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Abstract
Based on the incremental amount of data being collected in the healthcare sector, healthcare
analytics is creating a paradigm shift in many research areas from patient care to public health
management. A number of different techniques, combined with an efficient use of data, allow
to perform analyses for descriptive, predictive, and prescriptive purposes, providing means for
making informed and efficient healthcare decisions.

In the clinical context, data collected in the medical practice are exploited for gaining evidence-
based insights on the patients’ condition with the aim of both improving care and expanding med-
ical knowledge. In this framework, longitudinally-collected clinical data constitute an invaluable
resource. Their dynamic nature provides a number of advantages: for instance, by continuously
characterizing the evolution of the clinical condition, they allow to detect how the relationships
among the observed features change as time passes. However, their employment also requires
some precautions, mainly due to the need to properly manage their time dimension, as well as
their possibly heterogeneous nature.

This thesis focuses on how to treat longitudinal clinical datasets for gaining valuable knowl-
edge out of them. Ranging from data preprocessing to the development of descriptive and pre-
dictive models, issues, challenges, and potential of this kind of data are identified and discussed.
To fill some of the gaps identified in literature, ad hoc developed methodologies are proposed.
For each technique, relevant application examples in different clinical contexts are provided as
well.

First, the issue of missing values in the data is addressed, by proposing two imputation ap-
proaches based on the similarity assessed among visits or patients over time. By managing the
longitudinal and heterogeneous nature of data while making the best use of the available informa-
tion, the developed methodologies are designed to meet different cases of use commonly present
in clinical databases.

Then, descriptive and predictive modeling techniques are explored. The temporally-evolving
information is exploited to study how features interact and influence the prognosis with the pass-
ing of time. Moreover, patient patterns are investigated in terms of succession and timing of
consecutive events, providing a characterization of the population’s pathways. By learning on
the whole evolution dynamics, disease mechanisms and treatment effects can be investigated,
obtaining models able to accurately describe and effectively simulate the patients’ behaviour.
Such tools can constitute a valuable mean to support physicians in clinical decision making and
accompany patients in disease management.

Beside addressing the needs related to data complexity, in all the presented methodologies
a special focus was given to interpretability, explainability, and communication effectiveness of
the results.
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iii



iv Exploiting the Temporal Dimension in Clinical Data Mining

settore. Ho avuto la fortuna di incontrare grandi professionisti, motivati e capaci di trasmettere
la loro passione per la materia e la cura per i pazienti.

Un ringraziamento speciale vorrei indirizzarlo anche a tutti i pazienti sui cui dati ho avuto
modo di lavorare: senza la loro scelta di condivisione, la ricerca non potrebbe proseguire. In
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Chapter 1

Introduction

Similarly to what is happening in many fields, the increased availability of structured data repre-
sents an invaluable resource in healthcare.

Historically, the healthcare sector has progressively been generating large amounts of data,
driven by record keeping, compliance and regulatory requirements, and patient care [161]. Dur-
ing the last decades, the rise of biomedical sciences (e.g. the omics), health-related technologies
(e.g. medical monitoring devices), the implementation of administrative healthcare information
systems, as well as the digital transition from paper medical records to electronic health record
(EHR) systems have led to an exponential growth of produced and available structured data, con-
stituting the so-called big data in healthcare [106, 120, 181]. Recent technology advancements
in hardware and software are making it easier to collect, transfer, store, aggregate, and analyze
this information, even when derived from multiple sources [99].

Healthcare Analytics: from Data to Knowledge
By exploiting the information being collected, healthcare analytics is transforming the healthcare
industry both in terms of cost optimisation and ever improving quality of care [55], by applying
quantitative and qualitative techniques to extract knowledge from the available data [182]. In
general, analytics methods include the use of mathematical and algorithmic processing of data
resources, to gain insight from data for making informed and efficient healthcare decisions [39,
107].

Based on the collection, organization, manipulation, and mining of health and medical data,
healthcare analytics mainly develops into three branches (and thus possible operational steps),
namely descriptive, predictive, and prescriptive analytics [41, 107].

Descriptive analytics gives an overview on the data, by categorizing and converting them into
useful information for better understanding and characterizing healthcare decisions, implications,
outcomes and quality [162]. The extracted information is often summarized in the form of tables
or graphical representations, making it more easier for the user to answer specific questions or
identify patterns, thus providing a broader view for evidence-based practice [101].

Predictive analytics is a slightly more advanced type of analytics, that emphasizes the use of
information in an effort to infer the future. By examining historical or summarized health data
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through supervised or unsupervised techniques, it allows to detect patterns of relationships and
extrapolate behaviours to forecast [96, 155].

Finally, prescriptive analytics exploits the knowledge obtained from the other forms of analy-
sis to determine the best course of action with respect to the desired outcomes, allowing to make
proactive decisions [162, 228].

Further areas are sometimes included in the definition of healthcare analytics, such as di-
agnostic analytics, that involves the investigation of historical data to delineate why something
happened and to detect the variables causally linked to the outcomes being investigated [228],
and discovering analytics (also called exploratory analytics), which supports users to reveal new
scientific evidence starting from large volumes of data with plenty of detail [176].

Figure 1.1 reports a brief summary of this classification.

Figure 1.1: Types and functions of healthcare analytics. Adapted from [100].

Healthcare analytics is virtually creating a paradigm shift in the whole healthcare sector,
from basic research to clinical and management applications [95, 1]. The possible advantages
of such analyses could vastly improve patients’ lives and benefit society as a whole. From an
economic perspective, the use of these techniques to improve practice efficiency results in a more
affordable, high-quality healthcare [48]. Besides, from a clinical point of view, the possible im-
provements in medical knowledge, as well in diagnosis and prognosis capabilities, allow higher
health standards. Studies like survival analyses can evidence risk factors and detect the effect of
specific treatments both in disease progression and quality of life [77], moving towards a per-
sonalised care system. Moreover, an enhanced knowledge of pathologies can be translated into
computer-aided tools, offering clinicians a valid support in decision making.

Big Data in Healthcare: Characteristics and Types

With these aims, many different kinds of data are nowadays collected in the practice routine,
constituting the so-called big data in healthcare.



Chapter 1. Introduction 3

Big data in general are characterized by some peculiar features, commonly referred to as
the classical 5-Vs: first of all, they are are constituted by a high volume of information, that
continuously increases over time [113]. Their rapid generation rate and potential analysis speed,
especially when data are automatically streamed, characterizes them with the velocity feature,
that is self-evidently linked to their volume increase [115]. Then, big data can present a wide
variety, by potentially including heterogeneous information, differently structured, and gathered
from different sources. As defined by IBM [180], big data exhibit veracity as a further dimension,
which refers to their level of reliability (in terms of truthfulness, accuracy, or correctness) and,
consequently, to the quality of the resulting analyses. Finally, big data undoubtedly constitute
a huge potential in terms of value, that requires on the other hand accurate methodologies and
plausible time frames to reap benefits out of them.

Specific to healthcare big data, Dinov [52] introduced two more important characteristics,
that are, energy and life-span. The energy corresponds to the amount of information content
included in the data: the higher the amount of data, the more precise the description of the
phenomenon of interest, and then the more beneficial the analysis. The life-span is a concept
strongly associated to the data value: as time passes, more data are being collected, but their
usability can also be reduced for reasons of obsolescence. This phenomenon, also known as
information devaluation, materializes as a decay of the lifespan and value of healthcare data at
an exponential rate.

Some further characteristics should be considered when practically working with big data,
specifically in healthcare. Among others, we find accessibility (can we really reach the col-
lected information?) and, connected to it, timing (can we access them at the right time to make
appropriate decisions?), security and privacy preservation (can we maintain their content safe
and confidential?), interoperability (can we use them in combination?), completeness (are they
exhaustive?), and manageability (can we handle their complexity?).

All these characteristics evidence how big data in healthcare constitute a rich informative
basis to healthcare analytics applications, but also require special care in their use due to their
potentially overwhelming complexity [67].

With respect to the possible types of big data employed in healthcare analytics, they can
mainly be categorized into three categories, namely administrative, clinical, and behavioural/
environmental.

Administrative data include the information collected for business or organizational purposes
and related to the contacts of the patient to the healthcare system/structure, such as hospital
admissions or drug prescriptions. Typical analytics applications based on these data are studies
of patient management, investigations of the employed resources, or estimations of the care costs
for reimbursement purposes [94].

The second category comprehends all the clinical information generated in the medical prac-
tice and related to the patients’ health status. This information can be recorded in a variety of
sources, such as EHRs, patient databases, clinical trial registers, medical imaging repositories,
and laboratory information systems [10, 141], and be employed in evidence-based medicine, for
developing decision support systems, or for investigating condition risk factors.

Finally, behavioural and environmental data are recently emerging for their important contri-
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bution as health-related information. Life-style data such as physical activity frequency, drinking
or smoking habits, and occupational information are being collected through self-report ques-
tionnaires, wearable sensors/apps, or social media. Together, environmental monitoring systems
allow to record the information related to possible substances or factors the subjects have been
exposed to, such as air pollutants or electromagnetic fields. The combined use of this informa-
tion together with that collected in the other two data categories allows to detect the influence
of habits and exposition factors on disease spread, short- and long-term health conditions, or
possible related genetic mutations [59, 66].

Mining Clinical Data with a Temporal Dimension
Among the different kinds of data just introduced, this thesis will deal with the employment
of analytics techniques on clinical data. As introduced above, this category includes all the
variables related to the medical status of a patient. This information can be captured as part of
the standard care delivery process, or during activities such as clinical research trials or studies.
In the clinical practice, real-time analysis of these data allows the delivery of timely, appropriate
care to the patient. The aggregation and analysis of multiple patient information is the basis for
a system that continually learns from the patients’ conditions, therefore both improving care and
advancing the frontiers of knowledge in medicine [139].

Clinical data represent a multidimensional description of the patient status in a specific ob-
servation moment, recording for instance symptoms, administered treatments, or lab test results.
We could say that such recording constitutes a sort of photograph of the situation, potentially
capturing detailed information of what is happening in that specific moment, possibly from a
number of different perspectives.

Often, this acquisition is repeated over a follow-up period, in order to monitor the evolution
of the patient’s clinical history under natural or treated conditions. Such may be the case of a
sequence of screening visits, or consecutive clinical evaluations over multiple days of hospital-
ization. In this case, what strongly characterizes the collected information is one remarkable
additional dimension: time. In our metaphor, the patient’s story is now described by a sequence
of snapshots, with its evolution constituting a sort of movie. By properly observing and em-
ploying all this collected information, clinicians can detect the progression of the patient’s health
status, evaluate the path of care, and plan the next health treatments. Such sequence of obser-
vations of clinical parameters taken at different time moments is known as longitudinal clinical
data collection. It represents a typical structure of many medical data collections, one example
among all being clinical registers.

The availability of data longitudinally collected over time provides a number of advantages.
First of all, the patient’s clinical condition is widely characterized: specific variables can be
tracked over time, by delineating their evolution; moreover, the effect or relation of one or more
variables on the other at different time instants can be inspected. Noticeably, the time dimension
not only allows to focus on the observed values and how they change as long as time passes,
but also permits to inspect how much time elapses among distinct events. For instance, the time
occurring between the administration of a certain therapy and the appearance of a certain clinical
phenomenon can be investigated [22].
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When extending the study to more subjects, further possible analysis targets can be added.
For instance, for each patient the pattern of events characterizing his/her evolution can be de-
termined, and compared with the others: in this way, similarities or deviations among subjects
can emerge, possibly highlighting interesting behaviours or providing stratification of the popu-
lation based on similar clusters of occurrences. Moreover, clinical conditions can be studied at a
population level, by assessing outcome occurrence, risk factors, or disease evolution patterns.

However, managing the temporal dimension when analyzing clinical data is not trivial. Let’s
introduce some of the possible features – and related criticalities – of this kind of data with an
example.

Subject i Static features
Dynamic features 

t
i,1

Dynamic features 
t
i,2

Dynamic features 
t
i,3

Subject j Static features
Dynamic features 

t
j,1

Dynamic features 
t
j,2

Figure 1.2: General structure of longitudinal clinical records collected for two distinct subjects.

Figure 1.2 schematically reports an example of longitudinal clinical records collected for two
distinct patients i and j. First, according to their temporal dimension, the variables collected
for each subject can be classified in two categories, that are, static and dynamic variables. Static
variables correspond to all information which is constant throughout the patient’s clinical history,
such as sex or age at disease onset. On the other hand, dynamic variables are those that vary in
time, such as blood pressure or sugar levels. Generally, static variables are collected at one given
time point, like for instance when providing the anamnesis to the doctor; alternatively, when the
clinical database results from the aggregation of multiple sources, they can correspond to the
information collected in static databases, such as administrative records containing demographic
information of patients. On the other hand, dynamic variables are iteratively collected over
subsequent visits, and progressively added to the database.

Therefore, the first aspect to take care of when structuring the data or designing an analysis
is how to properly handle this distinction. Additionally, dynamic data can be temporally sparse.
In general, they can be recorded over a noncontinuous scale, according to the patient monitoring
schedule or the specific variable granularity, and be asynchronous with respect to the popula-
tion. This results in a sampling grid that, in general, may vary both along the patient-specific
observation period and from patient to patient [18]. In the previous example of Figure 1.2, the
observations for the two subjects differ in terms of both number of acquisitions and timing.

When these kind of data are mined, for instance with the goal of performing descriptive
and/or predictive analyses, it is necessary to thoroughly deal with all these aspects. Nevertheless,
not all the algorithms are able to correctly manage the temporal aspect together with the other
data dimensions, that are those related to the acquisition of a multiple number of variables for a
number of distinct subjects. Most of the traditional automatic data exploration/mining techniques
usually treat temporal data as unordered collections of events, ignoring their temporal informa-
tion: these techniques mainly focus on analyzing data occurring at the same time, neglecting the
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inspection of the relations at time points [8]. Treating data as unrelated aggregates of individual
data elements does not allow to identify trends in the values, to assess the cross-influences be-
tween variables as long as the condition progresses, or to detect similar profiles occurring over
different time scales or having different baseline values [145].

In other cases, the temporal information is only marginally used for determining the values of
static analysis outcomes, such as short- or long-term mortality rates. Moreover, when employing
the other collected variables to correlate with/predict these outcomes, their use is often limited to
baseline values, thus preventing the detection and assessment of their (possibly varying) influence
over time. In addition, only an accurate analysis of the whole clinical evolution can allow to
identify possible crossroad events that can act on the condition progression or on the outcome
occurrence.

To summarize, when dealing with clinical data with a temporal dimension, the key concept is
that “the temporal dimension of data is a fundamental variable that should be taken into account
in the mining process and returned as part of the extracted knowledge”, as accurately formulated
by Berlingerio et al. [22].

Thesis Goal and Structure
Based on the considerations above, this thesis focuses on how to properly manage and exploit
the temporal dimension when performing analyses on longitudinal clinical datasets.

Ranging from data preprocessing to the development of descriptive and predictive models,
issues, challenges, and potential related to the temporal dimension of data are identified and
discussed. To fill some of the gaps identified in literature, ad hoc developed methodologies are
proposed. For each introduced technique, an application example or case study is also provided.

In particular, Chapter 2 outlines the possible issues related to the presence of missing values
in real-world datasets, describing how an imputation step can be included in the preprocessing
in order to obtain complete datasets for the analyses. The limits of state-of-the-art imputation
methods when applied to longitudinally-collected clinical data are discussed, and two distinct
developed imputation techniques are presented. Based on possibly different data properties,
the proposed methodologies are able to exploit the similarity among visits or clinical evolution
patterns in order fill in the missing information, while properly handling the temporal dimension
of data and the possible feature type heterogeneity.

Chapter 3 focuses on the potential of clinical data with a temporal dimension in capturing
the progression of clinical conditions. By effectively employing modelling methodologies able
to manage the features’ dynamism, it is possible to build descriptive and predictive models that
thoroughly catch the progression of the condition, allowing to delve into the relationships among
features over time as well as prognosis forecasting. As a case study, in this Chapter a model
of progression of Amyotrophic Lateral Sclerosis based on Dynamic Bayesian Networks is pro-
posed.

Chapter 4 presents an alternative approach to longitudinally collected clinical data, namely
Process Mining. This family of analytics methods bases on data structured as sets of consecutive
events, a representation that lends itself well in the case of data dynamically evolving over time.
Through the employment of supervised and unsupervised techniques, it allows to discover the
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processes that generated the observed data, to describe how the care patterns evolve for differ-
ent subjects, and to analyze how much they comply with expected data behaviours. A Process
Mining-oriented approach is adopted to perform the steps of a classical statistical analysis, by
specifically focusing on the formalisms provided for querying data for inferential analyses and
exploring the model outputs provided in terms of easily accessible graphical workflows.

Finally, in Chapter 5 the main innovation aspects, strengths, and limitations of the proposed
methodologies are discussed.





Chapter 2

Missing Data Imputation

This Chapter deals with one of the possible issues to address in the preprocessing phase, that is,
the presence of missing values in the data. In the specific context of longitudinal clinical data
collection, this matter requires in general to simultaneously manage the temporal dimension of
data, the possible feature type heterogeneity, and the medical information content.

First, state-of-the-art imputation techniques are presented and their limitations when applied
to clinical data with a temporal dimension discussed. Then, two innovative methodologies are
introduced and thoroughly described, by additionally providing practical examples of application
on real-world clinical datasets. The developed methods are designed to meet different cases of
use commonly present in clinical databases, by not only managing the longitudinal data nature,
but also exploiting the richness of the information collected increasingly over time.

2.1 The Missing Data Issue

When collecting healthcare information, the type and frequency of acquired data may vary based
on the specific application field, patients’ clinical conditions, and/or administrative requirements.
A typical issue when working with these real-world datasets – in healthcare, but more generally
in many other domains – is the presence of missing values. In the specific context of clinical
data, medical tests and treatments can be carried out at different times even if patients exhibit the
same symptoms, resulting in different information densities. This, together with human factors
(poor handwriting, missing charts or pages, measurements being documented in inconsistent
locations, etc.), can results in many aspects of a patient’s clinical condition being unmeasured or
unrecorded at different time points.

Missing values may be clinically important, but cannot be handled by most analytics algo-
rithms [215] and can significantly affect the conclusions drawn from the data [80]. For instance,
missing data can introduce bias in the results of randomised controlled trials, negatively affecting
the derived clinical decisions and ultimately patient care [172]. When performing survival analy-
sis, missing data can occur in one or more risk factors. The standard response of simply excluding
the affected individuals from the analysis could lead to invalid results if the excluded group is
selective with respect to the entire sample, and to a waste of costly collected data [198]. In re-
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mote health monitoring settings, missing data is a prevalent issue affecting long-term monitoring
systems which can lead to failure in decision making [11]. For electronic health records, missing
values frequently outnumber observed ones, mainly because they were designed to record and
improve patient care and streamline billing rather than collecting data for research purposes [14].

Many kinds of analyses, from simple statistics to advanced data mining and machine learning
methods, either fail altogether in dealing with missing data or end up producing biased estimates
of the investigated associations when simple curing techniques (such as complete case analysis,
overall mean imputation, or the missing-indicator methods) are applied [53]. To utilise all clinical
data and achieve optimal performance of the used algorithms, the missing data issue must be
addressed, and thus a preliminary step of imputation (i.e. “filling in” the gaps with plausible
values) is often performed in the preprocessing phase.

2.2 Types of Missing Data
Missing values can be of three general types: missing completely at random (MCAR), missing at
random (MAR) and missing not at random (MNAR). When missing data are MCAR, the pres-
ence and/or absence of data is completely independent of observable variables and parameters
of interest. In this case, the set of subjects with no missing data is also a random sample from
the source population. This represents the best possible type of missing data as any analysis
performed will be unbiased [81], although it is a highly unlikely scenario.

Missing data are MAR when the propensity for a value to be missing depends on some
observed patient characteristic. For instance, males are less likely to fill in a depression survey.
This kind of missing data can induce bias in the resulting analysis especially when the data is
unbalanced because of many missing values in a certain category.

Finally, we are in the MNAR scenario when the missing values are neither MCAR nor MAR.
For instance, when asking subjects for their income level it might well be that missing data are
more likely to occur when the income level is relatively high. Or, as another example, when
asking a subject about his/her habits such as alcohol drinking, the answer is more likely to be
missing/non declared in case of excessive consumption. Here, the reason for missingness obvi-
ously is not completely at random, but it is related to unobserved patient characteristics, and/or
to the specific context the variables belong to.

2.3 Previous Work on Missing Data Imputation
Several methods for handling the presence of missing data are already available to date [17].

The simplest approach when dealing with missing data is applying filtering techniques to ex-
clude from the analyses all unrecorded information. This can consist in completely dropping all
cases where at least one variable is missing (listwise deletion), or by only deleting cases having
missing values in one of the variables being considered in the specific evaluated model (pairwise
deletion). As a limitation, these approaches completely neglect the relationships among vari-
ables, possibly causing severe information loss and worsening the statistical power and standard
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errors of the analyses [154, 217]. In addition, especially for pairwise deletion, not all the algo-
rithms allow/include the option to only work with the available cases. Finally, filtering could not
be a viable option when the sample cardinality is limited and/or the percentage of missing data
is too high.

Simple statistical approaches, such as mean/median/mode filling or value propagation (Last
Observation Carried Backward or Next Observation Carried Forward), are often applied. Despite
being fast and easily interpretable, these methods may lead to low accuracy and biased estimates
of the investigated associations [53, 124].

More advanced methods which take into account cross-sectional relationships among the
data have been proposed. Regression approaches estimate missing values by regressing them
from other related variables [230], especially time [147]. Specifically, deterministic regression
imputes the data by using the exact prediction of the regression model. This, however, can
produce an overestimation of the correlation among the variables, sometimes even introducing
spurious correlations. To overcome this issue stochastic methods can be employed, where a
random error term is added to the predicted value in order to recover a part of the data variability
[164].

