if and only if ε̃k = r2
k

√
βk for k large and

1

ε̃k
(|∆η(0)−∆ηk(0)|+ |∆2η(0)−∆2ηk(0)|) k→∞−−−→ 0.

We now write

ηk = η + ε̃kψ + ε̃kδkφk, (65)

where

δk := max

{
ε̃k,

1√
βk
, |∆ψk(0)−∆ψ(0)|, |∆2ψk(0)−∆2ψk(0)|

}
k→∞−−−→ 0. (66)

Then

(−∆)3φk =
e6η

ε̃kδk

(
Ṽke

6(ε̃kψ+ε̃kδkφk) − 120− 720ε̃kψ
)

=: Φk(φk).

On any fixed ball BR0 ⊂ R6 we have ε̃kψ = o(1), ε̃kδkφk = o(1), hence with a Taylor
expansion we get

Φk(φk) =
120e6η

ε̃kδk

[
(1 +O(r2

kR
2
0))(1 + 6ε̃kψ + 6ε̃kδkφk +O((ε̃kψ + ε̃kδkφk)

2))− 1− 6ε̃kψ
]

= 720e6η
(
φk + o(φk) +O(ψ2) +O(R2

0)
)
. (67)
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Then, since
φk(0) = 0, |∆φk(0)| ≤ 1, |∆2φk(0)| ≤ 1,

by ODE theory the sequence (φk) is bounded in C5
loc(R6).

We now bound φk on large scales.

Lemma 5.5 Let sk > 0 be such that sk := o(1)ε̃
− 1

4
k . Then

sup
r∈[0,sk]

(
|∆2φk(r)|+ |∆φk(r)|(1 + r)−2 + |φk(r)|(1 + r)−4

)
≤ C, ∀ k.

Proof Let R0 > 1 to be fixed later. We set

X :=
{
φ ∈ C4([R0, sk]) : ‖φ‖X <∞

}
,

‖φ‖X := sup
r∈[R0,sk]

(
|∆2φ(r)|+ |∆φ(r)|r−2 + |φ(r)|r−4

)
.

Thanks to Proposition 5.4 we have

sup
[R0,sk]

ε̃kψ = o(1).

Moreover given a constant M ≥ 1 to be fixed later, we set

BM := {φ ∈ X : ‖φ‖X ≤M}.

Then we have
sup

[R0,sk]

ε̃kδkφ = o(1) for φ ∈ BM .

Therefore the same Taylor expansion used in (67) leads to

Φk(φ)(r) = 720e6η(r)
(
φ(r) + o(φ) +O(ψ2(r)) +O(r2)

)
for φ ∈ BM .

We now fix k and define T : X → X, φ 7→ φ̄ where φ̄ is the unique solution to the ODE

(−∆)3φ̄ = Φk(φ) on (R0, sk), φ̄(j)(R0) = φ
(j)
k (R0), j = 0, 1, . . . , 5.

Using that

|φ(r) + o(φ(r)) +O(ψ2(r)) +O(r2)| ≤ C(‖φ‖Xr4 + r8) on (R0, sk)

we infer

|Φk(φ)(r)| = O(M)

(1 + r)8
+

O(1)

(1 + r)4
for r ∈ [R0, sk], φ ∈ BM .

Then also using
|φ(j)
k (R0)| ≤ C(R0) for 0 ≤ j ≤ 5,
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and (74) we bound uniformly for r ∈ [R0, sk] and φ ∈ BM

|∆2φ̄(r)| ≤ |∆2φ̄(R0)|+R5
0(∆2φ̄)′(R0)

∫ r

R0

dρ

ρ5
+

∫ r

R0

1

ω5ρ5

∫
Bρ\BR0

|Φk(φ)(x)|dxdρ

≤ C(R0) +

∫ r

R0

1

ω5ρ5

∫
Bρ

(
O(M)

(1 + |x|)8
+

O(1)

(1 + |x|)4

)
dxdρ

≤ C1(R0) +O(MR−4
0 ).

Similarly

|∆φ̄(r)| ≤ |∆φ̄(R0)|+R5
0(∆φ̄)′(R0)

∫ r

R0

dρ

ρ5
+

∫ r

R0

1

ω5ρ5

∫
Bρ\BR0

|C1(R0) +O(MR−4
0 )|dxdρ

≤ (C2(R0) +O(MR−4
0 ))r2

and integrating once more

|φ̄(r)| ≤ (C3(R0) +O(MR−4
0 ))r4.