Multivariate imputation by chained equations (MICE) [199] is one of the most prominent
methods in the literature [12]. In this imputation procedure, a series of regression models are
run whereby each variable with missing data is modelled conditional upon the other variables
in the dataset. This means that each variable is modelled according to its distribution, with,
for example, predictive mean matching for continuous data, logistic regression for binary data,
polytomous logistic regression for categorical data and proportional odds for ordinal data.

3D-MICE, recently introduced in [123], combines MICE with Gaussian process (GP) [163,
90] predictions, thus imputing missing data based on both cross-sectional and longitudinal patient
data information. MICE is used to carry out cross-sectional imputation of the missing values,
while a single-step GP is used to perform longitudinal imputation. The estimates obtained by the
two methods are then combined by computing a variance-informed weighted average. 3D-MICE
can adequately impute continuous longitudinal patient data, but is unable to handle categorical
and static variables.

A non-parametric method based on a random forest that can cope with different types of
variables simultaneously, called missForest, was introduced by Stekhoven et al. [186]. This
method is based on the idea that a random forest intrinsically constitutes a multiple imputation
scheme by averaging over many unpruned classification or regression trees. While not requiring
assumptions about the statistical distribution of the data, missForest requires the observations
to be pairwise independent, that is, distinct samples must present no cross-relations. This is of
course hardly the case when the dataset consists of a longitudinal collection of data belonging to
the same subjects recorded over different time points (as in, for instance, clinical registers with
several visits for each patient).

Another popular imputation method for cross-sectional time series data is Amelia II [89],
which performs multiple imputation by implementing an Expectation-Maximisation with Boot-
strapping algorithm. Amelia II is able to impute cross-sectional, time-series, and time-series-
cross-section data, also allowing the incorporation of observation and data-matrix-cell level prior
information. At the same time, this method requires all variables in the dataset to be multivariate
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normally (MVN) distributed. This requirement reduces the applicability of the method especially
when dealing with non-normalisable and/or categorical variables.

Recently, a number of deep learning frameworks for estimating missing values in multi-time-
series clinical data have been proposed [25, 121, 225]. These methods achieved impressive re-
sults on benchmark datasets due to the high-quality representations extracted from large amounts
of data, which means that their applicability is limited when less data are available.

Finally, “nearest neighbours” (NN) methods are among the most popular imputation proce-
dures [7, 20]. Missing values of samples with missing data are replaced by values extracted
from other similar samples with respect to observed characteristics. NN imputation approaches
are donor-based methods where the imputed value is either a value that was actually measured
for another record in a database (1-NN) or the average/median/mode of measured values from
k records (k-NN). While many imputation methods require the missing data to be MCAR, or
at least MAR, imputation based on a k-nearest neighbours approach is applicable in any of the
three above-described (MCAR, MAR and MNAR) situations, as long as there is a relationship
between the variable with the missing value and the other variables [20]. NN methods were often
shown to outperform other imputation techniques [224], even though results depend heavily on
the choice of the metric used to measure the similarity between samples.

2.4 Open Issues and Contribution
When approaching the issue of imputing clinical data, some needs related to the specific nature
of the collected information emerge.

First of all, as introduced in Chapter 1, one of the characterizing properties of clinical data is
often the dependence of some variables on time.

The multiple acquisition of one or more variables over time can significantly contribute in
terms of exploitable information for imputing possible missing values. Indeed, by considering a
single variable its consecutive monitoring can suggest possible trends to be exploited in inferring
the unrecorded values. Let’s think for instance to weight monitoring in a patient: if one value
is unrecorded and the sampling is dense enough, interpolation or regression techniques could be
applied to infer the missing acquisitions, by actually treating the feature as a time series. Besides,
observing the parallel evolution of more variables together can bring out possible relationships
that can be exploited to impute missing values in present or future time points. It could be the
case, for example, of variables with possible contemporary inter-related trends, or features that
are predictive for some conditions at subsequent times.

Although potentially useful for addressing the issue of missing collected data, the temporal
dimension can also be extremely challenging to manage, being often noncontinuous and asyn-
chronous, as introduced in Chapter 1 (see Figure 1.2). At a single-patient level each subject can
have indeed different times for recorded symptoms and findings, performed diagnostic studies,
and provided treatments. By considering the study population in its entirety, the time intervals
between subsequent observations can also widely vary between patients and/or clinical settings,
resulting in data collected over a potentially highly-sparse grid of time points [123].

With reference to the state-of-the-art methods illustrated in the previous section, most of
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them are designed for cross-sectional imputation (measurements at the same time point) and
thus not able to explicitly handle the temporal nature of longitudinal patient data [91]. For
some algorithms (as for instance missForest [186]), moreover, the assumption of independence
between samples has to hold, thus making not immediate their extension to datasets consisting of
multiple acquisitions per patient. Furthermore, because data collection periods may vary across
patients, aggregated samples may not be directly comparable.

Another characteristics of the data collected in the clinical context is the potentially vast
heterogeneity in the type of variables. According to the temporal dimension discussed above,
variables in this domain can first be classified as either static if constant throughout the patient’s
clinical history, or dynamic if varying in time, as introduced in Chapter 1.Besides, they can be
continuous when representing measurements in a range of continuous values, ordinal when the
values fall in a discrete ordered set, or categorical when describing a qualitative property out of
a finite number of categories or distinct groups without any order relations.

An adequate imputation method should therefore be able to handle this data complexity al-
together. However, many of the available imputation methods are restricted to only one type of
variable (as in 3D-MICE [123], that is able to impute continuous longitudinal patient data only).
For mixed-type data, the different variable types are usually handled separately, thus ignoring
possible relations among variables of different types. Moreover, most of them make strong as-
sumptions on the characteristics of the missing data, such as locality in Gaussian Process based
models [90], low-rankness and temporal regularity in matrix factorisation models [226] and mul-
tivariate normality in Expectation-Maximisation methods [89]. For methods based on sample
comparisons, like the k-NN ones, the implemented similarity metrics are often not designed to
handle data of different nature at the same time, nor they take into account the possibly unbal-
anced contribution of static and dynamic variables, with the latter recursively adding information
over time.

The following sections of this chapter present my contributions to address these open issues,
consisting of two imputation methods specifically designed for different types of longitudinally-
collected clinical data with missing values. The methods have been designed to meet possible
cases of use, that may differ in terms of variable characteristics, frequency of data acquisitions,
or clinical similarities among patients.

Section 2.5 outlines a methodology developed in the context of the 2019 ICHI Data Ana-
lytics Challenge on Missing data Imputation (DACMI – https://www.ieee-ichi.org/
2019/challenge.html). The algorithm has been designed to handle missing data in longi-
tudinal data collections where no a priori assumption of clinical similarity among patients can be
provided. Based on that, an intra-patient approach was performed, that is, the missing values of
a patient are inferred directly from his/her previous/following acquisitions. To do that, a further
characteristics of the data is required, that is, patients with missing data should have a suffi-
ciently high number of acquisitions. This algorithm can be only applied on datasets consisting
of all continuous features.

The proposed methodology bases on the combination of linear interpolation and a weighted
k-NN procedure. In the first case, a feature missing value is imputed by using the information
collected over the previous and next acquisitions of the same feature. In the k-NN, instead,

https://www.ieee-ichi.org/2019/challenge.html
https://www.ieee-ichi.org/2019/challenge.html
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some cross-information among variables is included, by defining a similarity metric that employs
the Maximal Information Coefficient (MIC) as weights. The choice of combining two distinct
imputation approaches was determined after observing that distinct features can exhibit different
characteristics in terms of information: some of them could evolve in such a way that any missing
value can better be inferred from the close-in-time acquisitions of the same variable; on the
contrary, some others can benefit more from the cross-contributions of other features collected at
corresponding time points.

The procedure has been tested and validated on an Intensive Care Unit (ICU) database, ac-
cording to the task proposed for the challenge. A cross-validation scheme has been set up to
choose the optimal value of the k-NN parameter and assess the overall method performance, de-
signing a masking procedure where known values were first removed from the data, then imputed
and finally compared with the true ones.

This work was presented in the context of the 7th IEEE International Conference on Health-
care Informatics (ICHI 2019) [44], and published as extended paper on the Journal of Healthcare
Informatics Research [45]. The algorithm was implemented in R, and has been released as freely
available package.

Section 2.6 describes an imputation methodology completely based on a weighted k-NN
approach. The implemented technique is able to manage the simultaneous presence of missing
information in static and dynamic mixed-type variables, thanks to an ad hoc similarity metric
that handles both the presence of multiple missing values and the different nature of the features.
In this case, the algorithm has been designed for datasets where clinical similarity hypotheses
among patients can be formulated (such as registries of patients affected by the same pathology).
Implementing an inter-patients approach, the algorithm assesses and exploits the similarity of
the patients’ clinical evolution over time, based on the assumption that patients with analogous
disease course over time can also share similar data values.

Thus, the algorithm proceeds in two steps: first, for each subject with missing data to be
imputed, k-NN samples are adaptively created based on the available visits, effectively captur-
ing the temporal evolution of the features over time. Then, a weighted k-NN algorithm is run,
identifying the patients who share similar disease progression patterns and using their known
values to infer plausible estimates of the missing ones. Also in this case we employed a weight
in the similarity metric to include some cross-information between features when comparing the
subject variables, hereby computing the Mutual Information metric.

This method was applied on a disease register on Amyotrophic Lateral Sclerosis (ALS): this
dataset presents all the above-described characteristics, from the presence of mixed data types
and multiple missing values per sample, to the chance to formulate hypotheses of clinical sim-
ilarity among subjects. Here, the algorithm has been validated both (i) in terms of imputation
performance, by employing a cross-validation and masking procedure similar to the previous
work, and (ii) by assessing the accuracy improvement of a survival classifier trained on the im-
puted data.

This work has been presented in the context of the 16th International Conference on Com-
putational Intelligence methods for Bioinformatics and Biostatistics (CIBB 2019) [189], and
published as extended paper on BMC Medical Informatics and Decision Making [188]. The
implemented algorithm, developed in R, was structured as package and released on CRAN.
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2.5 A Combined Interpolation and Weighted k-Nearest
Neighbours Approach for the Imputation of Longitudinal
Clinical Data

In the framework of the 2019 ICHI Data Analytics Challenge on Missing data Imputation,
an imputation task for longitudinal ICU laboratory test data was shared. The challenge cen-
tered on the single task of imputing missing data in a clinical dataset of longitudinal multi-
variable laboratory test results. The provided dataset was an extraction of the large real world
ICU database MIMIC-III developed by the MIT Lab for Computational Physiology (https:
//mimic.physionet.org/, [97]), consisting of clinical laboratory test results for 13 com-
monly measured analytes.

This section describes the methodology developed for the challenge, which consists of the
combination of linear interpolation and a k-Nearest Neighbours procedure enriched with a MIC-
based weighting scheme [167] to further exploit the relationships among variables. Starting
from the characteristics of the dataset provided for the challenge, that does not allow to formu-
late any a priori clinical similarity among patients, and that is constituted by a quite high number
(a couple of tens, on average) of available data acquisitions for each patient, the method was
built up as intra-patient approach, i.e. using the values of the other visits of the same patient
to impute his/her missing values in a specific acquisition. Besides, the employment of the MIC
computed among pairs of features as weights in the k-NN similarity metric allows to integrate
cross-contribution information available at a population level. The MIC was chosen as statistical
measure thanks to its capability to capture both linear and nonlinear relationships among features.
The algorithm proceeds by first independently testing the linear interpolation and weighted k-NN
imputation as distinct approaches for imputing the missing features. Then, the two approaches
are combined by selecting for each feature the best performing one, with the imputation perfor-
mance assessed in a CV setting where some known data are masked and then imputed with the
two approaches. In this way, the method optimally meets the nature of each variable, that can
either benefit from the cross-contributions of the other features (in the k-NN algorithm) or from
the intra-feature information (in linear interpolation).

The implemented methodology was validated on an independent test set against 3D-MICE,
i.e. the baseline imputation algorithm proposed by the DACMI organisers. The developed
method demonstrated statistically significant improvements in 11 out of 13 analytes, with an
average performance gain of 8.1%, as well as a considerably reduction of the required computa-
tional time.

2.5.1 Material: Continuous Laboratory Test Data
The datasets [122] provided by the DACMI organisers to the challenge participants were de-
rived from MIMIC-III [78, 97], a large real-world database containing de-identified information
regarding the clinical care of patients who stayed within the intensive care units (ICU) at Beth
Israel Deaconess Medical Centre. Both a training and a test set were provided in order to develop
and validate the imputation methodology on two independent sets of data, each one consisting of

https://mimic.physionet.org/
https://mimic.physionet.org/
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inpatient test results for 13 analytes (laboratory tests): Chloride (PCL), Potassium (PK), Bicar-
bonate (PLCO2), Sodium (PNA), Hematocrit (HCT), Hemoglobin (HGB), Mean Cell Volume
(MCV), Platelets (PLT), White Blood Cell count (WBC), Red blood cells Distribution Width
(RDW), Blood Urea Nitrogen (PBUN), Creatinine (PCRE), and Glucose (PGLU). Each visit is
composed of 13 analyte measurements and is identified by the time in minutes from the first visit
(which is identified by timestamp 0). The training set consists of the test results of 8 267 subjects
for a total of 199 695 visits, while the test set consists of the test results of 8 267 other subjects
for a total of 199 936 visits.

In order to evaluate the performance of the developed imputation algorithms, we employed
a randomly masked version of both the training and test sets (see Tables 2.1 and 2.2); one result
per analyte per patient-admission was randomly removed, i.e. each patient had 13 results masked
across the various visits (time points), thus creating cases with known ground truth results. Then,
both natively missing and masked data were imputed together; finally, the imputed vs measured
values were compared for masked data elements to evaluate the performance of the imputation
method.

Table 2.1: Characteristics of the training set.

Analyte Units
Interquartile Native missing Missing rate after

range rate (%) masking (%)

Chloride mmol/L 100–108 1.18 5.32
Potassium mmol/L 3.7–4.4 1.34 5.48
Bicarb. mmol/L 22–28 1.39 5.53
Sodium mmol/L 135–142 1.26 5.4
Hematocrit % 26.8–32.7 12.51 16.65
Hemoglobin g/dL 8.9–11 15.09 19.23
MCV fL 86–94 15.23 19.37
Platelets k/µL 130–330 14.55 18.69
WBC count k/µL 7.1–14.1 14.8 18.94
RDW % 14.5–17.4 15.34 19.48
BUN mg/dL 16–43 0.74 4.88
Creatinine mg/dL 0.7–1.9 0.7 4.84
Glucose mg/dL 100–148 2.7 6.84

2.5.2 Methods: Combined Linear Interpolation and MIC-Weighted k-NN
Imputation

2.5.2.1 Linear Interpolation Imputation

First, a simple imputation algorithm based on linear interpolation has been implemented as fol-
lows. Given an analyte value to be imputed in a certain visit, the other visits from the same



Chapter 2. Missing Data Imputation 17

Table 2.2: Characteristics of the test set.

Analyte Units
Interquartile Native missing Missing rate after

range rate (%) masking (%)

Chloride mmol/L 100–108 1.20 5.40
Potassium mmol/L 3.7–4.4 1.28 5.48
Bicarb. mmol/L 22–28 1.41 5.60
Sodium mmol/L 136–142 1.26 5.45
Hematocrit % 26.8–32.6 12.45 16.64
Hemoglobin g/dL 8.9–11 14.93 19.13
MCV fL 87–94 15.04 19.24
Platelets k/µL 133–332 14.42 18.62
WBC count k/µL 7.1–14.1 14.69 18.89
RDW % 14.4–17.3 15.16 19.36
BUN mg/dL 15–42 0.77 4.97
Creatinine mg/dL 0.7–1.8 0.75 4.94
Glucose mg/dL 100–147 2.63 6.83

patient are inspected. If the missing data are located between known measurements, they are
estimated by linear interpolation in the specific time points. Otherwise, if the missing data cor-
respond to the first or last visits of a given patient, these values are imputed by simply carrying
the next observation backward or the last observation forward. When the values of an analyte are
missing in all the visits of a given patient, they are imputed with the corresponding average over
the population.

2.5.2.2 Weighted k-Nearest Neighbours Imputation

Then, an intra-patient imputation procedure based on a weighted k-NN algorithm has been im-
plemented. Given a missing value in a patient visit, the algorithm uses the other visits from
the same patient as neighbours. The k-NN algorithm can be used for imputing missing data by
finding the k neighbours closest to the observation with missing data, and then imputing them
using the non-missing values from the neighbours [21]. In this way, the algorithm substitutes the
missing data with plausible values that are close to the true ones. The similarity among samples
is assessed through a distance metric, that compares the values of the available features for each
couple of samples. In this work, a MIC-weighted and normalised Euclidean distance metric was
employed as a similarity measure.

The following sections detail the MIC and its use in the k-NN distance metric.

Maximal Information Coefficient

In order to exploit the inter-patient analyte dependencies, the cross-information over analytes –
computed as the MIC – was integrated in the k-NN procedure as weight in the distance metric.
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Unlike correlation metrics, the Mutual Information (MI) and the MIC are measures able to
assess the strength of both linear and nonlinear associations among features.

For two discrete variables X and Y whose joint probability distribution is pXY (x, y) =
P (X = x, Y = y), and marginal probability distributions are, respectively, pX(x) = P (X = x)
and pY (y) = P (Y = y), the MI between them, denoted MI(X, Y ), is computed as:

MI(X, Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) ln
pXY (x, y)

pX(x)pY (y)
. (2.1)

The marginal and joint probability distributions of X and Y are determined empirically from the
data by a frequentist approach, as explained below.

Introduced by Reshef et al. [167], the MIC extends the MI based on the idea that if a relation-
ship exists between two variables, then a grid can be drawn on the scatterplot of the two variables
that partitions the data to encapsulate that relationship. According to the rationale of the MIC,
the grid bins should be chosen in such a way that the MI between the variables is maximal.

Formally, to calculate the MIC of a set of two-variable data X and Y , all grids up to a
maximal grid resolution (dependent on the sample size) are explored, computing for every pair
of integers (x,y) the largest possible mutual information achievable by an x-by-y grid applied to
the data.

Let D = (X, Y ) be the set of n ordered pairs of elements of X and Y . The data space is
partitioned in x-by-y grids, grouping the X and Y values in x and y bins respectively. The MIC
is defined as:

MIC(X, Y ) = max
xy<B(n)

MI∗(D, x, y)

log(min(x, y))
, (2.2)

where B(n) = nα is the search-grid size, with n being the sample size and α usually set
to 0.6, and MI∗(D, x, y) is the maximum MI of the distribution induced by D on all the grids
having x and y bins (where the probability mass on a cell of the grid is the fraction of points of
D falling in that cell) [6].

The normalization in Eq. 2.2 ensures the comparison between grids of different dimensions
by correcting for the scale factor, reducing the range of possible values from the [0,+∞] interval
of the MI to [0, 1]: in this way, high MIC values correspond to strongly associated variables,
while low ones correspond to weak associations. When trying to discover associations among
pairs of variables, the statistic used to measure the dependence should exhibit two heuristic prop-
erties: generality and equitability [167]. Generality is the ability of a given statistic to capture a
wide range of interesting associations, not limited to specific function types (such as linear, ex-
ponential, or periodic) or to functional relationships, provided that the sample size is sufficiently
large. This property is essential because many important relationships are not well modelled by
a specific function. Equitability, on the other hand, is the property of a given statistic to give
similar scores to equally noisy relationships of different types. The MIC was shown to outper-
form several other methods in terms of generality and equitability, including mutual information
estimation, distance correlation, Spearman’s rank correlation coefficient, principal curve-based
methods, and maximal correlation [167].
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In this work, the MIC was thus chosen as measure of association and computed among all
pairs of analytes on the whole training set using the minerva R package v1.5.8 [6]. A heatmap
of the cross-sectional MIC among analytes on the training dataset is shown in Figure 2.1. By
using the MIC values as weights in the distance metric, we ensure that intra- and inter-patient
information are integrated in the imputation procedure.

Figure 2.1: Heatmap and dendrogram of the cross-sectional MIC among analytes computed on
the training set.

k-NN Distance Metric and Imputation Procedure

For a given patient with missing data in at least one variable measurement, the values of his/her
13 analytes (all continuous features) are first normalised to the [0, 1] interval, in order to account
for the differences among the analyte ranges. Let Yp,a,i be the measured value for analyte a of
patient p at time i, and let Yp,a be the set of all known values for analyte a of patient p. The
normalised value is given by:

nYp,a,i =
Yp,a,i −min(Yp,a)

max(Yp,a)−min(Yp,a)
. (2.3)
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Then, given the patient visit composed of the measurements of its 13 analytes v = (v1, v2, . . . , v13)
with missing data to be imputed in index i ∈ {1, . . . , 13}, the algorithm computes the weighted
Euclidean distance with the other visits of the current patient that do not have missing data in
position i as:

d(v,u) =

√∑
j∈N MICi,j · (vj − uj)2∑

j∈N MICi,j

, (2.4)

where N is the set of indices corresponding to non-missing values in both visits v and u, and
MICi,j is the maximal information coefficient between analytes i and j computed on the whole
dataset. By dividing the numerator in Eq. 2.4 by the quantity

∑
j∈N MICi,j we are normalising

the distance in order to account for other possible missing values (other than the one being
currently imputed) and their importance. This favours candidate neighbouring visits that have
many analytes highly associated with the one being currently imputed, and penalises candidate
neighbouring visits that have missing values instead (a visit can have several missing values).

Once the distances to all the visits of the current patient have been computed, the nearest k
candidates are selected and the missing value is imputed using the average of the corresponding
values in the k candidate visits, each weighted by the corresponding distance.

If a visit has multiple missing values to be imputed, the k-NN procedure is repeated for each
one of them separately, as the MIC weights (and consequently the distance values, see Eq. 2.4)
depend on the specific analyte being imputed. In this implementation, values previously imputed
by the k-NN are not used in distance computations and subsequent imputations. Again, if the
values of an analyte for a given patient are missing in all his or her visits, the average over the
population is used for the imputation of that analyte.

Selection of the Optimal Number of Nearest Neighbours k

The k-NN methods require to set a single hyperparameter, that is, the number of neighbours k.
To select the optimal value of k in this work, a 10-fold Cross Validation (CV) has been performed
at patient level on the training set.

In Machine Learning – and, more in general, in statistical modelling – K-fold Cross Valida-
tion1 is a procedure that allows to thoroughly assess the performance of a model [187]. Given a
dataset, it is first subdivided in a fixed number of distinct partitions, named folds: in turn, each
fold is selected as internal testing set, while the others are used as internal training set. The
internal training set is used to develop the model of interest, and the internal testing set is em-
ployed to assess the model predictive performance through a selected evaluation metric (usually
corresponding to the one chosen for assessing the performance of the final model outside the CV
setting). Then, the single performances obtained in turn over all the folds are combined into a
global one (such as the average), that is used to evaluate the global model.

1The K of the K-fold Cross Validation indicates the number of folds the dataset is partitioned into and has, in
this context, not to be confounded with the k (number of neighbours) parameter of the k-NN methodology, current
object of the paragraph.
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With respect to a single model developed on all the training set and validated on the test
set, the CV allows to flag problems like overfitting (model excessively customized on the set of
training data points and thus unable to generalize on new independent data) and selection bias
(model built on a set of data not representative of the population intended to be analyzed) [26].

Since testing a model on various subsets enforces the reliability of experimental design and
evaluation, CV can be used not only in performance assessment, but also in all aspects of model
learning, such as feature selection, model type selection and, like in this case, hyperparameter
tuning [212].

According to the chosen 10-fold CV setting, the 8 267 subjects of the training dataset were
randomly split into 10 disjoint folds. In this framework, different values of the hyperparameter
k for the k-NN algorithm were set and tested, ranging from 1 to 15. Being the k-NN procedure
performed intra-patient, the only dataset-dependent item of the algorithm is the MIC. Thus, in
turn, the visits of the subjects in a given fold were imputed using the MIC computed over the
remaining 9 folds. The imputation performance was assessed by using the nRMSD metric pre-
sented in the next section. The results are shown in Table 2.3: the best average nRMSD values
were obtained for k ∈ {3, 4}.

Table 2.3: Results of the 10-fold cross validation procedure on the training set for the weighted
k-NN algorithm.

Analyte
Number of selected neighbours

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15

Chloride 0.2267 0.2028 0.1966 0.1977 0.2004 0.2038 0.2083 0.2124 0.2167 0.2210 0.2244 0.2275 0.2301 0.2323 0.2341
Potassium 0.2967 0.2633 0.2539 0.2507 0.2494 0.2492 0.2498 0.2507 0.2519 0.2530 0.2541 0.2549 0.2556 0.2562 0.2567
Bicarb. 0.2654 0.2376 0.2335 0.2328 0.2358 0.2380 0.2406 0.2434 0.2467 0.2497 0.2520 0.2540 0.2558 0.2576 0.2591
Sodium 0.2450 0.2199 0.2143 0.2132 0.2145 0.2171 0.2199 0.2230 0.2265 0.2292 0.2318 0.2341 0.2360 0.2377 0.2392
Hematocrit 0.1554 0.1438 0.1445 0.1497 0.1560 0.1630 0.1704 0.1782 0.1851 0.1903 0.1944 0.1977 0.2003 0.2025 0.2043
Hemoglobin 0.1540 0.1435 0.1453 0.1500 0.1568 0.1641 0.1716 0.1795 0.1863 0.1917 0.1960 0.1993 0.2021 0.2044 0.2063
MCV 0.3032 0.2710 0.2626 0.2607 0.2613 0.2630 0.2643 0.2662 0.2684 0.2704 0.2720 0.2734 0.2746 0.2757 0.2765
Platelets 0.2608 0.2334 0.2304 0.2328 0.2369 0.2423 0.2474 0.2526 0.2576 0.2617 0.2649 0.2677 0.2699 0.2718 0.2733
WBC counts 0.2772 0.2483 0.2430 0.2440 0.2471 0.2503 0.2536 0.2569 0.2597 0.2617 0.2635 0.2649 0.2661 0.2671 0.2679
RDW 0.2732 0.2435 0.2402 0.2418 0.2453 0.2493 0.2532 0.2575 0.2616 0.2646 0.2676 0.2702 0.2719 0.2734 0.2747
BUN 0.2563 0.2291 0.2231 0.2240 0.2269 0.2305 0.2334 0.2373 0.2409 0.2443 0.2477 0.2503 0.2528 0.2547 0.2563
Creatinine 0.2605 0.2353 0.2307 0.2294 0.2303 0.2330 0.2360 0.2393 0.2424 0.2453 0.2479 0.2500 0.2519 0.2535 0.2550
Glucose 0.3174 0.2820 0.2717 0.2672 0.2661 0.2654 0.2646 0.2648 0.2654 0.2657 0.2662 0.2666 0.2671 0.2675 0.2680

Average 0.2532 0.2272 0.2223 0.2226 0.2251 0.2284 0.2318 0.2355 0.2392 0.2422 0.2448 0.2470 0.2488 0.2503 0.2516

Best performance is highlighted in bold.

2.5.2.3 Imputation Evaluation Metrics

The DACMI task required the participant teams to employ the normalised root-mean-square
deviation (nRMSD) metric to evaluate the performance of the developed imputation methods
and compare them with the performance of 3D-MICE. Let Xp,a,i be the test result prediction for
analyte a of patient p at time i and let Yp,a,i be the true measured value for that analyte. Also, let
Ip,a,i be 1 if the value of analyte a for patient p at time i is missing, and 0 otherwise. The nRMSD
of analyte a is calculated as:



22 Exploiting the Temporal Dimension in Clinical Data Mining

nRMSD(a) =

√√√√√∑p,i Ip,a,i

(
|Xp,a,i−Yp,a,i|

max(Yp,a)−min(Yp,a)

)2∑
p,i Ip,a,i

. (2.5)

The nRMSD is frequently used to measure the differences between values predicted by a model
and the ones observed [123]. The normalisation at the patient level facilitates performance com-
parisons on analytes with different scales and dynamic ranges. The nRMSD measure has been
used in the development of the methodology for both assessing the performance of the algorithm
and determining the optimal value of the number of neighbours k in the k-NN approach (see
previous Section).

Nevertheless, as a limitation the nRMSD constitutes a metrics obtained over all the imputed
values, thus implying that possible outlier values heavily impact on the overall assessed perfor-
mance.

Therefore, we also computed the normalised absolute error (nAE) of each single imputed
value, in order to gain more insight on the quality of the imputation by comparing the distribution
of the error. The nAE for analyte a of patient p at time i is given by:

nAE(p, a, i) =
|Xp,a,i − Yp,a,i|

max(Yp,a)−min(Yp,a)
. (2.6)

2.5.2.4 Combined Imputation Method

The performance of the linear interpolation and weighted k-NN imputation methods on the train-
ing set is reported in Table 2.4. It emerges how the interpolation-based imputation performs
better than the k-NN-based one in 7 out of 13 analytes, namely for Bicarbonate, MCV, Platelets,
WBC count, RDW, BUN and Creatinine. For this reason, we decided to impute these analytes
using linear interpolation, and the remaining ones with the k-NN-based approach, actually im-
plementing a combined interpolation algorithm.

The interpolation is run on each feature separately, thus its results do not depend on the
k-NN step. On the other hand, the k-NN could use the imputed values from the interpolation
step during distance computation. For this reason we tested the imputation on the training set
by combining the methods in both directions: by running the k-NN first and the interpolation
second (KNN+Interp.), and vice versa (Interp.+KNN). In the latter case, we tested a few values
for k in cross validation to confirm the optimality of the previously selected values: k = 3 was
selected as the optimal value (the results are shown in Table 2.4).

2.5.3 Results: Imputation Performance Assessment
2.5.3.1 Performance Comparison on the Training Set

The developed imputation procedures were assessed on the training set using the nRMSD. The
results in Table 2.4 show that the combined methods outperform 3D-MICE on 11–12 analytes
out of 13. The average nRMSD values are equal to 0.2055 for KNN+Interp. k = 3 and 0.2043
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Table 2.4: Imputation performance comparison based on the nRMSE metric for each analyte
and imputation method.

Analyte
Training set Test set

Interp.
KNN selected KNN+Interp. Interp.+KNN

3D-MICE
Interp.+KNN

3D-MICE
k = 3 method k = 3 k = 3 k = 3

Chloride 0.2017 0.1966 KNN 0.1966 (1.6%) 0.1915 (4.1%) 0.1997 0.1921 (4.0%) 0.2000
Potassium 0.2590 0.2539 KNN 0.2539 (2.9%) 0.2505 (4.2%) 0.2614 0.2542 (3.4%) 0.2632
Bicarb. 0.2165 0.2335 Interp. 0.2165 (6.9%) 0.2165 (6.9%) 0.2326 0.2118 (8.5%) 0.2314
Sodium 0.2242 0.2143 KNN 0.2143 (-0.3%) 0.2113 (1.1%) 0.2136 0.2085 (2.8%) 0.2145
Hematocrit 0.2248 0.1445 KNN 0.1445 (0.1%) 0.1434 (0.9%) 0.1447 0.1518 (-0.9%) 0.1505
Hemoglobin 0.2282 0.1453 KNN 0.1453 (-1.7%) 0.1451 (-1.5%) 0.1429 0.1485 (0.2%) 0.1488
MCV 0.2582 0.2626 Interp. 0.2582 (3.6%) 0.2582 (3.6%) 0.2679 0.2644 (2.5%) 0.2713
Platelets 0.1778 0.2304 Interp. 0.1778 (21.3%) 0.1778 (21.3%) 0.2260 0.1794 (21.8%) 0.2294
WBC counts 0.2183 0.2430 Interp. 0.2183 (14.6%) 0.2183 (14.6%) 0.2555 0.2198 (14.1%) 0.2560
RDW 0.2100 0.2402 Interp. 0.2100 (15.8%) 0.2100 (15.8%) 0.2493 0.2056 (16.4%) 0.2458
BUN 0.1521 0.2231 Interp. 0.1521 (17.7%) 0.1521 (17.7%) 0.1848 0.1546 (16.3%) 0.1846
Creatinine 0.2130 0.2307 Interp. 0.2130 (7.0%) 0.2130 (7.0%) 0.2291 0.2135 (8.7%) 0.2338
Glucose 0.2817 0.2717 KNN 0.2717 (1.9%) 0.2683 (3.1%) 0.2769 0.2677 (3.3%) 0.2769

Average 0.2204 0.2223 – 0.2055 (7.4%) 0.2043 (7.9%) 0.2219 0.2055 (8.1%) 0.2235

Best performance is highlighted in bold. The percentage of improvement over 3D-MICE is given in
parentheses.

for Interp.+KNN k = 3, which corresponds to an improvement of 7.4% and 7.9% respectively,
compared to the baseline (0.2219).

2.5.3.2 Performance Comparison on the Test Set

The best performing method Interp.+KNN was validated on the independent test set using the
selected optimal k = 3 value, the MIC, and the population average values computed on the
training set. Figure 2.2 schematically depicts the Interp.+KNN imputation procedure for a given
subject. Performance is presented in the last two columns of Table 2.4. The average nRMSD
value obtained for Interp.+KNN k = 3 on the test set, equal to 0.2055, is 8.1% lower than the
3D-MICE baseline (0.2235). Similarly to the training set, the combined method Interp.+KNN
outperforms the baseline on average and on 12 out of 13 analytes, although reversing the sign of
the improvement for the features Hematocrit and Hemoglobin.

To assess the statistical significance of the improvement, a one-tailed paired Wilcoxon signed-
rank test [222] was performed on the nAEs obtained on the test set with 3D-MICE and with
Interp.+KNN for each analyte. The Wilcoxon signed-rank test is a non-parametric statistical test
used to assess whether the population mean ranks differ in a paired samples setting. This test
can be used to determine whether two paired samples were selected from populations having the
same distribution.

Since the nRMSD can be directly derived from the nAE values (see Eq. 2.5 and Eq. 2.6), the
performed statistical tests can be used to assess the significance of the improvement in terms of
both error measures. The test results in p-values < 0.001 for 11 out of 13 analytes, while the
features Hematocrit and Hemoglobin, whose p-values are equal to 0.787 and 0.095 respectively,
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Figure 2.2: Interp.+KNN imputation procedure. For each subject with missing values, 7 out
of 13 analytes are first imputed with linear interpolation. The remaining missing values on the
other analytes are then imputed with the k-NN algorithm using the MIC values computed on the
training set as weights for the distance metric.

show no statistically significant improvement in terms of imputation error. This result is also
confirmed by both the exiguous difference in the nRMSD values (less than 1% on the test set)
obtained by our method compared to those of 3D-MICE for Hematocrit and Hemoglobin, and
the reversal of the sign of the improvement on these analytes between training and test set.
Figure 2.3 compares the nAE distributions on the test set, showing the shift to lower error values
for the Interp.+KNN method with respect to the baseline.

2.5.3.3 Computation Time Comparison

The computation times required for imputing the datasets by using the proposed combined
method and the baseline competitor were compared. On a workstation with an Intel R© Xeon R©

W3680 CPU (6 cores/12 threads @ 3.33GHz, 12MB L3 cache) and 24GB of DDR3 RAM, run-
ning Ubuntu Linux 16.04 LTS, the combined method can impute a whole dataset of 8 267 sub-
jects with roughly 200,000 visits in less than a minute; the baseline method 3D-MICE requires
several hours to impute the same dataset.

2.5.4 Discussion: Applicability and Advantages of a Combined Imputa-
tion Approach

Both the interpolation-based and the k-NN-based approaches always yield imputed values in
the range of the existing data; more specifically, the intra-patient implementation preserves the
analyte dynamic range of each patient.
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The integration of the MIC in the weighted k-NN approach adds some data-driven knowledge
to the procedure. In the MIC computation (see Figure 2.1), a few relationships that can be
expected from the clinical literature emerge. Hematocrit (HCT) and Hemoglobin (HGB), that
present a normal ratio of 1:3 in healthy subjects and possibly altered values in the pathological
ones [160], have the highest MIC value; similarly, the MIC value for Blood Urea Nitrogen (BUN)
and Creatinine (PCRE) is also high, being these analytes both referred to the renal function and
with a normal ratio ranging from 10:1 to 20:1 [136]. It is interesting to observe how these pairs
of features perform differently when this cross-sectional information is incorporated in the k-NN
imputation procedure, though they both have high MIC values. The weighted k-NN outperforms
the linear interpolation approach for Hematocrit and Hemoglobin, while falling behind for Blood
Urea Nitrogen and Creatinine. This could be due to two possible reasons: 1) some analytes
follow a linear trend in the intervals containing the missing values, or 2) the information included
in the features themselves, exploited by the interpolation, is stronger than the cross-information.
In the specific case of Blood Urea Nitrogen and Creatinine, the intra-feature information could be
prevailing due to the low missingness rate (less than 5% after masking) which reinforces the latter
hypothesis. The presence of specific patterns in the patients’ missing values is another fact that
could promote the effectiveness of one method against the other. The absence of many analytes
in one visit could decrease the effectiveness of the weighted k-NN procedure while recurring
missing measures of one specific analyte could penalise the interpolation-based approach.

In the k-NN approach, the selection of a small k parameter ensures a good compromise
between imputation performance and the need to preserve the original distribution of the data –
a very important characteristic any imputation method should satisfy. Indeed, as a rule of thumb,
it is advisable to limit the number of k neighbours, because of the risk of severely impairing
the original variability of the data [21]. This matter requires particular care, since using the
imputation accuracy (as measured for instance by the nRMSD) as the sole parameter selection
criteria could lead to the choice of a large k value, while completely neglecting the data distortion
aspect.

In general, with a k-NN approach the imputation precision is subject to the degree of depen-
dencies the feature with missing data has with other features in the dataset; imputing features
with little or no dependencies could lead to a lack of precision, and could introduce spurious as-
sociations by considering dependencies where they do not exist [21]. In the presented approach,
this risk is realistically mitigated by selecting the best performing method for each feature, the
interpolations replaces the k-NN approach on those analytes where the latter performs poorly.
Moreover, the choice of combining the two imputation techniques allows each feature to benefit
from the imputation technique that better meets its nature in terms of information contribution
(intra-feature, in the linear interpolation, or among features, in the k-NN). Finally, it is worth
noticing that the proposed algorithm is very time efficient.

The proposed imputation algorithm was implemented in R, and is freely available at: https:
//www.github.com/sebastiandaberdaku/PD_Impute.

https://www.github.com/sebastiandaberdaku/PD_Impute
https://www.github.com/sebastiandaberdaku/PD_Impute
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2.6 An Adaptive k-Nearest Neighbours Algorithm for the Im-
putation of Static and Dynamic Mixed-Type Clinical Data

This section presents an adaptive Mutual Information-weighted k-Nearest Neighbours (wk-NN
MI) imputation algorithm developed to explicitly handle missing values of continuous/ordinal/cate-
gorical and static/dynamic features conjointly. With respect to the method presented in Section
2.5, the current one is applicable on mixed-type longitudinal collections of data referred to a
population that allows to formulate clinical similarity hypotheses (for instance, a cohort affected
by the same disease).

The implemented methodology bases on the assumption that, when considering a population
affected by analogous clinical conditions, the unrecorded information of a specific patient can
be derived from the available data of the other subjects with similar clinical status. In this work,
the similarity among subjects has been assessed in terms of clinical progression over a fixed time
interval, thus thoroughly exploiting the information acquired over the temporal dimension of the
data.

Therefore, starting from a dataset to impute, the developed algorithm includes as first step
the definition of specific adaptive feature vector samples, constituted by the information collected
over the time interval of interest. These samples embody the description of the patient’s progres-
sion. They are then used in the k-NN procedure to select, among the patients, the ones with the
most similar temporal evolution of clinical history over time. An ad hoc similarity metric has
been implemented for the sample comparison, capable of handling the different nature of the
data, as well as the presence of multiple missing values. As in the previous case, the employed
similarity metric includes cross-information among features, hereby captured by the MI statistic
(and not the MIC, as in Section 2.5, for the sake of limiting computational complexity, as detailed
in the following of this Section).

When considering the heterogeneity of the data recorded in the clinical setting, a typical
example of mixed-type variables dataset is represented by disease registers. Thus, as case-study,
the proposed methodology was applied and validated on a subset of the Piemonte and Valle
d’Aosta Amyotrophic Lateral Sclerosis (PARALS) register [36], an epidemiological register.

On this dataset, the methodology was compared to three other state-of-the-art imputation
algorithms, namely Amelia II [89], missForest [186] and MICE [199], which are among the
main representatives of the methods currently available in the literature (see Section 2.3). The
performed experiments show that the implemented method outperforms the competitors in the
imputation of most of the features and on average.

Moreover, to further validate the imputation performance compared to the competitors and to
assess the possible impact of the proposed method in a concrete scenario, a simple application of
the imputed data in a survival classification task is also provided. A naı̈ve Bayes (NB) classifier
was used to distinguish between patients with long and short survival times by using only the
information in their first months of screening visits. The results show that imputing the train-
ing set with the proposed method improves the prediction performance of the NB classifier on a
hold-out test set, also achieving better performance than the classifier built on the training set im-
puted with the top competitor (MICE). By asserting the effectiveness of the proposed imputation
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method in enhancing the training data for a very simple classification algorithm with naı̈ve hy-
potheses, we confirm its applicability in more complex and sophisticated analyses. Noticeably,
the proposed methodology could also be of great aid to clinicians since it enables the survival
prediction of patients by employing only the information from a few of their visits, regardless of
possible missing values.

2.6.1 Material: Longitudinal Heterogeneous Register Data

The dataset used in this work is extracted from PARALS, that is a clinical prospective epidemi-
ological register of patients affected by amyotrophic lateral sclerosis (ALS) from two Italian
regions. It consists in a collection of dynamically acquired data over subsequent screening visits,
one visit at a time. PARALS represents a typical instance of complex clinical dataset constituted
of both static/dynamic and mixed-type variables and, coherently with its real-world nature, is
inevitably subject to missing data.

ALS is a fatal neurodegenerative disorder characterised by progressive muscle paralysis
caused by the degeneration of motor neurons in the brain and spinal cord [211]. It is a rare dis-
ease, with incidence in Europe and in populations of European descent of 2.6 cases for 100 000
people per year and prevalence of 7–9 cases per 100 000 people [85]. This implies that the avail-
able patient data collected in clinical registers is of inestimable importance for furthering the
translational research on the disease, and that missing values cannot be treated with simple cur-
ing techniques. Compared to clinical trial datasets, epidemiological registers better characterise
the general ALS population, since clinical trial populations must fit a stringent set of criteria
[61]. This database was selected as case study for the developed technique with the aim to build
a complete dataset that can be used for the subsequent application and development of ML algo-
rithms (an example of which is also given in this work as further validation of the implemented
imputation procedure).

As mentioned above, the developed imputation method is based on the assumption that sub-
jects with a similar disease progression over a period of time share similar feature values and
can therefore be cross-exploited to impute missing values. For the specific case of this dataset,
a period of three months of screening visits was selected as time interval. Such span has been
chosen accordingly to the threshold selected in two DREAM (Dialogue for Reverse Engineering
Assessments and Methods) Challenges on ALS [110, 109]; these challenges required partici-
pants to develop algorithms to predict the disease progression and to stratify the patients into
meaningful subgroups, respectively, by employing only the clinical information of the first three
months of patients’ visits. For this aim, different ALS datasets were provided, with the PARALS
register used in our work being partially included in the datasets of the second challenge.