Therefore,
‖φ̄‖X ≤ C4(R0) + C5MR−4

0 for φ ∈ BM .

Now we fix R0 > 1 so that |C5R
−4
0 | ≤ 1

2
. Then for M ≥ 2C4(R0) one has

‖φ̄‖X ≤
M

2
+
M

2
≤M, for every φ ∈ BM ,

i.e. T sends the convex set BM into itself. Then, by the Schauder fixed-point theorem
(notice that T is compact, as one gets easily bound on the fifth order derivative of φ̄), T
has a fixed point φ∗ in X with ‖φ∗‖X ≤M , that is, φ∗ satisfies

(−∆)3φ∗ = Φk(φ∗) on (R0, sk), φ(j)
∗ (R0) = φ

(j)
k (R0), j = 0, 1, . . . , 5.

Therefore, from the uniqueness of solution φ∗ = φk|[R0,sk), and the lemma follows from
the estimate ‖φk‖X ≤M . �

Lemma 5.6 We have∫
Br

(
Ṽke

6ηk − 120e6η − 720ε̃kψe
6η
)
dx = o(ε̃k), (68)

uniformly for r ∈ (0, 1
10rk

), where Ṽk(x) := Vk(rkx).

Proof We prove the lemma in few steps.
Step 1 uk(r) ≤ −7

8
uk(0) on (tk,

1
10

), where tk is as in Lemma 2.6 for some p ∈ (1, 2).
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It follows from Lemma 2.1, iii) of Lemma 2.6, (18) and (9) that

uk(r) ≤ max{uk(tk), uk( 1
10

)} ≤ −7
8
uk(0) for every r ∈ (tk,

1
10

),

for k large.

Step 2 We set sk := ε̃
− 1

5
k and claim that (68) holds for r ∈ (0, sk).

Indeed from Lemma 5.5

ηk = η + ε̃kψ + ε̃kδkφk = η + ε̃kO(1 + r4) + ε̃kδkO(1 + r4), r ∈ (0, sk),

which yields ηk − η = o(1) on (0, sk). Therefore, for every r ∈ (0, sk)∫
Br

(
Ṽke

6ηk − 120e6η
)
dx =

∫
Br

e6η
(
Ṽke

6(ηk−η) − 120
)
dx

=

∫
Br

e6η
(
(120 +O(r2

k|x|2))(1 + (6 + o(1))(ηk − η)− 120
)
dx

= ε̃k

∫
Br

e6η
(
(720 + o(1))ψ + o(φk) + o(|x|2)

)
dx

= 720ε̃k

∫
Br

e6ηψdx+ ε̃k

∫
Br

e6ηo(1 + |x|4)dx

= 720ε̃k

∫
Br

e6ηψdx+ o(ε̃k).

Step 3 We claim that ∫
B 1

10rk

\Bsk

Ṽke
6ηkdx = o(ε̃k).

We write (if tk
rk
≤ sk then the second integral I2 is considered to be 0)∫

B 1
10rk

\Bsk

Ṽke
6ηkdx ≤

∫
B 1

10rk

\B tk
rk

Ṽke
6ηkdx+

∫
B tk
rk

\Bsk

Ṽke
6ηkdx =: I1 + I2.

By Step 1

I1 =

∫
B 1

10
\Btk

Vke
6ukdx ≤ Ce−

21
4
uk(0) = o(r5

k) = o(ε̃k).

Using that rpeuk(r) is monotone decreasing on (cprk, tk), we bound∫
B tk
rk

\Bsk

Ṽke
6ηkdx ≤ Cs6

ke
6ηk(sk) ≤ Cs6

ke
6η(sk) = O(s−6

k ) = o(ε̃k),

where in the last inequality we have used that ηk(sk) = η(sk) + o(1) by Lemma 5.5.
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Step 4 To complete the proof it remains to show that∫
Bcsk

e6ηdx = o(ε̃k),

∫
Bcsk

ψe6ηdx = o(1).

The first estimate follows from∫
Bcsk

e6ηdx =

∫
Bcsk

(
2

1 + |x|2

)6

dx = O(s−6
k ) = o(ε̃k).

The second one follows from Proposition 5.4 since ψ(x) = O(|x|4) as |x| → ∞ implies∫
Bcsk

ψe6ηdx =

∫
Bcsk

O
(
|x|−8

)
dx = O(s−2

k ) = o(1).