Besides being able to adequately characterise the temporal evolution of the disease course
[110], the selected time interval is short enough to allow the imputation of subjects with few
available visits. Moreover, the information of newly added subjects can be promptly used for
the imputation of others. Finally, by focusing on a reduced observation interval, only a relatively
small number of visits (and thus a relatively small number of features) is considered. In a k-NN
setting, having a small number of features prevents the methods from incurring in the curse of
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dimensionality: in general, as the number of dimensions (features) increases, the closest distance
among samples tends to the average distance and the predictive power of the algorithm decreases
[82].

The dataset used in this work was extracted from the PARALS register as follows. The
cohort of patients with first visit from January 1st, 2001 and follow-up up to July 18th, 2017
was first selected. Then, the ones having an onset that predated the first visit by five years or
more (average ALS prognosis) were excluded, in order to filter out clinical outliers. The selected
cohort includes 700 patients, resulting in a dataset containing the information assessed over their
subsequent screening visits, for a total of 6 726 visits.

The 25 variables collected in the dataset include some clinical features recorded during the
first visit – the static ones – that are: patient sex, body-mass index (BMI) both premorbid and
at diagnosis, a measure of respiratory functionality (forced vital capacity, FVC) at diagnosis,
familiality of ALS, the result of a genetic screening over the most common ALS-associated
genes, presence of frontotemporal dementia (FTD), site of disease onset (spinal/bulbar), age at
onset, diagnostic delay (time from ALS onset to diagnosis); the remaining features – the dynamic
ones – are collected over visits and consist of: the presence/absence up to the current visit of
non-invasive ventilation (NIV) and percutaneous endoscopic gastrostomy (PEG), that are two
guideline-recommended interventions for symptom management in ALS, and the revised ALS
Functional Rating Scale (ALSFRS-R) [27, 28], which is a 12-item questionnaire rated on a 0–4
point scale evaluating the observable functional status and change for patients with ALS over
time.

The time of the visit for each patient is expressed in months and set to zero in correspondence
of the first visit, resulting in negative values for the onset delta. These variables are detailed in
Table 2.5, according to their data type (continuous, ordinal, or categorical), with the percentage
of native missing values and the static (S) or dynamic (D) nature of the feature. In this sum-
mary, for the NIV and PEG variables the total number of patients who were administered these
interventions is reported.

In order to develop and validate the imputation algorithms on independent data, the dataset
was split in training (80% = 560 subjects, 5 507 visits) and test (20% = 140 subjects, 1 219 visits)
sets, by stratifying the dataset over all variables.

2.6.2 Methods: Adaptive k-NN Sample Construction and MI-Weighted k-
NN Imputation

As anticipated, the developed weighted k-NN approach presented in this section was used on
the case-study dataset to impute the missing values in the first span of screening visits of each
patient. The algorithm is based on the assumption that patients with similar characteristics share
the same disease course over time. Patient similarity is assessed by using an apposite distance
metric over their features.

According to the k-NN methodology, given a patient with a missing value to be imputed and
a pool of other patients having that feature, the algorithm searches for the k-closest subjects in
terms of disease progression similarity and infers the estimate for the missing value. First, the
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Table 2.5: Dataset. The feature type, either static (S) or dynamic (D), is defined. For the con-
tinuous and ordinal features, percentage of native missing values and inter-quartile range (IQR)
values at 25%, 50% and 75% are reported; for the categorical features, levels and correspond-
ing percentage of instances are reported; for the NIV and PEG variables, we reported the total
number of patients who were administered these interventions.

Continuous features Categorical features
Feature Type % NA IQR Feature Type Levels %

BMI premorbid [kg/m2] S 2.08 23/25/28 sex S Female 47.6
BMI diagnosis [kg/m2] S 0.91 22/24/27 Male 52.4
FVC diagnosis [%] S 4.12 83/98/108 NA 0

age at onset [years] S 0 56/64/70 familiality S No 91.4
diagnostic delay [months] S 0 5/9/14 Yes 8.1
onset delta [months] S 0 -18/-11/-6 NA 0.5

genetics S C9orf72 7.1
FUS 0.3
SOD1 1.4
TARDBP 1.6

Ordinal features wild type 83.6
Feature Type % NA IQR NA 6.0

ALSFRS-R 1 D 0 2/3/4 FTD S No 53.0
ALSFRS-R 2 D 0 3/4/4 Yes 13.0
ALSFRS-R 3 D 0 2/3/4 NA 34.0

ALSFRS-R 4 D 0 2/3/4 onset site S Bulbar 34.4
ALSFRS-R 5 D 0 1/2/3 Spinal 65.6
ALSFRS-R 6 D 0 1/2/3 NA 0

ALSFRS-R 7 D 0 1/3/3 NIV D No 59.6
ALSFRS-R 8 D 0 2/2/3 Yes 40.4
ALSFRS-R 9 D 0 0/1/3 NA 0

ALSFRS-R 10 D 0 3/4/4 PEG D No 31.9
ALSFRS-R 11 D 0 3/4/4 Yes 25.0
ALSFRS-R 12 D 0 4/4/4 NA 43.1

distance between the current patient and each of the other candidate subjects from the pool is
computed. Then, a weighted average of the corresponding values in the k most similar patients
is obtained and used as plausible estimate of the missing one. To impute the whole dataset, the
procedure is iterated for each missing value of the given patient and then for each patient with
missing values in their visits. The algorithm takes into account the temporal evolution of the data
over visits and handles both the mixed nature of the data and the presence of missing values in
the distance computation.



Chapter 2. Missing Data Imputation 31

2.6.2.1 Adaptive k-NN Sample Construction

To capture the temporal evolution of the features over subsequent visits, for a given patient i with
missing data to be imputed, the algorithm builds a feature vector (k-NN sample) that contains the
information recorded during his/her first span of screening visits. Let’s express this time interval,
that is defined by the user according to the dataset characteristics and/or analysis scopes, as a
generic number of months N (or weeks, or days, according to the data granularity). The feature
vector is created by binding the static information for that patient (constant throughout all his/her
visits) to the dynamic ones in the [0, N − 1] months from the first visit in chronological order
(with 0 being the first month).

For convenience, let’s introduce the sample construction with a practical example based on
the current case of study. For the specific dataset used in this work, we considered as time span
of interest the first 3 months of screening visits, for the reasons anticipated in 2.6.1. In this
time interval, all the patients included in the dataset have between 1 and 4 visits: the algorithm
adaptively builds k-NN samples whose length depends on the number of available visits for each
subject to be imputed. Figure 2.4a illustrates the sample construction for subject i, with p being
the number of static features, m the number of the dynamic ones, and n the number of his/her
visits in the first three months of screening.

To identify the subjects in the pool of candidates having disease progression similar to subject
i, the algorithm builds an analogous feature vector for each candidate neighbour with an available
value in correspondence to the feature to be imputed. In more detail, each candidate neighbour
j is temporally mapped over the current subject i, adaptively building a sample according to
their matching time points. The feature vector of j is initialised with the subject’s static features.
Let ti = (ti,1, ti,2, . . . , ti,n) be the time points of the visits in the first three months of screening
for subject i. For each visit time point ti,l of subject i, the closest-in-time visit of subject j
within one month is selected. If no matching visit is found, candidate j is excluded from the
k-NN search. Otherwise, the dynamic features of the matching visit are extracted and stacked
to the feature vector of subject j; possible missing values in the matching visits of subject j
are passed on his/her feature vector. Please notice that a candidate subject j may have repeated
blocks of dynamic features in his/her feature vector corresponding to the same visit matching
with multiple visits of subject i. Also notice that the feature vectors of the candidate subjects
include the dynamic information of visits in the [0, N ] months time interval from the first visit
(that is, in the case of the example, of the first four months of screening visits). Figure 2.4b
schematically depicts the candidate sample construction procedure.

2.6.2.2 Weighted k-Nearest Neighbours Imputation

For a subject i with a missing value to be imputed, the wk-NN algorithm proceeds as follows.
The features of the subject sample, together with his/her candidate samples, are normalised to
the [0, 1] interval in order to account for the difference among the ranges. Then, the distance
between subject i and each candidate j is computed according to the following metric.

Let v = (v1, v2, . . . , vN) and u = (u1, u2, . . . , uN) be the feature vectors of, respectively,
subject i and candidate j. LetNstat(v,u) andNdyn(v,u), be, respectively, the number of common
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feature values are repeated twice in the resulting feature vector (sample).

Figure 2.4: Adaptive sample construction for imputation.

non-missing static and dynamic features in v and u. Also, let Scateg, Sord, Scont, Dcateg, Dord, and
Dcont be the sets of indices of, respectively, the static categorical, the static ordinal, the static
continuous, the dynamic categorical, the dynamic ordinal, and the dynamic continuous features
in v and u. The distance between v and u is given by:

d(v,u) =
n ·
(∑

l∈Scateg
I(vl, ul) +

∑
l∈Sord∪Scont

|vl − ul|
)

n ·Nstat(v,u) +Ndyn(v,u)

+

∑
l∈Dcateg

I(vl, ul) +
∑

l∈Dord∪Dcont
|vl − ul|

n ·Nstat(v,u) +Ndyn(v,u)
,

(2.7)

where n is the number of visits in the selected first time window of screening for subject
i and I(vl, ul) is 0 if vl = ul and 1 otherwise. If either vl or ul, or both, are missing, the
feature at index l does not contribute to the distance. The numerator is divided by the number of
comparable features in u and v to normalise the distance on the number of common non-missing
values. Because of the sample building procedure, each dynamic feature appears n times in the
feature vectors: to re-balance the contribution of all the features to the similarity metric, both the
distance between static features and the count Nstat(v,u) are multiplied by n.

At this point, a filtering step is performed: candidates with a number of comparable features
with subject i smaller than the 90% of the total number of non-missing features in sample i (both
computed with the same adjustment for the static features) are dropped.

Once the distances to all the candidates have been computed, the k nearest ones are selected
and their values in correspondence to the feature to be imputed are used for the imputation: for
continuous and ordinal features, after removing possible outliers (values outside 1.5 times the
interquartile range above the upper quartile and below the lower quartile), the missing feature
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in i is imputed with the average of the selected values, each weighted by the inverse of the
corresponding candidate distance; for categorical features, the missing feature in i is imputed
with the mode of the selected values.

The procedure is repeated over all features with missing values in subject i. In our imple-
mentation, values previously imputed in i are not used for the subsequent imputations.

2.6.2.3 Weighted k-Nearest Neighbours Imputation with Mutual Information

As a further implementation (hereinafter referred to as wk-NN MI), the wk-NN algorithm was
improved by including in the similarity metric the cross-information among the features given
by the MI statistic (see Eq. 2.1 in Section 2.5.2.2). The MI among features is computed, for each
subject with at least one missing value, over the pool of his/her candidate samples.

We decided in this implementation to use the MI instead of the MIC as the weight. Indeed,
with respect to the previous section methodology, where the MIC was computed only once over
all the training set, here the MI computation is required each time a subject needs to be imputed.
Being the MIC obtained through an optimization algorithm, its use would have implied higher
computational costs. Considered the already enhanced complexity of the current imputation
methodology, also due to the adaptive sample construction, the MI was therefore selected.

In this implementation, we computed the MI using the infotheo R package v1.2.0 [144].
First, the continuous variables (X) are discretised into i = 3

√
N intervals of equal width w =

(max(X)−min(X)) /i, where N is the number of samples of X .
Let f be the index of the feature currently being imputed in subject i, and let MIf =

(MIf,1, . . . ,MIf,f , . . . ,MIf,N) be the MI values between the feature at index f and all the fea-
tures in the sample. The MI values are then employed as weights for the distance computation in
the wk-NN algorithm:

df (v,u) =
n ·
(∑

l∈Scateg
MIf,l · I(vl, ul) +

∑
l∈Sord∪Scont

MIf,l · |vl − ul|
)

n ·Nstat(v,u) +Ndyn(v,u)

+

∑
l∈Dcateg

MIf,l · I(vl, ul) +
∑

l∈Dord∪Dcont
MIf,l · |vl − ul|

n ·Nstat(v,u) +Ndyn(v,u)
.

(2.8)

Please notice that here the distance among samples depends on the missing feature value
currently being imputed, which means that the candidates chosen as nearest neighbours may
change when imputing different features. An outline of the proposed imputation procedure is
given in Fig. 2.5 and thoroughly described in Algorithm 1.
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Figure 2.5: Algorithm workflow of the wk-NN MI imputation method.
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Algorithm 1 wk-NN MI imputation algorithm.
1: N← set of subjects with missing values
2: w← 3 . time window (in months) for the visits to be imputed
3: k← 20 . number of nearest neighbours to select as candidates
4: for each subject i in N do
5: select the visits of i in w for the sample construction procedure
6: if i has at least one missing value in w then
7: n← the number of visits of subject i in w
8: v← k-NN sample for i
9: F ← features in v with missing values

10: Nv ← number of non-missing features in v
11: J← N\{i} . pool of candidate subjects for the imputation
12: U← empty matrix of candidate samples
13: for each subject j in J do
14: select the visits of j in w+1 for the sample construction procedure
15: U[j, ]← k-NN sample for j
16: end for
17: for each feature h of v do
18: normalise v[h] and U[, h] in [0, 1]
19: end for
20: compute the MI of all pairs of features of U
21: for f in F do
22: for each candidate sample u in U do
23: if u[f ] is NA then
24: continue
25: end if
26: Ncomparable ← number of non-missing features in both v and u
27: if Ncomparable < 0.9 ·Nv then
28: continue
29: end if
30: compute the MI-weighted distance between u and v
31: end for
32: Kf ← list of values of feature f of the k nearest neighbours of v
33: if f is continuous then
34: remove possible outliers from Kf

35: fimputed ← inverse-distance-weighted average of Kf

36: else if f is ordinal then
37: remove possible outliers from Kf

38: fimputed ← rounded inverse-distance-weighted average of Kf

39: else if f is categorical then
40: fimputed ← mode of Kf

41: end if
42: end for
43: end if
44: end for
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2.6.2.4 Imputation Evaluation Metrics

To evaluate the performance of the developed imputation methods, the normalised root-mean-
square deviation (nRMSD) was employed for the continuous and ordinal features and the pro-
portion of falsely-classified (PFC) for the categorical ones.2

Let f be the index of a feature imputed in T patient visits: vimp
f is the vector of imputed values

for that feature and vtrue
f is the vector of true measured values. If f is the index of a continuous

or ordinal feature, the corresponding nRMSD is calculated over the T patient visits as:

nRMSDf =

√√√√∑T
i=1

(
vtrue
i,f − v

imp
i,f

)2
T

max(vtrue
f )−min(vtrue

f )
. (2.9)

Otherwise, if f is the index of a categorical feature, the corresponding PFC is calculated over the
T patient visits as:

PFCf =

∑T
i=1 I(v

true
i,f , v

imp
i,f )

T
, (2.10)

where I(vtrue
i,f , v

imp
i,f ) equals 0 if vtrue

i,f = vimp
i,f , and 1 otherwise.

Similarly to Section 2.5.2.3, the normalised absolute error (nAE) of each imputed continuous
or ordinal value was also computed to better assess the distribution of the error. The nAE for the
imputed feature f of a given patient visit is given by:

nAEf (i) =
|vtrue
i,f − v

imp
i,f |

max(vtrue
f )−min(vtrue

f )
. (2.11)

In all cases, the closer these metrics are to zero the better the imputation.

2.6.2.5 Selection of the Optimal Number of Nearest Neighbours k

The proposed wk-NN and wk-NN MI imputation methods require the user to select an adequate
k (number of nearest neighbours) hyperparameter. In general, this can be achieved by performing
a Cross Validation scheme to test out different k values and select the best one, as described in
Section 2.5.2.2. Such procedure also permits to assess the performance of the methods limiting
possible overfitting issues.

Please notice that, differently from the k-NN algorithm of 2.5.2.2 where the CV setting only
implied the recalculation of the MIC on a different subset, the inter-patients nature of the k-
NN of the current implementation implies that, for each fold, the missing values of the subjects
belonging to the internal testing set are imputed by employing a different pool of candidates,
corresponding to the internal training set.

2The definitions of nRMSD and nAE given in this section slightly differ from those introduced in Equations 2.5
and 2.6, being the current imputation method defined over all the population and not intra-patient.
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Specifically, here a Leave-One-Out Cross-Validation (LOOCV) was performed on the sub-
jects of the training set, that is, one subject at a time was imputed using as candidates all the
other subjects of the training set itself. Although being potentially computationally expensive,
LOOCV reduces the likelihood that a split will result in sets that are not representative of the full
data set [119]. For a given k value, for each non-missing feature of the patient to be imputed, all
the measured values corresponding to that feature are first removed at the same time from his/her
k-NN sample, and then imputed by using all the other subjects from the training set as candi-
dates. By repeating this procedure over all the patients, an imputed value is obtained for each
known measurement, and the imputation quality for the current value of k can be assessed by
using the chosen performance metric. It is worth noticing that, by removing the values of only
one feature at a time, the distribution and pattern of missing values in the dataset is generally
preserved, which ensures the plausibility of the imputation performance results.

This procedure has been repeated for several values of k in order to determine the best per-
forming one to be finally used to impute the whole dataset.

For the k parameter of both wk-NN algorithms, the values {1, 5, 10, 15, . . . , 45, 50} were
tested: the best average error values were obtained with k = 10 for wk-NN, and with k = 20
for wk-NN MI. Figures 2.6 and 2.7 give the imputation error in terms of average nRMSD for
the continuous and ordinal variables and in terms of average PFC for the categorical ones, for
each k. The “average error” over all features (continuous green line) was computed by simply
averaging the error measure obtained for each feature.
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Figure 2.6: Optimal number of neighbours to use for the imputation procedure with wk-NN. The
best results are obtained for k = 10.
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Figure 2.7: Optimal number of neighbours to use for the imputation procedure with wk-NN MI.
The best results are obtained for k = 20.

2.6.2.6 Comparison with Other Imputation Methods

The proposed algorithm was compared with the three state-of-the-art imputation methods, namely
Amelia II (Amelia R package v1.7.5), missForest (missForest R package v1.4) and MICE (mice
R package v3.6.0). A random version of the proposed algorithm, k-random neighbours (k-RN),
was also introduced to be used as a baseline for the imputation performance assessment: this
implementation randomly samples a subset of k subjects from the pool of available candidates
and uses them as neighbours. The optimal hyperparameter values for the employed competing
imputation methods were set as follows.

The default settings were used for missForest and MICE, which correspond to the optimal
ones. In detail, missForest uses a random forest trained on the observed values of a data ma-
trix to predict the missing values by automatically managing continuous and/or categorical data
including complex interactions and non-linear relation. MICE allows the specification of the
imputation method to be used for each column in data and, by selecting the default setting, it
sets the optimal associations: predictive mean matching for continuous features, logistic regres-
sion imputation for binary data (factors with two levels), polytomous regression imputation for
unordered categorical data with more than two levels, and proportional odds model for ordinal
features with more than two levels.

Amelia II requires the specification of the categorical and ordinal variables, the cross section
variable (which was set to the patient ID variable) and, since it can handle time series data, the
time variable (which was set to the visit time). Another important parameter is polytime, which
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indicates what power of polynomial should be included in the imputation model to account for
the effects of time, which accepts integer values from 0 to 3. After testing, the value of 1, which
indicates linear time effects, was selected as the one yielding the best imputation results for the
training data in a LOOCV setting.

For both MICE and Amelia II, which allow multiple imputation, the number of repetitions
was set to 1, in order to perform a single-imputation in accordance with the k-NN-based proposed
methods.

Finally, for the baseline k-RN, we used both k = 10 and k = 20, that correspond to the
optimal k values assessed through the LOOCV for the wk-NN and the wk-NN MI methods,
respectively.

2.6.3 Results: Imputation Performance Assessment

2.6.3.1 Performance Comparison on the Training Set

On the training set, the imputation performance was evaluated with the LOOCV setting described
earlier: for each subject, all the measured values of his/her features were removed one feature
at a time, and were then imputed using the competitor methods. The imputed values obtained
by each method were compared to the true ones, and the average error was evaluated for each
feature.

Tables 2.6, 2.7 and 2.8 show the average error (in terms of nRMSD or PFC) obtained on the
training set for each continuous, ordinal and categorical feature, respectively. The proposed wk-
NN MI imputation method outperforms the competitors on average and on the majority of the
features. For the continuous features, the average nRMSD score obtained by wk-NN MI with the
optimal k = 20 is 0.1195 against 0.1539 of wk-NN with the optimal k = 10, 0.1651 of Amelia
II, 0.1572 of MICE, and 0.1784 of missForest. For the ordinal features, the average nRMSD
score obtained by wk-NN MI is 0.1182 against 0.1550 of wk-NN, 0.1751 of Amelia II, 0.1521
of MICE, and 0.1728 of missForest. For the categorical features, the average PFC score obtained
by wk-NN MI is 0.1198 against 0.1323 of wk-NN, 0.2589 of Amelia II, 0.1761 of MICE, and
0.1900 of missForest. In the three tables, we also report the performance for the k-RN baseline,
computed for k = 10 and k = 20: the obtained performance outperforms the baseline.

To verify that the performance improvement was in fact statistically significant, the nAE
distributions and PFC values obtained by wk-NN MI and MICE (the best performing among
the competitor methods) on, respectively, the continuous/ordinal and categorical features, were
analysed. Figure 2.8 shows the nAE distributions obtained on the training set for the continuous
features. The plots show that wk-NN MI yields lower nAE values in all features. A two-tailed
Wilcoxon signed-rank test [222] was also performed to assess the difference between the dis-
tributions: the obtained p-values are all smaller than 0.001, confirming that the difference is
statistically significant. Here, this non-parametric test was employed to assess whether there was
any statistically significant difference between the nAE distributions (which are very skewed
and cannot be assumed to be normally distributed) obtained on continuous and ordinal data by
different imputation methods.

Figure 2.9 shows the nAE distributions obtained on the training set for the ordinal features.
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The plots show that wk-NN MI yields lower nAE values on 10 out of 12 features (ALSFRS-R
scores 1 to 10). The two-tailed Wilcoxon signed-rank tests with Pratt’s correction [158] (since
the nAE values on the ALSFRS-R variables can only assume values in {0, 0.25, 0.5, 0.75, 1},
the signed-rank test has many “ties”) was also performed to assess the difference between the
distributions: the obtained p-values are smaller than 0.001 for the ALSFRS-R scores 1 to 10
which confirms that the difference is statistically significant for these features. Lastly, the tests
showed that for ALSFRS-R 11 and 12 there was no statistically significant difference between
wk-NN MI and MICE.

Figure 2.10 compares the PFC values obtained by wk-NN MI and MICE. The plots show that
wk-NN MI outperforms MICE in all the categorical features, resulting in a significant difference
in 6 out of 7 of them, namely in sex, familiality, genetics, FTD, onset site, and NIV, while showing
no significant improvement for PEG. The McNemar’s Chi-squared test [140], a statistical test
used on paired categorical data, was also performed. This test is applied to 2 × 2 dichotomous
contingency tables with paired samples, to determine whether there is “marginal homogeneity”,
that is, the row and column marginal frequencies are equal. When comparing two classifiers, each
sample can be either be classified correctly or misclassified by each classifier, and thus a 2 × 2
dichotomous contingency table can be built. The null hypothesis of “marginal homogeneity”
would mean there is no difference between the two classifiers. The imputation of categorical
data can be seen as a classification task, and thus, McNemar’s Chi-squared test can be used
to determine if the difference between two imputation methods is statistically significant. The
results of the McNemar’s Chi-squared test applied to our training set confirms that the difference
is statistically significant in the 6 features above.

Table 2.6: nRMSD scores for the continuous features in the training set. The best performance
is highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

BMI premorbid 0.1012 0.0960 0.1323 0.1634 0.1286 0.1617 0.0731
BMI diagnosis 0.1560 0.1069 0.1476 0.1750 0.1457 0.1687 0.0965
FVC diagnosis 0.2466 0.2463 0.2534 0.1970 0.1876 0.1953 0.1839
age at onset 0.2355 0.2362 0.2393 0.1855 0.1748 0.1820 0.1735
diagnostic delay 0.1150 0.1218 0.1316 0.1484 0.1282 0.1495 0.0850
onset delta 0.1362 0.1362 0.1665 0.1848 0.1584 0.1778 0.1049

Average 0.1651 0.1572 0.1784 0.1757 0.1539 0.1725 0.1195
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Table 2.7: nRMSD scores for the ordinal features in the training set. The best performance is
highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

ALSFRS-R 1 0.1959 0.1540 0.1788 0.2454 0.1529 0.2390 0.1249
ALSFRS-R 2 0.1644 0.1433 0.1684 0.1904 0.1394 0.1907 0.1218
ALSFRS-R 3 0.1768 0.1387 0.1679 0.2175 0.1331 0.2130 0.1133
ALSFRS-R 4 0.2173 0.1916 0.2145 0.2516 0.1606 0.2455 0.1472
ALSFRS-R 5 0.2183 0.1863 0.2179 0.2812 0.1763 0.2727 0.1394
ALSFRS-R 6 0.2064 0.2015 0.2113 0.2864 0.1849 0.2773 0.1513
ALSFRS-R 7 0.1953 0.1696 0.1833 0.2645 0.1544 0.2550 0.1295
ALSFRS-R 8 0.2021 0.1488 0.1651 0.2460 0.1470 0.2377 0.1138
ALSFRS-R 9 0.2655 0.2405 0.2268 0.3744 0.2222 0.3657 0.1589
ALSFRS-R 10 0.1060 0.1093 0.1565 0.2523 0.1668 0.2475 0.0943
ALSFRS-R 11 0.0854 0.0982 0.1340 0.2446 0.1585 0.2403 0.0847
ALSFRS-R 12 0.0682 0.0434 0.0485 0.0933 0.0637 0.0908 0.0391

Average 0.1751 0.1521 0.1728 0.2457 0.1550 0.2396 0.1182

Table 2.8: PFC scores for the categorical features in the training set. The best performance is
highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

sex 0.4859 0.4416 0.4463 0.5160 0.3974 0.4831 0.3823
familiality 0.1646 0.1268 0.1372 0.0842 0.0823 0.0842 0.0738
genetics 0.3310 0.1781 0.1751 0.0956 0.0895 0.0956 0.0815
FTD 0.3295 0.2642 0.3565 0.2060 0.2003 0.1960 0.1903
onset site 0.2957 0.1516 0.1403 0.3672 0.1017 0.3484 0.0800
NIV 0.1111 0.0556 0.0537 0.0518 0.0480 0.0518 0.0235
PEG 0.0948 0.0150 0.0208 0.0069 0.0069 0.0069 0.0069

Average 0.2589 0.1761 0.1900 0.1897 0.1323 0.1809 0.1198
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Figure 2.8: Normalised absolute error distributions obtained with MICE and wk-NN MI (with
k = 20) on the continuous features of the training set.



Chapter 2. Missing Data Imputation 43

Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 1
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 2
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 3

Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 4
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 5
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 6

Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 7
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 8
Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 9

Wilcoxon signed−rank test
two−tailed p−value < 0.001

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 10
Wilcoxon signed−rank test
two−tailed p−value = 0.291

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 11
Wilcoxon signed−rank test

two−tailed p−value = 1

0.00

0.25

0.50

0.75

1.00

MICE wk−NN MI

N
or

m
al

is
ed

 A
bs

ol
ut

e 
E

rr
or

ALSFRS−R 12

Figure 2.9: Normalised absolute error distributions obtained with MICE and wk-NN MI (with
k = 20) on the ordinal features of the training set.
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Figure 2.10: Proportion of falsely classified obtained with MICE and wk-NN MI (with k = 20)
on the categorical features of the training set.

2.6.3.2 Performance Comparison on the Test Set

After selecting the methods’ hyperparameters on the training set, the performance of the pro-
posed imputation method was compared against those of the competitors on the test set. For
each patient in the test set, all the known measurements were removed from his/her visits, one
feature at a time, and the missing values were imputed by using all the training set subjects as
candidates. The use of the whole training set represents the common situation where new sub-
jects are continuously added to an existing dataset of clinical records and some of their values are
natively missing, but there is a pool of previously collected data to use for the imputation. For
Amelia II, MICE and missForest, the original format of the data was used for the imputation (as
one would do in the original setting, that is, without the implemented adaptive sample construc-
tion that characterizes the proposed methodology): the records of the first three months of visits
for the given patient in the test set have been bounded with all the information on the training set
in a single data frame, which was then used as an input for these imputation algorithms. Finally,
the imputed values obtained by each method were compared with the true ones.

The imputation results on the test set are shown in Tables 2.9, 2.10 and 2.11 for each con-
tinuous, ordinal and categorical feature, respectively. Results on the held-back test set confirm
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that the proposed wk-NN MI imputation method outperforms the competitors on average and
on the majority of the features. For the continuous features, the average nRMSD score obtained
by wk-NN MI is 0.1332 against 0.1624 of wk-NN, 0.1803 of Amelia II, 0.1731 of MICE, and
0.2011 of missForest. For the ordinal features, the average nRMSD score obtained by wk-NN
MI is 0.1274 against 0.1561 of wk-NN, 0.2654 of Amelia II, 0.1542 of MICE, and 0.1740 of
missForest. For the categorical features, the average PFC score obtained by wk-NN MI is 0.1303
against 0.1456 of wk-NN, 0.2646 of Amelia II, 0.1900 of MICE, and 0.1966 of missForest. The
baseline was also outperformed by the proposed wk-NN approaches.

The nAE distributions and PFC values obtained by wk-NN MI and MICE (the best per-
forming among the competitor methods) on, respectively, the continuous/ordinal and categorical
features were also analysed. Figure 2.11 shows the nAE distributions obtained on the test set
for the continuous features. The plots and the two-tailed Wilcoxon signed-rank tests show that
wk-NN MI yields statistically significant lower nAE values in 5 out of 6 features, namely BMI
premorbid, FVC diagnosis, age at onset, diagnostic delay, and onset delta. The two methods did
not obtain statistically significant differences in the imputation of BMI diagnosis.

Figure 2.12 shows the nAE distributions obtained on the test set for the ordinal features. The
plots and the two-tailed Wilcoxon signed-rank tests with Pratt’s correction show that wk-NN MI
yields statistically significant lower nAE values on 9 out of 12 features (ALSFRS-R scores 1 to 5
and 8 to 11) at the 0.05 level. Lastly, the tests showed that for ALSFRS-R 6, 7 and 12 there was
no statistically significant difference between wk-NN MI and MICE.

Figure 2.13 compares the PFC values obtained by wk-NN MI and MICE. The plots and the
McNemar’s Chi-squared tests show that wk-NN MI outperforms MICE in 4 out of 7 categorical
features, namely in sex, genetics, FTD, and onset site, at the 0.05 statistical significance level.
No statistically significant improvements are obtained for familiality, NIV and PEG.

Table 2.9: nRMSD scores for the continuous features in the test set. The best performance is
highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

BMI premorbid 0.1302 0.1353 0.1787 0.2047 0.1692 0.2034 0.1105
BMI diagnosis 0.1459 0.1227 0.1653 0.1968 0.1665 0.2033 0.1145
FVC diagnosis 0.2481 0.2401 0.2584 0.2036 0.1821 0.1980 0.1752
age at onset 0.2799 0.2650 0.2781 0.2024 0.1847 0.2061 0.1823
diagnostic delay 0.1286 0.1228 0.1350 0.1481 0.1209 0.1422 0.0958
onset delta 0.1489 0.1529 0.1910 0.1785 0.1512 0.1686 0.1210

Average 0.1803 0.1731 0.2011 0.1890 0.1624 0.1869 0.1332
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Table 2.10: nRMSD scores for the ordinal features in the test set. The best performance is
highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

ALSFRS-R 1 0.3148 0.1852 0.1852 0.2467 0.1609 0.2528 0.1457
ALSFRS-R 2 0.2680 0.1852 0.2122 0.2197 0.1527 0.2049 0.1424
ALSFRS-R 3 0.2663 0.1673 0.1504 0.2443 0.1504 0.2265 0.1416
ALSFRS-R 4 0.2832 0.1913 0.1852 0.2770 0.1813 0.2762 0.1602
ALSFRS-R 5 0.3012 0.1741 0.2060 0.3039 0.1714 0.2873 0.1496
ALSFRS-R 6 0.3035 0.1768 0.1973 0.3141 0.1701 0.2996 0.1631
ALSFRS-R 7 0.2873 0.1687 0.1800 0.2762 0.1550 0.2787 0.1416
ALSFRS-R 8 0.2910 0.1550 0.1550 0.2645 0.1519 0.2514 0.1153
ALSFRS-R 9 0.3189 0.2192 0.2774 0.3709 0.2491 0.3549 0.1800
ALSFRS-R 10 0.1845 0.0903 0.1481 0.2410 0.1416 0.2462 0.0648
ALSFRS-R 11 0.1938 0.0941 0.1408 0.2316 0.1340 0.2415 0.0716
ALSFRS-R 12 0.1728 0.0432 0.0506 0.1013 0.0551 0.0990 0.0529

Average 0.2654 0.1542 0.1740 0.2576 0.1561 0.2516 0.1274

Table 2.11: PFC scores for the categorical features in the test set. The best performance is
highlighted in bold.

Features
Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI
k = 10 k = 10 k = 20 k = 20

sex 0.4440 0.4813 0.4366 0.5560 0.4366 0.4440 0.3955
familiality 0.2724 0.0970 0.1381 0.0597 0.0597 0.0597 0.0821
genetics 0.3166 0.2124 0.1776 0.1506 0.1506 0.1506 0.1351
FTD 0.4749 0.3575 0.3911 0.2179 0.2626 0.2235 0.2346
onset site 0.2910 0.1418 0.1343 0.4552 0.0896 0.4664 0.0522
NIV 0.0485 0.0299 0.0634 0.0410 0.0149 0.0410 0.0075
PEG 0.0050 0.0101 0.0352 0.0050 0.0050 0.0050 0.0050

Average 0.2646 0.1900 0.1966 0.2122 0.1456 0.1986 0.1303
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Figure 2.11: Normalised absolute error distributions obtained with MICE and wk-NN MI (with
k = 20) on the continuous features of the test set.
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Figure 2.12: Normalised absolute error distributions obtained with MICE and wk-NN MI (with
k = 20) on the ordinal features of the test set.
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Figure 2.13: Proportion of falsely classified obtained with MICE and wk-NN MI (with k = 20)
on the categorical features of the test set.

2.6.3.3 Computation Time Comparison

The computation times required for imputing the training dataset by using the proposed methods
and the competitors were compared. The computations were carried out on a workstation with
an Intel R© CoreTM i7-8700 CPU @ 4.60GHz with 16GB of DDR4 RAM running Linux Mint
19.2. Both wk-NN and wk-NN MI were parallelised by imputing each subject in parallel. The
parallelism features were also enabled in Amelia II and missForest so that they could use all the
available cores. MICE on the other hand cannot be run in parallel.

The imputation of the training set (560 subjects) was repeated 100 times for each method,
and requires on average 60.97 seconds (with 3.19 seconds standard deviation) for wk-NN MI
with k = 20, 52.97 seconds (with 1.66 seconds standard deviation) for wk-NN with k = 10, 0.07
seconds (with 0.04 seconds standard deviation) with Amelia II, 2.88 seconds (with 0.13 seconds
standard deviation) with MICE, and 5.94 (with 2.76 seconds standard deviation) seconds with
missForest. Even if slightly higher, the computational times of the proposed methodology remain
within an acceptable range.
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2.6.4 Further Method Validation through an Example of Use of the Im-
puted Dataset: Enhancing the Performance of a Survival Classifica-
tion Task with Data Imputation

In order to further validate the developed imputation algorithm while, at the same time, evaluat-
ing the enhanced potential of the dataset imputed with the proposed method, a simple survival
classification task was implemented.

Specifically, we tested the performance of a NB classifier trained in turn on the training set
(i) with its original missing values, (ii) reduced to the only subjects without missing information
(complete cases), (iii) reduced to the only features without missing data (complete variables),
(iv) imputed with the proposed wk-NN MI algorithm, and (v) imputed with the best imputation
competitor MICE.

The accurate prediction of the survival time in ALS patients is of paramount importance,
and could aid prognostic counselling, stratification of cohorts for pharmacological trials, and
timing of interventions. Nevertheless, this task is not uncomplicated. Patients with ALS exhibit
a very high degree of variability in susceptibility, pathogenic mechanisms, and disease evolution.
This is one of the main reasons for the negative results of therapeutic trials conducted so far, as
statistical variance masks treatment effects [15, 177]. An optimal trial design requires samples
size estimation, which, in turn, requires some understanding of the natural progression of the
disease.

The PARALS register contains survival information for each patient, either in the form of date
of death for the deceased ones or date of the last visit for the censored ones. For each subject, we
determined the survival outcome as the binary answer to the question “Does the subject survive
for more than 3 years (36 months) from his/her first screening visit?”. The patients that were
censored before the 36 months threshold were discarded since we were unable to answer the
question. The number of patients in the training set was thus reduced to 545 (from the initial
560), and the number of patients in the test set was reduced to 138 (from the initial 140). The 36
months threshold was selected because it ensures that the survival outcome is balanced in both
training and test sets.

2.6.4.1 Survival sample construction

In order to develop a model for the survival classification task, there is the need to build, for each
patient, a survival sample, that is, a feature vector derived from the original/imputed first three
months of visits of each patients. It is worth reminding that, in general, this time interval can con-
sist, for different patients, of a different number of acquisitions. Moreover, since the progression
of the dynamic variables is expected to be the key point for determining the survival outcome,
the survival sample must be able to encode the information on the disease progression that they
embody. It is thus necessary, as done in the imputation sample construction, to adequately handle
the temporal nature of the data.

As earlier mentioned, each time-varying – or, to maintain the terminology adopted above,
dynamic – feature actually constitutes a time series. Feature extraction from time series is an
issue common to all those fields where, in general, inputs are signals.
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Being the collected information for some variables dynamic, the sample must be able to catch
and describe the progression of the variable time series over time. This is achievable by deriving
global features that incorporate some of the characteristics of the time series itself, such as the
minimum/maximum value reached by the time series, the number of peaks, the slope and/or the
intercept.

Here, for constituting the survival sample, we performed the following procedure, also de-
picted in Figure 2.14. For each dynamic feature in the selected time range, we computed three
derived features, namely the minimum, maximum, and the slope. The slope was obtained by
fitting a linear regression model on the temporal series constituted by the values of the feature
collected over the three months interval. These values were then used together with the static
features to construct a fixed-length vector (53 features in total) used as an input sample for our
classification task. The survival samples constructed on the original data (that is, before imputa-
tion) carry over their missing values. When handling missing static features, the missing values
were simply carried over to the constructed samples. In case of missing dynamic features, miss-
ing values are reported in the corresponding derived features that could not be computed due to
data missingness.

static features min ...subject i min

dynamic features

slopemax slopemax

dynamic feature 1 dynamic feature m

Figure 2.14: Survival classification sample construction for each patient.

2.6.4.2 The Naı̈ve Bayes model

For this classification task we employed the naı̈ve Bayes classifier [84] implemented in the e1071
R package v1.7-2 [143].

NB is a simple learning algorithm that utilises Bayes’ theorem in conjunction with the “naı̈ve”
assumption that, given the class label, every pair of features is conditionally independent. A NB
classifier considers the contribution of each feature to the given class probability as independent,
regardless of possible correlations. Although this assumption is often violated in practice, NB
classifiers often achieve competitive classification results [229]. Because of their computational
efficiency and many other desirable features, NB classifiers are widely used in practice.

More in detail, the naı̈ve Bayes (NB) classifier is a conditional probability model that, for a
problem instance x = (x1, . . . , xn) to be classified, assigns class probabilities P (y|x1, . . . , xn)
for each class label y. Bayes’ theorem states that, given the class variable y and the feature vector
x:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)
. (2.12)

By using the independence assumption among features, this relationship can be rewritten as:
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P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
. (2.13)

Since the value of P (x1, . . . , xn) is a constant which does not depend on the class label y, the
class probability can be written as:

P (y | x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi | y) , (2.14)

and the class label can be determined as:

ŷ = argmax
y

P (y)
n∏
i=1

P (xi | y) . (2.15)

P (y) is given by the relative frequency of class y in the training set. If xi is discrete, P (xi | y)
can also be determined by a frequentist approach; otherwise, if xi is continuous, we assume that
its values are sampled from a Gaussian distribution, and the probability is given by:

P (xi | y) =
1√
2πσ2

y

exp

(
−(xi − µy)2

2σ2
y

)
, (2.16)

where µy = E [xi | y] is the conditional expectation of xi given y and σ2
y = V ar (xi | y) is the

conditional variance of xi given y.
A NB classifier can both be trained as well as used to make predictions on a dataset with

missing values. The training is carried out by implementing one of two possible strategies: by
ignoring the samples with missing values in one or more features (complete case analysis), or by
ignoring the missing values in the frequency counts of the probability computations. If we want
to make predictions on a sample with missing values, the classification can be carried out by
using only the available features. Let M be the set of the indices corresponding to the available
features, the decision rule can then be re-written as:

ŷ = argmax
y

P (y)
∏
i∈M

P (xi | y) . (2.17)

2.6.4.3 Application to the case study

In order to evaluate the effect of the different imputation techniques on the classification task and
so to further assess the performance of the proposed algorithm, we trained five NB models on
five distinct sets of survival samples. First, starting from the original non-imputed training set
composed of the first three months of patient visits, we built the corresponding training set of
survival samples with their native missing values, from here on referred to as original dataset.
From this first set we obtained two other sets for the complete case analysis: the complete cases
dataset obtained by selecting only the survival samples without missing values, resulting in 252
survival samples, and the complete features dataset obtained by selecting only the features with-
out missing values, resulting in 44 remaining features in the survival samples. Finally, we built
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two other training sets of survival samples for the classification task by imputing the first three
months of patient visits from the training set once with the proposed algorithm (wk-NN MI) and
once with the best performing competitor.

The models were used to predict the set of test samples obtained from the non-imputed first
three months of patient visits in the original test set.

2.6.4.4 Survival classification results

In this section we report the results of the survival classification procedure. Figure 2.15 gives the
Precision-Recall (PR) and Receiver Operating Characteristic (ROC) plots of the NB classifiers
trained on the five different sets of training samples. These plots were obtained by thresholding
on the class label probabilities obtained by the NB classifiers for each survival sample. We
also included the PR and ROC plots of a random predictor as a baseline. To ensure that the
performance improvement is statistically significant, we computed the absolute classification
error of the NB classifiers for each classification sample in the test set. The absolute classification
error of each sample was computed as the absolute value of the difference between the class
label and the predicted class probability. We performed two-tailed Wilcoxon signed-rank tests to
assess the difference between the errors.

As a first result, we observe that the proposed method improves the prediction capabilities of
a NB classifier: indeed, the PR curve achieves a perfect precision score of 1.0 for wider recall
values. Moreover, the proposed method obtains the highest Area Under the Curve (AUC) value of
0.865. The improvement is somewhat less noticeable in terms of ROC curves and ROC-AUCs,
although we can see that the proposed method improves the false positive rate which stays at
zero for a wider true positive rate interval. The statistical test on the absolute classification error
compared to all the other classifiers obtained p-values smaller than 0.001, confirming that the
improvement is statistically significant.

Interestingly enough, the complete cases (PR-AUC = 0.833 and ROC-AUC = 0.785) and
complete features analyses (PR-AUC = 0.840 and ROC-AUC = 0.790) worsen the prediction
quality of the classifier with respect to the original dataset (PR-AUC = 0.850 and ROC-AUC =
0.796). The two-tailed Wilcoxon signed-rank tests’ p-value when comparing the complete cases
and complete features analyses with the original dataset are < 0.001 and 0.022, respectively,
while there is no statistically significant difference between the complete cases and the complete
features analyses (p-value= 0.379). The loss of information resulting from simply ignoring
samples or entire columns with missing data hinders the precision of the classifier. On the other
hand, the NB classifier can effectively learn from the survival samples with their native missing
values, as reflected by the prediction results.