�

Lemma 5.7 We have ψ(r) = ar2 +O(log r) as r →∞, where

a = lim
k→∞

2r2
kβk
ε̃k

> 0. (69)

Proof We proceed by steps.

Step 1 ψ(r) = ar2 +O(log r) at infinity.
We assume by contradiction that ψ(r) = ar2 +br4 +O(log r) at infinity for some b 6= 0.

From Lemma 5.6 we get∫
Bt

(
∆3ψk(x)−∆3ψ(x)

)
dx = o(1), t ∈ (0, 1

10rk
),

hence, also using that ψk → ψ in C5
loc(R6), we infer

|∆2ψk(r)−∆2ψ(r)| ≤ |∆2ψk(1)−∆2ψ(1)|+
∫ r

1

1

ω5t5

∣∣∣∣∫
Bt

(
∆3ψk(x)−∆3ψ(x)

)
dx

∣∣∣∣ dt
= o(1), uniformly for r ∈ (1, 1

10rk
). (70)

Since
θ4,k
rk
→ ∞, from (64) we get ∆2ψ(θ4,k) = 384b + o(1). Taking r =

θ4,k
rk

in (70) and

recalling that ∆2uk(θ4,k) = 0

o(1) =
1

ε̃k

(
∆2ηk(

θ4,k
rk

)−∆2η(
θ4,k
rk

)
)
−∆2ψ(

θ4,k
rk

)

= −(32 + o(1))
r4
k

ε̃kθ4
4,k

− (384b+ o(1)).
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Recalling that θ−4
4,k ≈ βk and r2

kβk → 0, this implies

ε̃k ≈
r4
k

θ4
4,k

≈ r4
kβk,

a contradiction to ε̃k ≥ r2
k

√
βk.

Step 2 For any L > 0

∆ψk(r)−∆ψ(r) = (−12 + o(1))
βkr

4
k

ε̃k
(r2 − L2) +O(L−2) + o(1), r ∈ (L, 1

10rk
). (71)

Since ψ(r) = ar2 +O(log r), from Proposition 5.4 we have

|∆2ψ(x)| ≤ C

1 + |x|4
, x ∈ R6.

From (9)

∆2ψk(
1

10rk
) = −(384 + o(1))

βkr
4
k

ε̃k
,

hence, for r ∈ (0, 1
10rk

)

∆2ψk(r) = ∆2ψk(
1

10rk
)−

∫ 1
10rk

r

1

ω5t5

∫
Bt

∆3ψkdxdt

= (−384 + o(1))
βkr

4
k

ε̃k
+O( 1

r4
),

where in the second equality we have used that∣∣∣∣∫
Br

∆3ψkdx

∣∣∣∣ ≤ C, r ∈ (0,
1

10rk
),

which is a consequence of Lemma 5.6. Therefore, for any L > 0 and r ∈ (L, 1
10rk

)

∆ψk(r)−∆ψ(r)

= ∆ψk(L)−∆ψ(L) +

∫ r

L

1

ω5t5

∫
Bt

(∆2ψk −∆2ψ)dxdt

= o(1) +

∫ r

L

1

ω5t5

∫
Bt

(
(−384 + o(1))

βkr
4
k

ε̃k
+O(

1

|x|4
) +O(

1

1 + |x|4
)

)
dxdt

= (−12 + o(1))
βkr

4
k

ε̃k
(r2 − L2) +O(L−2) + o(1).
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Step 3 a 6= 0.
We assume by contradiction that a = 0. Then ψ is of the form ψ(r) = c0

1−r2
1+r2

for some
c0 ∈ R, thanks to Proposition 5.4. Since ψ(0) = 0, we must have c0 = 0, that is, ψ ≡ 0.
Therefore, by Remark 1 we have ε̃k = r2

k

√
βk.

Taking r =
θ2,k
rk

in (71) and using that ∆uk(θ2,k) = 0, θ2
2,kβk → 1

3
, we obtain

1

ε̃k
(8 + o(1))

r2
k

θ2
2,k

= (−12 + o(1))
βkr

4
k

ε̃k

θ2
2,k

r2
k

+O(R−2) + o(1)

i.e., (24 + o(1))
√
βk = O(1),

a contradiction.

Step 4 a > 0.
Since a 6= 0, we can choose L > 0 large such that |O(L−2)| ≤ 1

2
|∆ψ(∞)| = 6|a|.