By comparing the predictions of the NB classifier trained on the original dataset (PR-AUC =
0.850 and ROC-AUC = 0.796) with the ones trained on the two imputed datasets, we can see
how the imputation quality can affect the classification performance: the performance improves
when the patient data are imputed with wk-NN MI (PR-AUC = 0.865 and ROC-AUC = 0.816),
while it worsens when using the best competitor for the imputation (MICE), as can be seen from
its PR and ROC curves which do not achieve a perfect precision of 1 or a perfect false positive
rate of 0 for any interval of recall/true positive rate.
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Figure 2.15: Precision-Recall and ROC plots of the naı̈ve Bayes classifiers. The plots show that
the imputation of the training set with the proposed method improves the classification perfor-
mance of a naı̈ve Bayes classifier.
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2.6.5 Discussion: Applicability and Advantages of the wk-NN MI Imputa-
tion Algorithm

While many imputation methods require stringent assumptions on the nature of the missing data,
a k-NN-based imputation only requires the presence of some relationship between the variable
with the missing value and the other variables. Therefore, when the clinical characteristics of
the dataset allow this hypothesis (like in the case-study clinical register), employing a full k-NN
oriented approach may prove successful. Moreover, the k-NN guarantees that the imputed values
are always in the dynamic range of the existing data and, when a small (with respect to the sample
size of the candidates) k parameter is chosen, it allows to preserve the original distribution of the
data (as for the k-NN algorithm presented in Section 2.5).

The proposed method employs the MI values between feature pairs as weights in the distance
computation of the wk-NN procedure. The results show that wk-NN MI outperforms the wk-NN
approach, confirming that the MI can be effectively used to exploit the cross-information of the
features for the imputation task.

We showed that the proposed algorithm is able to handle two main characteristics of the
clinical data: the heterogeneity of the variable types, that is effectively managed in the similarity
metric, and the temporal nature of the longitudinal collection, that is exploited in the sample
construction procedure to capture the progression of the patients, and managed in the similarity
metric by different weighing the static and dynamic features. Furthermore, our method is also
able to handle multiple missing values in the samples being compared, thus not requiring a
dataset of complete cases to perform the imputation.

Finally, we provided a simple survival classification task as a further validation of the pro-
posed methodology, as well as a potential application example. Our results show that the im-
putation of the missing values in the training dataset improves the predictions of a Naı̈ve Bayes
classifier. Since the NB represents a very simple classification technique, we believe that more
complex and sophisticated analyses could also benefit from our imputation method.

Thanks to its ability to require only a limited number of acquisitions to assess the clinical
progression (like the ones referred to the first 3 months of visits, in the case-study above), the
methodology lends itself to be applied in real-world scenarios even when few collected time
points are available. Moreover, by only using information from the training set to impute the
subjects of the test set, it allows to employ the pool of already-available data to impute new sub-
jects that may populate the register a few at a time. Furthermore, we envisage its application in
those cases where novel clinical registers covering new clinical variables will become available,
where missing values arising from the aggregation with older datasets could be imputed with the
proposed approach.

For all these reasons, we believe that our method is potentially applicable in diverse contexts
where imputation is needed. The final aim of this work is to provide a tool that can enhance
the quality and the quantity of the data employed in analytics tasks, to improve and accelerate
translational research. Concretely, the tool will allow clinicians to effectively use the information
collected in a limited time interval by curing the possible presence of missing data.

It would also be interesting to extend the algorithm to the imputation of the whole patients’
visits history, by modifying it from a fixed-window to a sliding-window approach. Moreover,



56 Exploiting the Temporal Dimension in Clinical Data Mining

other distance metrics with other sophisticated weighting schemes could yield even better impu-
tation results and could thus be conceived.

The proposed algorithm was implemented in the wkNNMI R package and is freely available
from CRAN at https://cran.r-project.org/package=wkNNMI.

2.7 Final remarks
Imputation of missing data is a crucial – and often mandatory – step when working with real-
world datasets. The algorithms proposed in this Chapter have been designed to effectively impute
clinical datasets with different characteristics, that are exploited both in the working assumptions
and in the algorithms’ design.

In Section 2.6, a simple task of survival classification was also implemented: besides consti-
tuting an example of application of the imputed data, it shows how different choices on how to
handle the missing information can have an impact on the classification performance.

The aim of the implemented imputation procedures has been making the best use of the
available data, trying to catch their rich informative content even when hard to manage because
of the structure or nature of the data.

The combination of linear interpolation with a weighted k-NN algorithm developed as an
intra-patient approach provided good performance when applied to a dataset consisting of lon-
gitudinal acquisitions of continuous variables where no a priori assumptions of trend regularity
or relations among features and subject are possible. On the other side, a fully weighted k-NN-
based imputation can benefit from hypotheses of clinical similarity among patients, adaptively
comparing and exploiting the dynamics of the clinical evolution.

The k-NN implementations of the two methodologies also profit from the cross-information
provided by different features, through the use of the MIC and the MI values between pairs of
features, respectively. While properly handling the different data types, such measures allow
to estimate and integrate the cross-sectional information between features, enforcing the metric
used to determine the similarity between samples.

In both the developed approaches, the temporal dimension of the data has been fully ex-
ploited: in fact, the employed k-NN and linear interpolation techniques are both based on the
hypothesis (but we could also say fact) of an evolution of the clinical situation over time, that
enriches the working framework and contributes to the inferable information on the missing val-
ues.

As future work, I plan to enhance the proposed methodologies, by refining the above-presented
algorithms and by possibly adding new imputation strategies, thus expanding them into a full-
fledged ensemble of imputation methods suitable to impute multiple types of clinical and lab-
oratory data. Moreover, it would be very interesting to determine what thresholds of existing
missing data and co-dependencies among features would begin to have an impact on the perfor-
mance of the proposed approaches. I also plan to run these experiments on additional real-world
datasets.

https://cran.r-project.org/package=wkNNMI


Chapter 3

Dynamic Model of Disease Progression

In longitudinal clinical data collections, the multidimensional characterization of the patients’
history over consecutive time points constitutes an invaluable basis to study how the clinical
condition evolves. By mining the available information through techniques able to deal with
its dynamic nature, it is possible to analyze how features modify, interact with each other, and
influence clinical evolution as time passes. Moreover, accurate predictive models can be trained,
allowing prognosis forecasting at a patient- or population-level.

In this Chapter, a disease progression model of Amyotrophic Lateral Sclerosis based on Dy-
namic Bayesian Networks is proposed. By learning on the whole dynamics of the data sourced
from two clinical registers, this methodology allows to model the disease evolution over time.
Moreover, by overcoming the limitations of other “black-box” approaches, the employed tech-
nique provides a clear representation of the relationships among variables over time, unveiling
their effect on the disease progression. As an outcome, the implemented model supplies the sim-
ulation of the progression of a patient or a cohort of patients starting from a given initial clinical
characterization of their health status. The ability of the model to simulate the patients’ progno-
sis also allows to perform stratification studies to determine the impact of specific factors on the
disease evolution. Finally, specific target variables, such as survival or functional abilities can be
computed in terms of probability of occurrence over time.

In general, computational models able to inspect and simulate the evolution of clinical condi-
tions over time can constitute a useful tool to support physicians in planning individually tailored
assistance programs or designing clinical trials, and patients in making informed decisions and
more effectively managing their own health [141].

3.1 Case Study: Amyotrophic Lateral Sclerosis

As briefly introduced in Section 2.6.1, ALS is a neurodegenerative disorder characterised by the
progressive degeneration of motor neurons in the brain and spinal cord [211]. This disease, also
known as Lou Gehrig’s disease, is progressive and fatal: the symptoms worsen over time and
there are no known effective treatments that can effectively halt or reverse its progression which
will inevitably result in respiratory failure.

57
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The clinical presentation and the speed of progression of ALS are very heterogeneous. The
disease is found to be more common in men than in women [137, 93], it can occur at any adult
age and death in average comes 3–4 years from the initial disease onset [93]. However, about
10% of people with ALS survive for 10 or more years; among them, there are very few patients
with exceptionally long survival times after diagnosis, such as the British astrophysicist Stephen
Hawking (more than 50 years), arguably the most famous patient affected by ALS [159]. Possible
symptom onset types include the “spinal onset”, i.e. extremity muscle deficits, the “bulbar onset”,
i.e. dysarthria or dysphagia and, more rarely, generalized weakness and/or respiratory onset
[156]. ALS is also correlated with frontotemporal dementia (FTD) [60] since up to 15% of
ALS patients develop FTD and both diseases share common genetic causes [146], although the
biology behind this correlation is unknown. The multi-faceted aetiology of the disease is reflected
by the fact that only 5–10% of ALS cases are familial with the remaining vast majority being
sporadic [92]. More than 30 different genetic conditions have been linked to ALS [166], with
the most notable being a hexanucleotide repeat expansion at C9orf72 which was identified as
significantly associated with ALS in both familial and sporadic cases [102].

3.2 Previous Work on ALS disease progression modeling
The enormous social, medical and human costs imposed on ALS patients, their families and the
health systems in general [142] are pushing the scientific community towards the development of
computational tools to derive predictions for prognostic counselling, stratification of cohorts for
pharmacological trials, and timing of interventions. Predicting the progression of ALS patients
would improve prognostication and intervention timing in routine clinical practice. Moreover,
clinical trials could be more effectively designed, for example by ensuring allocation of equiv-
alent populations to the various intervention arms of a trial. An accurate, validated prediction
algorithm could ultimately reduce or remove the need for human control subjects, replacing them
with in silico simulated controls. Finally, a stratification of ALS patients by their progression or
phenotype could give hints on different mechanisms acting in its pathogenesis.

Nevertheless, the inherent heterogeneity and varying progression make diagnosis of ALS and
the development of a timely intervention plan tailored to each individual patient very challeng-
ing. This variability in disease susceptibility and pathogenic mechanisms is one of the main
reasons for the negative results of therapeutic trials conducted so far as statistical variance masks
treatment effects [15, 177]. An optimal trial design requires samples size estimation, which,
in turn, requires some understanding of the natural progression of the disease. However, there
is a paucity of biomarkers (predictors of disease progression) for stratifying patients into more
homogeneous groups so that experimental therapies can be tested on patients sharing similar
disease mechanisms [76]. Indeed, the potential identification of prognostic markers observable
in patients at early stages of the disease progression could help in gaining more insight on its
clinical course, in guiding personalised treatment for ALS patients targeting the specific biolog-
ical pathways indicated by the biomarker, and enable analysis in clinical trials of homogeneous
groups [5]. Furthermore, a reliable model of ALS progression could help to explain its manifold
nature and predict clinical outcomes.
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In order to enhance and accelerate translational ALS research, Prize4Life and the Neurolog-
ical Clinical Research Institute (NCRI) at Massachusetts General Hospital created the Pooled Re-
source Open-Access ALS Clinical Trials (PRO-ACT) platform (https://nctu.partners.
org/ProACT) [9]. PRO-ACT represents the largest publicly available repository of merged
ALS clinical trial data. It contains over 10 700 fully de-identified clinical ALS patient records
from multiple completed clinical trials (both publicly- and privately-conducted) and constitutes
an invaluable resource for accelerating discovery in the field of ALS.

So far, several computational models of ALS progression have been developed on this dataset
to predict the future progression of the disease and to stratify the patients into meaningful sub-
groups.

In the DREAM-Phil Bowen ALS Prediction Prize4Life challenge [110], competitors devel-
oped algorithms for the prediction of disease progression using the PRO-ACT data. The chal-
lenge data was comprised of 1 822 patients from ALS clinical trials from the PRO-ACT data set,
of which 918 were used to train the models while the rest was used for validation purposes by the
challenge managers. As briefly mentioned in Section 2.6.1, by using only information regarding
the first 3 months of ALS clinical trial information, participants were asked to predict the future
progression of the disease in the subsequent 9 months in terms of slope of decline of the Revised
ALS Functional Rating Scale (ALSFRS-R) [27, 28], the clinical questionnaire that measures ob-
servable functional status and change for patients with ALS over time (also employed in Section
2.6). As a challenge outcome, several potential biomarkers including uric acid, creatinine and
blood pressure were identified, effectively expanding the list of previously reported markers such
as time from onset, age, forced vital capacity (FVC), site of onset, sex and weight [110], thus
shedding light on the pathobiology of ALS.

In the DREAM Prize4Life ALS Stratification Challenge [109], data from PRO-ACT were
integrated with patient information contained in two real-world data sources, namely the Irish
National ALS Register [153] and the regional PARALS register [36] (the one partially used in
Section 2.6). After aggregation, data were divided into a training (986 patients) and a valida-
tion (493) set. Challenge participants were asked to design algorithms able to stratify the ALS
patient population into distinct clusters and develop separate predictive models for each sub-
population, including both disease progression and survival as predicted outcome measures. A
specific requirement of the task was to limit up to six the number of predictive features used in
the models, since this can facilitate the concrete application of predictive algorithms in natural
clinical settings [56]. This communal approach revealed a few sub-groups of patients which
tended to cluster together across different algorithms, significantly differentiating four patient
sub-populations: slow progressing patients and fast progressing patients, as well as patients with
an average progression rate which were either early or late in their disease at the beginning of the
recorded clinical observation period. The challenge results confirmed the ability of some already
well-described features, such as age, gender and respiratory capacity, in stratifying ALS patients.
Besides, it interestingly emerged how some features can be most predictive in specific phases of
the disease (such as creatinine, that was found to be specifically predictive for patients early
in their disease). Among the proposed methods, random forest and Gaussian process regression
models with an arithmetic mean kernel performed successfully in most of the sub-tasks. Notably,
the comparison of the proposed methodologies showed how data preprocessing can have a high

https://nctu.partners.org/ProACT
https://nctu.partners.org/ProACT
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impact on the final performance: indeed, even if the same machine learning method was used by
different teams, the one who obtained best performance effectively represented time-dependent
features as a combination of simple summary statistics (for instance minimum, maximum and
average of the dynamic feature values, similarly to the method described in Section 2.6.4).

Taylor et al. developed random forest, pre-slope, and generalised linear models (GLM) to
predict disease progression [191] in terms of ALSFRS-R scores from the first baseline patient
visit. They employed the data of 3 742 patients from the PRO-ACT database: 3 389 records were
used for training, and 353 for internal validation. Furthermore, also in this case the clinical trial
data were enriched with the records of 630 ALS patients from a clinical population, that were
used as an external test dataset. The research showed that ALS predictive models for clinical
populations could be developed using only baseline data as predictor variables, demonstrating
applicability to a clinical patient care setting.

Another work on PRO-ACT was performed in 2017 by Ong et al. [152], who fitted time
series data from 8 635 PRO-ACT subjects to exponential models and derived binary classes for
total ALSFRS-R score decline (fast/slow decline) and survival (high/low death risk). The authors
were able to predict classes of functional decline and survival across the 1–2 year time-frame
available in PRO-ACT by using combinations of a small number of variables.

As it appears from the above studies, PRO-ACT represents an invaluable resource for re-
search studies on ALS: its large sample size guarantees high statistical power; moreover, patients
participating in clinical trials have more frequent visits, allowing for a better characterisation of
disease progression. In addition, the plethora of variables collected within PRO-ACT is much
wider than the ones that are commonly measured in a typical clinical setting. Nonetheless, the
clinical trial population is not necessarily representative of the general ALS population: patients
participating in clinical trials are generally higher functioning and more homogeneous compared
to the ones from a typical tertiary care clinic setting [61]. Clinical trial patients tend to be
younger, more likely to be male, and are half as likely to have bulbar onset disease, exhibiting
therefore slower disease progression with less severe symptoms as compared to a typical clinic
population. Furthermore, the duration of their follow-up is often limited [31]. For these reasons,
patient data from the clinical context should be included in the development of ALS progression
models in order to achieve reliable predictions for the general ALS population.

For these reasons, more recent models have been designed by including only real-world ALS
patients. Among these, the model proposed by Van den Berg et al. [220] allows to predict the
prognosis of individual ALS patients by using an the extensive databases of 11 475 patients from
14 European ALS centres. Eight patient characteristics were identified as prognostic factors: (1)
bulbar versus non-bulbar onset, (2) age at onset, (3) definite versus probable or possible ALS,
(4) diagnostic delay, (5) forced vital capacity, (6) progression rate, (7) FTD, and (8) the presence
of a repeat expansion in the C9orf72 gene. This model can predict the time in months between
symptom onset and the survival outcome (defined as non-invasive ventilation for more than 23
hours per day (>23h NIV), tracheostomy, or death).
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3.3 Open Issues and Contribution
The majority of the above-described ALS prognostic models can be used to make survival or
intervention endpoint predictions, generally in terms of a related risk score. Nevertheless, there is
no available tool able to model the entire disease progression over time considering the evolution
of all the dynamic variables.

Furthermore, previous models merely capture the associations among the clinical variables
and the outcomes, without providing an explicit description of the interactions among variables
and how these might change in time, thus not fully exploiting the informative richness of dynamic
data. Besides, the lack of an explicit interpretation of the relationships among variables in terms
of causes and effects also limits the ability of the models of accurately representing the domain
knowledge.

As a further limitation, all the available ALS progression models rely on the ALSFRS-R stag-
ing system. Despite being the standard in the clinical practice, this staging system suffers from
several limitations in capturing the patient’s clinical evolution, such as the inability to effectively
catch functional decline in the final and most severe phase of the disease [214, 221].

In addition, most of the described techniques are so-called “black-box” models that do not
provide insight into how a certain prognostic prediction is reached, which would be instead a
desirable property in clinical decision support systems [216, 19]. Finally, most of the currently
available tools were developed on datasets including clinical trial data that are not fully repre-
sentative of the general ALS population.

Based on these considerations, it would be beneficial to develop tools able to model the en-
tire disease progression over time, considering all the dynamic variables and their relationships.
Moreover, instead of only predicting a single survival endpoint it would be opportune to add
further outcomes that allow to simultaneously assess the multifaceted evolution of the disease
over time. Introducing the prediction of loss of independence in the main functional domains
affected by the disease in the models could not only add a dynamic marker of progression, but
also help overcoming the limitations of the ALSFRS-R staging system. In addition, the ability
to dynamically predict the variations of the risk (probability) of functional impairments in time
could aid unveiling the pathobiology of ALS as well as provide valuable insights in the treatment
planning perspective. Finally, there is the need to develop models trained on real-wold cohort
patients, so that they can be reliably applied in clinical care settings.

As a further step toward exploitation of the potential of artificial intelligence, a model with
these capabilities could be used not only in the clinical practice to support clinicians in their deci-
sion, but also to generate in silico patients mimicking sub-populations of subjects with different
characteristics. Medical doctors and researchers could benefit from models able to simulate the
natural evolution of the disease in groups of untreated patients with, for instance, different base-
line characteristics, in order to mimic disease progression in in silico placebo cohorts together
with patient stratification.

In the next section I will outline my contribution in addressing these state-of-the-art limita-
tions, consisting in the development of a model of ALS progression based on Dynamic Bayesian
Networks (DBNs).

The built tool is able to predict and simulate, in a probabilistic fashion, the evolution of ALS
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over time, providing an explicit representation of the temporal nature of the medical problem in
terms of changes/loss of independence in the most relevant functional domains impaired by the
disease, such as walking/self-care, swallowing, communicating and breathing, besides survival.
In addition, the proposed methodology can be used to stratify ALS patients into subgroups of
different progression and to assess the effect of different phenotypes at diagnosis on the entire
disease course. Furthermore, the model allows an accurate representation of the domain knowl-
edge and describes the dynamics of the ALS course also in terms of interactions among variables
across subsequent points in time, unveiling their impact on disease progression.

The model has been developed by employing clinical and genetic data from four Italian real-
world datasets, characterized by almost complete follow-up for most patients and high clinical
heterogeneity, in order to constitute a tool able to widely represent the ALS population. Notably,
in this model we also introduced a methodological novelty to account for the fact that variable
dependencies might vary over time due to the long term evolution of the disease.

The model was also implemented as an interactive web application, with the aim to support
clinicians with an easy-to-use tool that provides the prediction of a patient prognosis by em-
ploying only the data collected during a single visit. Such a tool could help physicians in easier
care planning, as well as patients for decision making concerning their future. Another possible
application of the model is in the clinical trial setting: thanks to its ability to simulate the dis-
ease progression of single patients/cohorts of subjects with specific clinical characteristics, we
envisage its use by possibly replacing human control subjects with in silico simulated controls.

This work, performed in the context of the CompALS project, an Italian–Israeli collaboration,
led to the filing of the International Patent “Method for determining the prognosis of disease pro-
gression and survival for patients affected by Amyotrophic Lateral Sclerosis” (currently pending)
[50].

Due to patent-related requirements, the corresponding scientific publications are at the mo-
ment limited to conference presentations at the 6th European Academy of Neurology Congress
[213], the 50th Congress of the Italian Society of Neurology [37], and the 30th International
Symposium on ALS/MND [38].

3.4 A DBN-based Probabilistic Model of ALS Progression
This section describes the design and implementation of a DBN-based model of disease progres-
sion developed on a real-world cohort of ALS patients. The proposed methodology allows the
accurate inclusion of domain knowledge and clinical predictors of various nature in the model,
provides the probabilities of event occurrences over time, and describes the dynamics of the ALS
course also in terms of interactions among clinical variables, unveiling their effect on the disease
progression. Aside from individual patient prognosis, our model can be used to simulate the
ALS disease progression at population level, thus enabling the in silico simulation of cohorts of
subjects with given characteristics.