Taking r =
θ2,k
rk

in (71) and using that θ2
2,kβk → 1

3
, one gets

∆ψ(∞) +O(L−2) + o(1) =
1

εk

(
(12 + o(1))βkr

2
kθ

2
2k

+ (8 + o(1))
r2
k

θ2
2,k

)
=

1

ε̃k
(24 + o(1))βkr

2
k.

This shows that

0 6= 12a = ∆ψ(∞) = 24 lim
k→∞

βkr
2
k

ε̃k
≥ 0.

We conclude the lemma. �

Proof of (19)-(20) (completed). Thanks to (69) we have

εk = (a
8

+ o(1))ε̃k, (72)

hence, also using Proposition 5.4,

ε−1
k (ηk − η)→ ψ0(x) = 8|x| − 48 log |x|+ o(log |x|), as |x| → ∞.

Then we have

ηk = η0 + ε̃kψ + o(ε̃k)φk = ηk + εkψ0 + o(εk)ψ0 + o(εk)φk.

and by Lemmas 5.5 and 5.7 we have ψ0(x) + φk(x) = O(1 + |x|4) on Bsk for a given

sequence (sk) with sk = o(ε
− 1

4
k ). �
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6 Proof of Theorem 1.4

By Lemmas 5.6 and 5.7 and also using (72) and∫ r

0

s5

(1 + s2)6
dr =

1

60

(
1− 10r4 + 5r5 + 1

(1 + r2)5

)
, (73)

for εk = uk(0)

e2uk(0)
we now have∫

Br

Ṽke
6ηkdx = 120

∫
Br

e6ηdx+ εk720

∫
Br

ψ0e
6ηdx+ o(εk)

= I1,r + εkI2,r + o(εk), for r ∈ (0, 1
10rk

).

Using (73) we obtain

I1,r = Λ1

(
1− 10

r6
+ o(r−6)

)
.

From Proposition 5.4 we get

I2,r = 720

∫
R6

ψ0e
6ηdx+ o(1) = 24Λ1 + o(1), o(1)

r→∞−−−→ 0.

Since for r ≥ r
− 1

3
k we have r−6 ≤ r2

k = 4e−2uk(0) = o(εk), we obtain∫
Br

Ṽke
6ηkdx = Λ1 + 24Λ1εk + o(εk) r ∈

(
1

3
√
rk
, 1

10rk

)
,

and scaling back we obtain∫
Br

Vke
6ukdx = Λ1 + 24Λ1εk + o(εk), for r ∈

(
r

2
3
k ,

1
10

)
.

Finally, using that for δ < δ∗ =
√

1− 1√
3

we have (1− δ2)2 > 1
3
, and

uk(x) = −uk(0)(1− |x|2)2(1 + o(1))

≤ −uk(0)(1− δ2)2 + o(uk(0)), for |x| ∈
(

1
10
, δ
)

we infer ∫
Bδ\B 1

10

Vke
6ukdx = o(εk),

and (21) follows at once. �
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7 Proof of Proposition 5.4

We prove the proposition in few steps.

Step 1 We claim that ψ(x) = O(|x|4) as |x| → ∞.
Choose r0 > 1 such that ∫

|x|>r0
e6η(1 + |x|4)dx < ε,

where ε > 0 will be fixed latter. We set

X :=
{
φ ∈ C0([r0,∞)) : ‖φ‖ <∞

}
, ‖φ‖ := sup

[r0,∞)

|φ(x)|
(1 + |x|4)

.

Let T : X → X, T (φ) := φ̄ where φ̄ is the unique solution to the ODE

∆3φ̄ = −720e6ηφ, φ̄j(r0) = ψj(r0), j = 0, 1, ..., 5.

Notice that for f ∈ C2
rad one has

f(r1) = f(r0) + r5
0f
′(r0)

∫ r1

r0

dr

r5
+

∫ r1

r0

1

ω5r5

∫
r0<|x|<r

∆fdxdr, 0 < r0 < r1. (74)

A repeated use of (74) with f = ∆2φ̄, ∆φ̄ and φ̄ gives

|φ̄(t)| ≤ C1(1 + t4) + C2ε‖φ‖t4, t ≥ r0,

where C1 = C1(r0) depends on the initial conditions ψj(r0) and C2 is a dimensional
constant. Therefore, for C2ε <

1
2

and M > 2C1 we have

‖φ̄‖ = sup
[r0,∞)

|φ̄(x)|
(1 + |x|4)

≤ C5(r0) + C6ε‖φ‖ ≤M, for φ ∈ BM ,

where BM := {φ ∈ X : ‖φ‖ ≤ M}. Thus, T : BM → BM and by the Schuder fixed
point theorem, T has a fixed point ψ∗ ∈ BM . From the uniqueness of solutions we have
ψ∗ = ψ|[r0,∞) ∈ BM , and this proves the claim.

Step 2 We claim that ψ(x) = P (x)− α log |x| + o(log |x|) for some α ∈ R, where P is a
radial polynomial of degree at most 4.

We set

ψ̄(x) :=
720

γ6

∫
R6

log

(
1

|x− y|

)
e6η(y)ψ(y)dy,

which is well-defined thanks to Step 1, and P := ψ − ψ̄. Then (−∆)3P = 0 on R6 and
since P is radially symmetric, P is a polynomial of degree at most 4, which we write as
P (r) = ar2 + br4 + d.
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The property ψ̄ = α log |x| + o(log |x|) with |∇jo(log |x|)| = o(|x|−j) for 1 ≤ j ≤ 5
follows easily from its integral definition.

Step 3 α = 6a+ 48b.
Since the function ηλ(x) := η(λx) + log λ solves (−∆)3ηλ = 120e6ηλ in R6, one easily

sees that the function

Ψ(x) :=
1− |x|2

1 + |x|2
=
∂ηλ(x)

∂λ

∣∣∣∣
λ=1

(75)

satisfies
(−∆)3Ψ = 720Ψe6η in R6.

This shows that ψ∆3Ψ = Ψ∆3ψ on R6. Then with a repeated integration by parts one
obtains for every r > 0

0 =

∫
Br

ψ∆3Ψdx−
∫
Br

Ψ∆3ψdx

=

∫
∂Br

(
ψ(∆2Ψ)′ − ψ′∆2Ψ + ∆ψ(∆Ψ)′ − (∆ψ)′∆Ψ + ∆2ψ(Ψ)′ − (∆2ψ)′Ψ

)
dσ. (76)

From the previous step and (75) it follows that

ψ(r) = ar2 + br4 + (−α + o(1)) log r, Ψ(r) = −1 +
2 + o(1)

r2
,

ψ′(r) = 2ar + 4br3 +
−α + o(1)

r
, Ψ′(r) = − 4

r3
+

8 + o(1)

r5
,

∆ψ(r) = 12a+ 32br2 +
−4α + o(1)

r2
, ∆Ψ(r) = − 8

r4
+

24 + o(1)

r8
,

(∆ψ)′(r) = 64br +
8α + o(1)

r3
, (∆Ψ)′(r) =

32

r5
− 192 + o(1)

r9
,

∆2ψ(r) = 384b+
16α + o(1)

r4
, ∆2Ψ(r) =

768 + o(1)

r10
,

(∆2ψ)′(r) =
−64α + o(1)

r5
, (∆2Ψ)′(r) = −7680 + o(1)

r11
,

where o(1)→ 0 as r →∞. Plugging these estimates in (76) one obtains α = 6a+ 48b.

Step 4 We prove that ψ(r) = γ 1−r2
1+r2

when a = b = 0.

In this case, from Step 2 we can write ψ = ψ̄ + d. Indeed, by Step 3 α = 0, so that

ψ̄(x) =
720

γ6

∫
R6

log

(
1

|x− y|

)
e6η(y)ψ(y)dy + log |x|720

γ6

∫
R6

e6η(y)ψ(y)dy︸ ︷︷ ︸
=0

, x 6= 0

and we can write
ψ(x) = I1(x) + I2(x) + C, x 6= 0,
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where for i = 1, 2

Ii(x) :=
720

γ6

∫
Ai

log

(
|x|
|x− y|

)
e6η(y)ψ(y)dy, A1 := B1(x), A2 := Ac1.

For |x| ≥ 2 we bound

|I1(x)| ≤ C‖e6ηψ‖L∞(A1)

∫
A1

(log |x|+ | log |x− y||)dy ≤ C,

and using that

1

1 + |y|
≤ |x|
|x− y|

≤ 1 + |y| for every y ∈ A2, |x| ≥ 2,

one gets

|I2(x)| ≤ C

∫
A2

log(1 + |y|)e6η(y)|ψ(y)|dy ≤ C.

Thus, ψ is bounded in R6.
Bounded solutions of (62) have been classified in [31, Theorem 2.6], hence the proof

of Step 4 is complete.

8 Some examples

It is easy to verify that the cases from i) to iii) of Theorem 1.1 can actually occur. We
will show a few examples.