The developed ALS prognostic model has been embedded into a web-based tool that will be
provided to medical doctors, enabling individual patient-level prognosis in terms of probabilistic
evolution of the disease.
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3.4.1 Material: Genetic and Dynamic Clinical Data
The cohort of ALS patients included in this study was recruited from two population-based reg-
isters (the PARALS Piemonte and Valle d’Aosta ALS register [36], and the ERRALS Emilia
Romagna ALS register [129]) and two referral ALS centers, namely the Nemo Clinical Cen-
ter and Salvatore Maugeri Foundation (Milan)1. ALS diagnosis was assessed according to El
Escorial revised criteria [23], after excluding other diseases.

The aggregated dataset includes the information recorded over subsequent screening visits
of 2 149 ALS patients for a total of 15 767 visits (median follow–up of 34 months, IQR 23–53;
median number of visits equal to 5, IQR 3–9). It consists of 25 demographic, genetic, and clinical
variables, corresponding to those used in Section 2.6.1.

In particular, for each patient, the following static variables were recorded during the first
visit: sex, body-mass index (BMI) both premorbid and at diagnosis, forced vital capacity (FVC)
at diagnosis, familiality of ALS, the result of a genetic screening over the most common ALS-
associated genes (genes C9orf72, FUS, SOD1 and TARDBP were tested for mutations; if neg-
ative, patients were classified as wild type (WT)), presence of frontotemporal dementia (FTD, de-
tected either clinically or through neuropsychological testing), site of disease onset (spinal/bulbar),
age at onset, diagnostic delay (time from ALS onset to diagnosis). Moreover, at each visit the fol-
lowing dynamic features were collected: the presence/absence of non-invasive ventilation (NIV)
and percutaneous endoscopic gastrostomy (PEG), the ALSFRS-R scores [27, 28], and the sur-
vival information (time from ALS onset to the last visit for the censored patients, or time from
ALS onset to either death/tracheostomy2 for the others).

3.4.1.1 Preprocessing

Conversion of the staging system from ALSFRS-R to MITOS

The collected ALSFRS-R staging system [27, 28] constitutes the standard mean to assess disease
severity in clinical practice. As previously mentioned (see Section 2.6.1), it consists of a 12-item
questionnaire rated on a 0–4 point scale evaluating the progression of disability in ALS patients
in specific daily tasks. Being a de facto standard, it has been included in most of the available
ALS progression models and extensively used to assess treatment efficacy in clinical trials and
measure disease progression [178, 42, 16, 116].

Despite its extensive use, this staging system suffers from several limitations. The interpre-
tation of an ALSFRS-R total raw score is hindered by possible different meanings given to the
metric depending on the ALS form [128] and by its non-linear relationship with the linear Rasch
transformed measures of global function [64, 63]. The scale exhibits multidimensionality, thus it
should not be used as a global total score [64]. The ALSFRS-R scale also suffers from the “floor-
effect” and is thus unable to capture late-stage clinical changes: patients approaching the bottom
of the scale appear to be “slowing down” in their worsening because it becomes increasingly

1The study was approved by the ethical committees of the coordinating and participating centres. Informed
consent to participate in the study was obtained from all the patients or their legal representatives. The databases
were anonymised according to the Italian privacy protection legislation.

2Tracheostomy can be considered as an artificial life extension.
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difficult for them to lose further raw score points [214, 221]. Finally, there is no agreed-upon
threshold at which a change in ALSFRS-R score is viewed as an important transition point in
functional status [32].

To overcome these limitations, other ALS staging systems have been introduced. King’s
staging system [169] is based on disease burden as measured by the involvement of clinical
regions and the presence of respiratory or nutritional failure. This system uses five stages, from 1
to 5, with stages 1 to 4 indicating the number of involved clinical regions (stage 1 also indicates
the disease onset) and stage 5 being death. Although the King’s system is not based on ALSFRS-
R scores, it can be estimated from them with 92% concordance [13]. More recently, the Milano-
Torino staging (MITOS) system was introduced as a novel tool to measure ALS progression
[32]. This system uses six stages, from 0 to 5, with stage 0 representing symptom onset and
stage 5 being death, and is based on the assessment of four functional domains (walking/self-
care, communication, swallowing and breathing) assayed by the ALSFRS-R. When a domain
is not impaired, its MITOS value is equal to 0, whereas the MITOS value is equal to 1 for the
domains in which the patient’s independence is compromised: the MITOS score corresponds to
the total number of functional domains in which the patient has lost independence. This scale
was shown to be able to reliably identify relevant stages of disease in patients according to the
number of lost functions, to be consistent with sequential disease progression, to overcome the
non-linearity and multidimensionality limitations of ALSFRS-R, and to correlate well with the
patients’ quality of life and health service costs [193].

Based on the above considerations, in this work we decided to employ the MITOS staging
system to monitor and assess the functional impairment of patients over time. We chose the
MITOS since it tackles all the limitations of the ALSFRS-R scale while at the same time being
completely derivable from the latter. King’s system, on the other hand, cannot always be fully
derived from the ALSFRS-R scale, which represents a limitation. Moreover, unlike King’s stag-
ing system which summarises the clinical/anatomical spread of the disease, the MITOS system
is aimed towards the distinction of functional capabilities during the spread of the disease and is
able to differentiate late ALS stages at a higher resolution [58].

Therefore, as a first preprocessing step, we converted the ALSFRS-R scores into MITOS
staging system scores encoded in the dynamic variables walking/self-care, breathing, swallow-
ing, and communicating, according to the algorithm proposed by Chiò et al. [32].

Coding the temporal dimension of data

As already introduced, the dataset consists of multiple visits for each patient. In order to account
for different time-grids and observation windows among subjects, we coded the temporal dimen-
sion by adding for each visit the following two temporal variables, derived from the dates: the
time between each pair of consecutive visits (time between visits, TBV) and the time of each
visit since the patient’s disease onset (time since onset, TSO).
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Split into training and test sets

We then split the dataset into a training set for developing the DBN, and a test set for validating
the model, by stratifying the two sets over all variables. In particular, the dataset was split into a
training set of 1 504 patients (11 032 visits), and a test set of 645 patients (4 735 visits).

A complete list of the longitudinally collected data measurements and a detailed overview of
the full, training, and test datasets after the preprocessing phase is reported in Tables 3.1 and 3.2.

Table 3.1: Contingency table for the categorical variables in the full dataset and in its training,
test and reduced test sets.

Full dataset Training set Test set Reduced test set
Feature Level N (%) N (%) N (%) N (%)

Subjects – 2149 – 1504 – 645 – 202 –
Medical centre Emilia-Romagna 744 (34.6) 516 (34.3) 228 (35.3) 35 (17.3)

Maugeri Foundation 173 (8.1) 122 (8.1) 51 (7.9) 0 (0.0)
Nemo Clinical Centre 267 (12.4) 192 (12.8) 75 (11.6) 8 (4.0)

Piemonte and Valle d’Aosta 965 (44.9) 674 (44.8) 291 (45.1) 159 (78.7)
Sex Female 976 (45.4) 696 (46.3) 280 (43.4) 83 (41.1)

Male 1173 (54.6) 808 (53.7) 365 (56.6) 119 (58.9)
Onset site Bulbar 658 (30.6) 459 (30.5) 199 (30.9) 69 (34.2)

Spinal 1491 (69.4) 1045 (69.5) 446 (69.1) 133 (65.8)
Survival Censored 596 (27.7) 427 (28.4) 169 (26.2) 36 (17.8)

Tracheostomised/Dead 1553 (72.3) 1077 (71.6) 476 (73.8) 166 (82.2)
Familial No 1951 (90.8) 1364 (90.7) 587 (91.0) 184 (91.1)

Yes 135 (6.3) 96 (6.4) 39 (6.0) 18 (8.9)
<NA> 63 (2.9) 44 (2.9) 19 (2.9) 0 (0.0)

Genetics C9orf72 106 (4.9) 70 (4.7) 36 (5.6) 16 (7.9)
FUS 9 (0.4) 2 (0.1) 7 (1.1) 4 (2.0)

SOD1 39 (1.8) 29 (1.9) 10 (1.6) 3 (1.5)
TARDBP 30 (1.4) 24 (1.6) 6 (0.9) 2 (1.0)

WT 1429 (66.5) 1019 (67.8) 410 (63.6) 177 (87.6)
<NA> 536 (24.9) 360 (23.9) 176 (27.3) 0 (0.0)

FTD No 1564 (72.8) 1094 (72.7) 470 (72.9) 173 (85.6)
Yes 141 (6.6) 97 (6.4) 44 (6.8) 29 (14.4)

<NA> 444 (20.6) 313 (20.8) 131 (20.3) 0 (0.0)

Discretization of continuous variables

In this work we employed discrete-space/discrete-time DBNs, which encode probabilistic re-
lationships among discrete variables over a discrete number of time steps. Therefore, in both
training and test set we discretized the continuous variables age at onset, diagnostic delay, TBV,
BMI premorbid, BMI at diagnosis, and FVC at diagnosis according to their distribution tertiles
computed on the training set. Table 3.3 reports the quantization levels for these continuous vari-
ables and summarizes the adopted categories for the already-categorical ones. All the variables
include the option to be equal to NA, if not recorded in the dataset.
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Table 3.2: Distribution of the continuous variables in the full dataset and in its training, test
and reduced test sets. The “Time to ...” features indicate the time from the disease onset to the
specified intervention or event. The equality of the distributions of the training–test sets and the
training–reduced test sets has been assessed with the Kruskal-Wallis test for each variable.

Full dataset Training set Test set Reduced test set
Feature Mean (SD) Mean (SD) Mean (SD) p-value Mean (SD) p-value

Age at onset [years] 63.43 (11.20) 63.39 (11.15) 63.53 (11.34) 0.76 63.28 (10.88) 0.91
Diagnostic delay [months] 12.56 (12.03) 12.94 (12.65) 11.66 (10.39) 0.22 10.55 (7.86) 0.19
Time between visits [months] 3.39 (3.65) 3.39 (3.66) 3.40 (3.63) 0.25 2.95 (2.39) 0.11
Time since onset [months] 34.55 (31.95) 34.37 (31.03) 34.95 (34.01) 0.21 37.15 (39.31) 0.46
BMI premorbid [kg/m2] 25.93 (4.01) 26.00 (4.07) 25.79 (3.87) 0.49 25.92 (3.84) 0.97
BMI at diagnosis [kg/m2] 24.59 (4.07) 24.66 (4.10) 24.42 (4.00) 0.45 24.56 (3.99) 0.98
FVC at diagnosis [%] 87.95 (24.46) 88.45 (24.50) 86.76 (24.36) 0.23 88.31 (25.29) 0.87
Time to NIV [months] 32.01 (27.58) 32.30 (28.30) 31.29 (25.72) 0.68 28.27 (27.38) 0.19
Time to PEG [months] 30.52 (21.78) 30.67 (22.35) 30.19 (20.43) 0.98 30.58 (21.34) 0.91
Time to tracheostomy/death
or censoring [months]

43.42 (33.61) 43.75 (33.66) 42.67 (33.52) 0.28 43.49 (35.89) 0.91

Time to MITOS walking/self
care impairment [months]

29.65 (24.97) 30.27 (25.99) 28.27 (22.50) 0.15 26.09 (21.61) 0.06

Time to MITOS swallowing
impairment [months]

28.93 (19.89) 28.71 (19.67) 29.45 (20.45) 0.53 29.16 (20.60) 0.69

Time to MITOS communica-
tion impairment [months]

33.52 (22.50) 33.11 (21.67) 34.52 (24.44) 0.49 33.15 (20.34) 0.82

Time to MITOS breathing
impairment [months]

32.33 (27.46) 32.38 (27.59) 32.19 (27.15) 0.69 29.48 (27.44) 0.33

According to specific work hypotheses of the DBNs that will be discussed in the next sec-
tion, the continuous variable TSO was not quantized according to its distribution percentiles, but
developing instead an ad hoc temporal slicing procedure that takes into account the evolution of
the disease over time (see Section 3.4.2.1).

3.4.2 Methods: Automatic Time Slicing Algorithm and Model Design

Bayesian Networks (BNs) [151] are descriptive models that encode the probabilistic relationships
among variables. Given a multivariate dataset, the BNs build a directed acyclic graph (DAG) in
which each variable corresponds to a node and the influence of one node (parent) on another
(child) corresponds to a directed edge. DBNs [103, 148] are an extension of BNs that describe
the dependencies among variables including the temporal dimension: in DBNs, edges between
dynamic variables represent the influence of the parent variables at time step t on the child ones
at time step t+ 1.

A DBN is defined by its structure (set of parent-children dependencies) annotated with a
set of conditional probability distributions (CPDs) that define the probabilistic dependency of
each node on its parents. Similarly to BNs, nodes in a DBN are still connected through a DAG.
However, DBNs allow encoding cycles and feedback between variables when considering their
relationships over different time slices.
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Table 3.3: Variable quantization levels
Feature Level

Age at onset [years] [21, 58]
]58, 67]
]67, 89]

Diagnostic delay [months] [0, 7]
]7, 12]
]12, 147]

Time between visits (TBV) [months] [0, 2]
]2, 3]
]3, 58]

BMI premorbid [16, 23.9]
]23.9, 27.2]
]27.2, 44.1]

BMI at diagnosis [13.8, 23.0]
]23.0, 26.2]
]26.2, 44.1]

FVC at diagnosis [10, 84]
]84, 102]
]102, 162]

Medical centre Emilia-Romagna
Maugeri Foundation
Nemo Clinical Centre
Piemonte and Valle d’Aosta

Sex Female
Male

Site of onset Bulbar
Spinal

Vital status Alive
Tracheostomised/Dead

Familial Yes
No

C9orf72 Yes
No

FUS Yes
No

SOD1 Yes
No

TARDBP Yes
No

WT Yes
No

FTD Yes
No

MITOS movement impairment Yes
No

MITOS swallowing impairment Yes
No

MITOS communication impairment Yes
No

MITOS breathing impairment Yes
No
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The employed algorithm for DBN structure-learning relies on the following assumptions:
(i) two nodes cannot be a deterministic function of a single variable, (ii) variables are related
to each other over a discrete number of time steps, also called slices (and thus we say that,
for example, variable A at time t influences variable B at time t + 1), and (iii) the CPDs are
time invariant. Specifically, the CPDs are usually estimated through techniques like Bayesian
estimation or (regularised) maximum likelihood.

DBNs are well suited for describing the evolution of diseases, since they provide an explicit
representation of the variable set and their inter-dependencies over time, as well as the means to
learn not only from statistical data, but also from domain literature and expert knowledge. For
these reasons, DBNs were previously employed for instance in intensive care unit settings [2],
for atherosclerosis progression modeling [57], and for the simulation of clinical complications
in type 1 diabetes [134]. In the context of ALS, DBNs were already explored in a previous work
of the group [227], where a model of disease progression was built on the PRO-ACT dataset.
As an enrichment, in this work we switched to fully real-world datasets. Moreover, we added a
methodological novelty to account for the fact that variable dependencies might vary over time,
according to the disease nature.

3.4.2.1 Time Slicing Algorithm for TSO Discretization

In the learning process, the DBN model infers a set of CPDs for each variable; thus, DBNs are
able to identify the combination of factors modulating ALS severity over its course.

As mentioned above (hypothesis (iii) on the time-invariance of the CPDs), this is done under
the assumption that such probabilistic relationships among variables do not change over time.

In the reality of clinical data this working hypothesis is not always verified. The disease
proceeds by following different possible patterns in its different stages (for instance, it could
begin to manifest itself slowly in its early stages, and then speed up while progressing). In this
process, some variables can have a different impact depending on the disease phase.

The evolving progression of the disease can be verified by analyzing the outcome occurrence
rates over time. Figure 3.1 reports the frequency of the outcome events, defined as the MITOS
impairments (the already mentioned walking/self-care, breathing, swallowing, and communi-
cating), and the survival (tracheostomy/death), computed over the training set. The occurrence
frequency was computed by employing the Kaplan-Meier estimator as a function of the TSO
variable. For the sake of readability, curves in the graph are truncated at 105 months.

The varying slope of each Kaplan-Meier curve details the different rates of progression over
the population, with the curves’ inflection points corresponding to the instants where disease
severity changes. In correspondence of these points, it stands to reason that the relations among
variables are changing too. In other words, the CPDs before and after each inflection point might
be different.

Therefore, in order to respect the CPDs time-invariance hypothesis of the DBNs, the follow-
ing procedure needs to be set up: first, an adequate number of “global disease inflection points”
should be determined based on the rates of all the outcomes curves; then, the TSO variable that
codes the observation grid should be discretized accordingly, each discretization level represent-
ing a time slice where the CPD time-invariance assumption is complied.
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Figure 3.1: Kaplan-Meier curves of the ALS outcomes (MITOS impairments and survival)
computed on the training set and truncated at 105 months.

When determining the global inflection points constituting the slicing thresholds, two further
structural constraints should be imposed.

First, the global inflection points should cut the disease observation interval in such a way
that the number of samples falling into each slice is balanced. Indeed, in order to be able to
learn a possible relationship among variables, in the training phase the network requires to be
fed with an adequate number of occurrences for each level. In this respect, theoretically, the
most genuine learning setting would be a dataset consisting in an equal number of samples for
each possible combination of the variables (or, at least, for each possible combination of the
variables with a relationship). In practice, this condition can of course be only asymptotically
met, by both employing a sufficiently high number of samples (here visits) in the training set, and
trying to balance the number of occurrences at each variable discretization level. With respect to
this second point, the quantiles-based discretization of the other continuous variables in Section
3.4.1.1 ensures that the levels are balanced. In contrast, in the TSO discretization procedure this
requirement should be explicitly imposed.
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Second, the number of searched global inflection points should be limited. This constraint is
related to the ability of the network to learn reliable relationships too: in the CPDs computation,
each TSO discretization level is associated with a different set of conditional probabilities. The
higher the number of discretization levels for each variable, the lower the cardinality of sam-
ples with that combination of values, causing both less reliable computed probabilities and a
higher risk to miss interesting relationships. While the choice of employing tertiles for the dis-
cretizations of continuous variables in Section 3.4.1.1 ensures by design a low number of levels,
for TSO the above requirement should be taken into account when determining the number of
global inflection points.

Based on these considerations, the designed algorithm for automatic time slicing proceeds
as follows. Given a dataset consisting of a number of samples N, a user-defined number of
slicing thresholds to identify, named n thresh, and the outcome curves y1...yM , the algorithm
starts imposing the requirement of sample balance at each discretization level.

First, the punctual values of TSO, namely t1...tn thresh, that would exactly split the dataset in
(n thresh + 1) quantiles are identified, with each ti corresponding to the 100i

n.thresh+1
percentile.

For instance, if n thresh was set equal to 3, the algorithm would define t1 as the 25th, t2 as the
50th, and t3 as the 75th TSO percentile.

If these ti values actually corresponded to the global inflection points and were therefore
used as discretization thresholds, they would effectively provide a perfectly balanced number of
occurrences at each level. As this is rarely the case, the user can set a confidence interval around
each ti in order to determine a range of sub-optimal (in terms of balancing) TSO values to be
inspected for the inflection points search.

Named C this confidence term, expressed as a percentage between 0% and 50%, each global
inflection point t∗i is searched in the percentile range:[

100i− C
n.thresh+ 1

,
100i+ C

n.thresh+ 1

]
. (3.1)

In the case of the example, if C was set equal to 20%, the 1st inflection point would be
inspected in the range of TSO between the 20th and 30th percentiles. Please notice that, being C
upper limited to 50%, an overlap between consecutive inspected spans is avoided.

Then, the algorithm considers one search interval at a time starting from the leftmost (i =
1). Within each interval, for each outcome curve yj , the optimal point t∗ij that maximizes the
slope difference between the linear models built on the left and right segments of the curve yj is
identified, where the left segment spans the range between t∗i−1 (corresponding to the previous
global inflection point) and t∗ij , and the right segment spans the range between t∗ij and ti+1

3.
Finally, the global inflection point t∗i is simply determined as the average value across all the

t∗ij’s.
As described above, the algorithm proceeds by first imposing the balancing among the num-

ber of discretized samples at each level, with a user-defined confidence interval. Then, it deter-
mines the curves’ inflection points in these identified time spans. In order to be sure that the

3In the first and last iterations, the left segment starts at the first time value of the yj curve, and the right segment
ends at the last time value of the yj curve, respectively.
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global inflection points are effectively caught, it is therefore necessary to accurately explore all
the observation time grid, by setting an adequate number of n.thresh and a sufficiently high C.
In this process, it must also be kept in mind that the final number of discretization levels should
be limited in order to restrict the total number of possible combinations of variables, and thus the
set value of n.thresh can not be too high.

To accomplish these constraints while identifying the optimal TSO threshold values on our
data, we set up the following iterative procedure. In turn, we set a (relatively low, with respect to
the data cardinality) number of n.thresh ranging from 0 to 5. Then, we used the designed time
slicing algorithm to identify the TSO thresholds. After discretizing the TSO accordingly, a DBN
was trained and its performance was assessed. The optimal n.thresh was finally determined as
the one resulting in the best performing DBN. In this procedure, testing in turn different values
of n.thresh not only allows to determine the optimal one for the current dataset, but also spans
different intervals of the time grid, thus widely looking for the global inflection points over the
whole observation range.

Section 3.4.3.1 details how this procedure was carried out in a CV scheme and reports the
optimal thresholds identified and employed for discretizing the TSO.

3.4.2.2 Model Development

To build the DBN we employed bnstruct [65], an R package that performs structure and parame-
ter learning on discrete/categorical data even in the presence of missing values, which is the case
of our data and a common situation in the clinical context.

The DBN model was developed on the training set through a two-step iterative procedure: 1)
by inferring the graph topology and 2) learning the parameters of each CPD, i.e., the probability
that a variable assumes a specific value conditional to each possible joint assignment of values
to its parents.