Example 1 Let u be a solution to

(−∆)3u = 120e6u on R6, Λ :=

∫
R6

120e6udx <∞. (77)

Such solutions exist for every Λ > 0, thanks to [5, 10, 11, 22]. Take uk(x) := u(x
k
)− log k,

which is also a solution to (77). Then this sequence (uk) is as in case i) of Theorem 1.1,
with uk → −∞ uniformly in R6.

If we set uk(x) := u(kx)+log k, then we are in case ii) of Theorem 1.1, with uk → −∞
uniformly locally away from 0 and uk(0)→∞.

As the next example shows, things can get more complicated.

Example 2 Another example of case ii) of Theorem 1.1 is as follows. Let (uk) be as in
Theorem 1.2 for some given Λ ≥ Λ1. Then we can choose ρk → ∞ slowly enough, such
that for vk(x) := uk(ρkx) + log ρk there exists radii 0 < sk < tk → 0 with vk(tk) → ∞,
vk(sk)→ −∞ and vk(0)→∞.
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Example 3 One can also construct an example of case ii) of Theorem 1.1 in which
uk(0) → −∞ and uk(ρk) → ∞ for some 0 < ρk → 0. Fix Λ > 0. Take uk(x) =
vk(βkx) + log βk where vk is a radial solution to

vk(x) =
120

γ6

∫
R6

log

(
1

|x− y|

)
e6vk(y)dy −

(
k +
|∆vk(0)|

24

)
(1− |x|2)2 + ck

=: Ik(x)−
(
k +
|∆vk(0)|

24

)
(1− |x|2)2 + ck,

with

120

∫
R6

e6vk = Λ,

and βk = k+ |∆vk(0)|
24

. Existence of such vk can be proven in the spirit of [11]. In fact, one
can show that Ik = O(1) in Bδ for some δ > 0, vk(1) → ∞, ck → ∞, ck � βk (see also
[13]). This example can be slightly modified to have uk(0) = 0 and uk(ρk)→∞.

9 Open questions

It is natural to ask what happens in the non-radial case, already in dimension 4. In the
very related case of the mean-field equation

(−∆)muk = ρk
e2muk∫
Ω
e2muk

, in Ω (78)

with Dirichlet boundary conditions and the bound ρk ≤ C, using the Lyapunov-Schmidt
reduction, several results have been produced, both in dimension 2 (see e.g. [3, 7, 9]), 4
(see [2, 6]) or higher (see [24]). In this case one can construct solutions blowing up at
finitely many points, which are located at a critical point of a so-called reduced functional
(compare to [26]). The absence of polyharmonic blow-up for (78) (contrary to case of
Theorems A, 1.1 and 1.2 is due to the Dirichlet boundary condition. In fact these existence
results are the most general possible, see e.g. [23, 30]. On the other hand, in view
of Theorems A and 1.2 we expect for (1)-(2) a large number of examples where both
concentration and polyharmonic blow-ups occur.

General open question For n ≥ 2 take Ω ⊂ R2n open, a finite set S1 ⊂ Ω, and
ϕ ∈ K(Ω, S1). When is it possible to construct solutions to (1)-(2) having as blow up set
exactly S1 ∪ Sϕ?

More precisely, we can consider the following subquestion.

Open question 1 Is it necessary that the points in S1 satisfy some balancing conditions,
coincide with critical points of ϕ, or can they be prescribed arbitrarily?

Open question 2 If Sϕ 6= ∅, should every blow up in S1 be spherical?
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Open question 3 Consider the following simple situation. Take

ϕ(x) = x1 −
x3

1

3
− 2

3
, x = (x1, x2, x3, x4) ∈ Ω := (−2, 2)× R3 ⊂ R4.

Then ϕ ∈ K(Ω, ∅), Sϕ = {1} × R3 and ∇ϕ = 0 on {±1} × R3. Is it possible for every
finite set A ⊂ R3 to find solutions to (1)-(2) with n = 2 and with polyharmonic blow-up
on Sϕ and concentration blow-up at S1 = {−1} × A?
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[4] H. Brézis, F. Merle, Uniform estimates and blow-up behaviour for solutions of −∆u =
V (x)eu in two dimensions, Comm. Partial Differential Equations 16, (1991), 1223-1253.

[5] S-Y. A. Chang, W. Chen, A note on a class of higher order conformally covariant
equations, Discrete Contin. Dynam. Systems 63 (2001), 275-281.
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