To infer the DBN structure we used the Max-Min Hill-Climbing (MMHC) algorithm [195],
a greedy search-and-score method that starts with an initial graph (empty graph in our case)
and searches the complete space of possible graph structures, by adding, reversing or deleting
edges. The MMHC runs until a specific score is maximised or a specific number of iterations has
been reached. Here, the Bayesian Information Criterion (BIC) scoring was chosen. Thus, the
structure-learning phase provided the DBN topology with the highest probability of generating
the training data. Subsequently, parameters of CPDs were computed through a maximum a pos-
teriori (MAP) estimation for each node. In summary, MMHC detects the dependencies among
variables, whereas MAP weights the influence of each variable on the others.

Domain knowledge integration

The employed bnstruct tool also allows the encoding of some domain knowledge in the network
structure, by applying constraints to the network topology; in this way, clinically or biologically
non-sense relations among variables can be forbidden, as well as clinical well-known depen-
dencies can be imposed as mandatory edges. For instance, the dependency of medical centre on
patient sex was denied, while the dependencies of the MITOS variables on the time elapsed since
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diagnosis, encoded in the TSO variable, was imposed. As another example, the dependency of
the BMI premorbid on the TBV was forbidden, since BMI was recorded before the disease (and
thus the visits) began. Or, analogously, the dependency of Diagnostic Delay on any variable
recorded after the diagnosis was forbidden.

More specifically, when learning the structure of the network from the training set, the fol-
lowing information can be provided:

1. separate (disjoint) grouping of the variables, named layers: by default, given a user-defined
layer structure, variables in a given layer j can depend only on variables from layers i ≤ j;

2. specific rules that allow or deny specific dependencies between layers, thus overwriting or
integrating the default relationship among layers mentioned above;

3. some mandatory edges, i.e., one of more edges between variables that must be present in
the network even if not automatically detected as dependencies.

Here, we defined the following rules. First, the variables were divided into the following
layers, thus defining the default possible edges inspected in the learning phase:

• Layer 1: Sex, Genetics (WT, TARDBP, C9orf72, SOD1, FUS), BMI premorbid

• Layer 2: Familiality

• Layer 3: Medical centre

• Layer 4: Age onset, FTD, Onset site, FVC diagnosis, BMI diagnosis

• Layer 5: Diagnostic delay

• Layer 6: MITOS, NIV, PEG variables at time (t)

• Layer 7: TBV

• Layer 8: MITOS, NIV, PEG variables at time (t+1)

• Layer 9: Survival

• Layer 10: TSO

Then, we imposed the following rules between layers:

• Layer 1 can not depend on itself or any other layer.

• Layer 2 can only depend on layer 1.

• Layer 3 can not depend on itself or any other layer.

• Layer 4 can only depend on itself and layers 1 and 2.
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• Layer 5 can only depend on layers 1 to 4.

• Layer 6 can not depend on itself or any other layer.

• Layer 7 can only depend on layers 3, 6 or 10.

• Layer 8 can depend on any other layer, except for itself and layers 7 and 9.

• Layer 9 can depend on any other layer, except for itself and layers 7 and 8.

• Layer 10 cannot depend on itself or any other layer.

Finally, we imposed as mandatory the edges representing:

• the dependencies of the variables MITOS at time t on the variable TSO;

• the dependency of the variable Survival on the variable TSO;

• the dependency of the variable TBV on the variable TSO.

3.4.2.3 Simulation Evaluation Metrics

Since the CPDs inferred on the training sets encode the most probable value of a variable given
the values of its parents at the previous time point, DBNs allow the simulation of ALS progres-
sion starting from the data of the patient at a specific visit.

For assessing the network performance, we therefore set up a simulation framework where
the progression of a set of subjects is simulated using the learnt network and then compared
with the real one. For each subject, starting from a pre-defined visit, the temporal evolution of
the disease can be simulated by sampling the CPDs for a number of consecutive steps. In each
simulated time point, automatically determined by the tool according to the time distributions
learnt in the training phase, the values of the variables are simulated accordingly with their values
at the previous time point, by employing the learnt CPDs.

To assess the prediction accuracy of the simulation – and, therefore, of the DBN model –
the simulated prognosis for each patient and the true disease progression were compared using
as performance metric the Area Under (AU) the Receiver Operating Characteristic (ROC) curve.
This metric allows to assess the ability of the DBN models to rank subjects based on their risk of
outcome occurrence.

For a given clinical outcome, the Receiver Operating Characteristic (ROC) curve represents
the probability of a patient who has experienced the outcome to be correctly simulated (true
positive rate) vs. the probability of a patient who has not experienced the outcome to be incor-
rectly simulated (false positive rate). The ROC curves can be computed at different time points
to assess the performance of the model in simulating distinct phases of the disease.

The Area Under (AU) the Receiver Operating Characteristic (AU-ROC) indicates the proba-
bility that a patient who has experienced a certain clinical outcome is assigned a higher risk value
by the model than a patient who has not experienced that outcome yet: higher AU-ROC values
(range 0–1) correspond to better simulation performance.
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To evaluate the accuracy of our model over time, we finally computed, for each clinical
outcome, the integral of the AU-ROC (iAU-ROC) across the simulated survival time points.
The iAU-ROC can be interpreted as a global concordance index measuring the probability that
subjects with a large predicted risk value have a shorter time to clinical outcome than subjects
with a small predicted risk value [87].

3.4.3 Results: DBN Implementation and Prognosis Simulation
3.4.3.1 TSO Discretization

The time slicing procedure presented in Section 3.4.2.1 requires the user to set the value of
the parameter n.thresh, corresponding to the number of thresholds used to discretize the TSO
variable.

In order to assess the optimal n.thresh for the current dataset, we tested different values of
the parameter ranging from 0 to 5. In particular, n.thresh = 0 (corresponding to no time slicing,
with the TSO discretized in a single level) was performed to verify that the proposed procedure
was both actually required and adequately conceived. In all the cases, the confidence parameter
C was set equal to 25%.

We selected the optimal n.thresh by setting up a 3-fold CV procedure. The subjects of the
training set were randomly split into 3 partitions, and in turn 2 were used as inner training set
and the other one as inner test set.

For each value of n.thresh, the optimal TSO thresholds values were identified on the in-
ner training set by employing the automatic time slicing procedure presented in Section 3.4.2.1.
The continuous TSO values were then discretized according to these thresholds in both the inner
training and inner test datasets. Next, a DBN was trained on the inner training set, and its perfor-
mance was assessed on the corresponding inner test set, by employing the simulation procedure
and the metrics introduced in Section 3.4.2.34. The iAUC was used as performance score: for
each n.thresh, the iAUC was computed for the four MITOS and the survival outcomes, and
then averaged, by obtaining a global simulation performance score of the network for the current
value of the n.thresh parameter. The n.thresh performing the best averaged iAUC score was
then selected as optimal parameter value.

In order to reinforce the selection, the random split into folds was performed 16 times. In-
deed, even if at an added computational cost, repeating the CV multiple times using different
splits into folds provides a better Monte-Carlo estimate [104].

The optimal number of thresholds was finally identified by combining the 16 assessments,
with n.thresh = 2 resulting the best value of the parameter, being voted 9/16 of the times.

Finally, the automatic time slicing procedure was performed on the whole original training
set by setting the number of thresholds equal to the optimal value 2, with C=25%. The first TSO
threshold was determined in the range 25%-41.66% (corresponding to TSO between 15 and 22
months), while the second one in the range 58.3%-75% (corresponding to TSO between 29 and
42 months).

4For the implementation choices adopted in the simulation and metric assessment, please refer to the next section,
where the simulation and assessment procedure is fully detailed.
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The resulting thresholds, used for the discretization of the TSO variable in both the training
and test set, are reported in Table 3.4.

Table 3.4: TSO quantization levels

Feature Level

Time since onset (TSO) [months] ≤ 15
]15, 32]
>32

Figure 3.2 reports the KM of the MITOS and survival outcomes for the training set over
the whole TSO span, together with the ranges of inspection of each threshold and the identified
thresholds.
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Figure 3.2: Kaplan-Meier curves of the ALS outcomes. The dashed line indicates the optimal
thresholds for TSO discretization; the gray band represents the inspected range of values for
each threshold.
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3.4.3.2 DBN-based Simulation and Model Performance Assessment

After discretizing all the variables, a DBN was trained on the training set. Figure 3.3 reports the
corresponding graph.

We assessed the model performance through the simulation procedure and the metrics in-
troduced in Section 3.4.2.3, using the subjects of the test set. Since by design the simulation
requires a fully-known starting set of variables to run, we extracted from the test set the subsets
of patients without missing values in their first visit. This filtering step reduced the sizes of the
test set from 645 to 202 patients (for a total of 2004 visits). Again, we made sure that the re-
duced test set maintained the same distributions over all variables as the corresponding training
set. Tables 3.1 and 3.2 report the characterization of the reduced test set.

As the starting point for the simulation, we set the first recorded contact with the medical
centre. For each patient, starting from his/her first visit, we simulated the temporal evolution

Figure 3.3: DBN graph obtained on the training set, representing the conditional dependencies
among the variables over time. The loops on NIV, PEG and the four MITOS domain variables
represent the dependency on the values of the same variable from the previous time-step. The red
edges represent the dependencies defined as mandatory in the network learning stage.
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of the disease by sampling the CPDs for 40 consecutive visits or until the simulated death or
tracheostomy intervention occurred. The simulation sets the time step between two consecutive
visits according to the time steps distribution learnt by the DBNs on the training set, accounting
for the variability across patients and stages of the disease. The number of simulated visits was
set to a relatively high value (40) so that each patient reaches the tracheostomy/death event with
high probability. For each visit, the current values of the variables are simulated, in accordance
with their values at the previous time point, by sampling them from the CPDs. Since this pro-
cess is probabilistic, we performed 100 different simulations of the disease progression for each
patient starting from his/her first visit, in order to obtain a statistic on the simulated prognoses: a
total of 20 200 simulations were therefore run for the reduced test set subjects.

To assess the prediction accuracy of the DBN models we compared the simulated progno-
sis for each patient and the true disease progression. As clinical outcomes, we considered the
MITOS impairments (walking/self-care, swallowing, communicating, and breathing) and the
death/tracheostomy survival event.

Since each patient had a multiple number of simulated outcomes (100, one per simula-
tion), we set the predicted time of occurrence as follows. For each patient with at least 50%
of the simulations with a positive outcome, the overall simulated outcome was set to positive
(dead/tracheostomised for the survival, impaired for the MITOS), and the time of occurrence
was set equal to the median time of occurrence of the positive simulated cases. Analogously, for
the patients with less than 50% of the simulations with a positive outcome, the overall simulated
outcome was set to negative (censored for the survival, not impaired for the MITOS), and the
time of occurrence was set equal to the median time of occurrence of the negative simulated
cases. The predicted risk was then defined for each patient as the opposite of his/her median
outcome time: a lower median time, usually occurring if the outcome is positive, corresponds to
a higher risk.

For each clinical outcome, the ROC curves were computed at subsequent time points from 12
to 84 months, with a 12-months step. We stopped at 84 months since the percentage of deceased
patients exceeded 97.5% in the following year. Table 3.5 reports the corresponding AU-ROC
and iAU-ROC computed across all the simulated survival time points up to 84 months.

Table 3.5: AU-ROC and iAU-ROC values on the reduced test set.

Variables AU-ROC at time point [months]: iAU-ROC12 24 36 48 60 72 84

MITOS Walking/self-care 0.90 0.86 0.85 0.85 0.82 0.79 0.80 0.84
MITOS Swallowing 0.95 0.86 0.83 0.83 0.84 0.84 0.86 0.86
MITOS Communicating 0.99 0.77 0.74 0.79 0.83 0.84 0.77 0.82
MITOS Breathing 0.92 0.87 0.86 0.78 0.82 0.82 0.84 0.86
Survival time 0.99 0.89 0.85 0.83 0.84 0.84 0.87 0.87

The AU-ROC values obtained by the model range from 0.74 to 0.99 for the impairment
prediction in the four MITOS domains, and from 0.83 to 0.99 for the prediction of survival time.
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The iAU-ROCs range from 0.82 to 0.87, denoting a good concordance of the predictions with
the actual ALS evolution. These results confirm the ability of the model to simulate clinically
reliable ALS populations by using the first screening visit only, thus validating the model.

In addition, we computed the cumulative probability of outcome occurrence over time. Fig-
ure 3.4 reports the cumulative probability of MITOS domain impairment and tracheostomy/death
over time describing the true and simulated ALS progression of the reduced test set population.
In this case, all the repetitions for each subject have been included in the assessment, in order to
obtain a confidence interval of the prediction. The plots show a high concordance between the
predicted and actual ALS progression, further confirming that the DBN model provides a precise
dynamic simulation of the outcomes.

3.4.3.3 Variable Inter-dependencies

DBNs can be used to detect inter-dependencies among variables in terms of conditional proba-
bilities, that can both qualitatively validate the model or shed a light on new possible interesting
relationships.

In this work we identified both expected and new dependencies among variables. As said, for
a given node (variable), in-going edges represent conditional probability dependencies from the
values of its parents at the previous time-point. Thus, in order to infer the state probability of the
node at a certain time-point, all the values of its parents at the previous time-point are required.
The dependencies among variables should therefore be read in terms of combined effect of the
parents on the child variable. Some of these relationships are commented below.

With reference to the trained network of Figure 3.3, we highlighted in red the edges corre-
sponding to the mandatory constraints defined in the learning phase (see Section 3.4.2.2): the
TSO variable is a parent to all the MITOS domain variables, as well as to the survival [110, 108],
in accordance with the progressive nature of the disease over time. The dependency of TBV
from TSO was also imposed, to reflect that the visit frequency could change based on the rate of
disease progression.

The graph shows that survival time also depends on age at onset: this dependency is already
known in the literature, being a longer survival in younger patients probably correlated to their
greater neuronal reserve [157]. Moreover, the survival depends on the diagnostic delay [33],
the respiratory functionality at diagnosis reported as FVC at diagnosis [43], and on the SOD1
mutation [62].

As expected, all the variables encoding the MITOS domains, NIV and PEG emerged to de-
pend on their own values at the previous time-point: graphically, this fact is encoded in the loops
on the blue nodes. NIV also depends on FVC at diagnosis and breathing, both variables related
to the respiratory functionality; PEG depends on BMI at diagnosis and swallowing, both related
to the initial and progressive impact of the disease on nutrition ability.

The graph also evidences that the value of the MITOS walking/self-care domain at a given
time point impacts on the loss of independence in communication (MITOS communicating) and
breathing (with an edge to the NIV node, variable tightly associated with breathing ability) at the
next time point. In particular, an impairment in movement abilities increases the probability of
experiencing an impairment in communication and a the need for a NIV intervention within the
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next visit.
In addition, the relationship between onset site and swallowing may reflect the direct effect

of the bulbar onset on deglutition ability, with anticipated dysarthria and dysphagia occurrence.
Also, the direct edge from onset site to diagnostic delay validates the results reported by Kraemer
et al. [105] and Turner et al. [197]. Conversely, Chiò et al. [35] and Cellura et al. [29]
reported the lack of a significant difference in the diagnostic delay between bulbar- and spinal-
onset patients, leaving this relationship as an open question.

The genetic etiology of ALS was correctly modelled in the graph, inferring the role of repeat
expansion in C9orf72 and mutations in TARDBP and SOD1 on familial ALS [166, 173, 185].
It is also interesting to observe that there is no dependency between familiality and FUS, in
line with the fact that the latter is a de novo mutation. The graph also evidences that FTD is
related to mutations in TARDBP and C9orf72 which were already associated to FTD phenotypes
in previous studies [126, 127, 166, 3]: these two genes are among the critical genetic players
of both ALS and FTD, neurodegenerative conditions with a known overlapping genetics. The
influence of premorbid BMI on ALS familiality also emerges, partially supporting the study
by Gorges and colleagues [79], which evidenced a relationship between premorbid BMI and
hypothalamus atrophy, a typical ALS signature, in familial ALS patients.

The onset site variable depends on both sex and age at onset, confirming relationships known
in the literature: men have a greater likelihood of onset in the spinal regions, while women tend
to have higher propensity for bulbar-onset disease [30, 86, 138]; furthermore, bulbar onset is
related to a higher age at onset [196, 194].

The role of the medical centre in general on the whole network merits a close examination.
This variable is related to walking/self-care and to the time between visits. Similarly to other
relationships that involve more than one parent, the distribution of the child values depends on
the joint effect of the parent nodes. In this sense, the effect of the medical centre should be
interpreted in concert with the other parents’ values, resulting in a possible corrective effect.
Moreover, it is worth noticing that, in general, different medical centres may take charge of
patients with varying disease severity, according to their specialisation level, by implementing
different patient care protocols (that may affect the TBV variable) or diverse policies of life
support interventions.

Expected relationships among variables can also be found as indirect dependencies. For
instance, the effect of the onset site on the survival [30] can be identified from the following path
in the graph: onset site→ diagnostic delay→ survival. An association between age at onset and
SOD1 and C9orf72 is also found as indirect path through FTD in the graph: interestingly, the
age-related penetrance of gene mutations is currently an open question in the literature [149, 34].

3.4.3.4 Cohort Stratification: Effect of Risk–Factors on Disease Progression

The DBN-based simulator also allows patient cohort stratification, i.e., the identification of vari-
ables whose specific ranges of values could be related to the velocity of disease progression or
survival. In particular, we traced how the change in a specific variable (or risk factor) may affect
the disease course, by simulating ALS progression of a population with specific phenotypes at
onset and comparing how they differentiate in terms of disease severity as well as survival time.
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We selected variables with expected and/or documented effects on the disease prognosis, and
tested the ability of the DBN models to reproduce the awaited clinical outcome progressions on
the reduced test set subjects.

For a given variable of interest, two approaches are possible: (a) the test set can be partitioned
in sub-cohorts according to the original value of that variable in the subjects’ first visit, or (b)
each level of the variable of interest is imposed to the first visit of all the subjects of the test set, in
turn. In both cases, the original values of the all the other variables is maintained, thus preserving
the population assortment. Then, the evolution of ALS is simulated in each sub-cohort to verify
the differentiating effect of the variable on the clinical outcomes.

Before choosing for the (a) or (b) approach, some remarks are needed. In the first case, the
cardinality of the sub-cohorts corresponds to that of the test set, and there is therefore no guar-
antee on its balancing; on the other hand, in the second case the two simulated sub-cohorts have
the same cardinality, equal to the dimension of the test set itself, thus possibly providing a more
balanced comparison. Nevertheless, in the (b) implementation, imposing in turn the values of
the selected variable to all the subjects may cause clinically inconsistent combinations of the
variables (for instance imposing sex to male/female to patients that also have other gynecologi-
cal/andrological variables recorded).

As an example of application, we investigated the effect of the FVC at diagnosis (static
variable) on the time to MITOS breathing impairment.

First, following the approach (a) introduced above, we stratified the patients of the reduced
test set according to their original FVC at diagnosis discretized values, obtaining the follow-
ing three partitions: patients with original FVC at diagnosis lower than 84%, between 84% and
102%, and higher than 102%. We then simulated the ALS progression for each partition sepa-
rately and compared their times to the breathing impairment. Figure 3.5a reports the probability
distribution of the simulated impairment times for each sub-cohort. As in Section 3.4.3.2, for
each patient 100 distinct simulations were run, and the median outcome time over the majority
of his/her repetitions was considered as outcome time.

This analysis shows, as expected by the nature of this MITOS breathing item, that the lower
the FVC at diagnosis, the sooner the patients are likely to lose their breathing independence.
Indeed the MITOS breathing item records the impairment when the subject either experiences
dyspnea at rest, difficulty breathing when sitting or lying, or continuously uses the non invasive
positive pressure ventilation (NIPPV) during the night. The worst the situation at diagnosis, the
sooner the patient will experience dyspnea. Our model predicted that the breathing impairment
would most likely occur at 18.7 months from the disease onset for the patients with an FVC
value at diagnosis smaller than 84%, at 22.9 months for the ones with an FVC between 84% and
102%, and at 32.3 months for the ones with an FVC greater than 102%.

Similar results are obtained when imposing in turn the different values of FVC at diagnosis to
the whole reduced test set population – according to the (b) approach – and then simulating the
progression of the three numerically equivalent sub-cohorts. Figure 3.5b reports the probability
distributions. Also in this case, 100 distinct simulations were run and the median was taken as
outcome time for every subjects experiencing the impairment in at least 50% of his/her repeti-
tions. Here, the breathing impairment is most likely to occur at 17.8 months from the disease
onset for the patients with an FVC value at diagnosis smaller than 84%, at 21.7 months for the
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ones with an FVC between 84% and 102%, and at 33.9 months for the ones with an FVC greater
than 102%.

Noticeably, in both cases these predicted occurrence times are highly concordant with the real
times to breathing impairment experienced by the patients in the reduced test set (13.5 months
for the patients with FVC lower than 84%, 25.8 months for the ones with an FVC between 84%
and 102%, and 35.6 months for the ones with an FVC greater than 102%). The real impairment
times probability distribution is reported in Figure 3.5c.

As another example of assessment of the effect of specific risk-factors on the disease pro-
gression, we report below the investigation of the effect of the onset site on the time to MITOS
swallowing impairment.

In this case, the (b) approach was followed, by imposing in turn the two possible levels of
the onset site (bulbar/spinal) to all the subjects of the reduced test set. Each time, the disease
evolution was then simulated 100 times per patient, and then the median swallowing impairment
time was selected.

Figures 3.6a and 3.6b report the probability distribution of the swallowing impairment times
for the simulated stratified cohorts and the real ones, respectively.

The analysis of the impairment times shows that patients with bulbar onset have higher proba-
bility of experiencing swallowing impairment in earlier stages of the disease compared to patients
with spinal onset, a result well known in literature [30, 110].

Also in this case, the simulated and real impairment times show a good concordance (21.2
vs 24.2 months for the simulated bulbar and spinal subjects, respectively, and 20.4 vs 25 months
for the real bulbar vs spinal subjects.)

3.4.3.5 Dashboard for Clinical Use

Beside allowing population-wide analyses, the model can be used to probabilistically predict the
disease progression of a single ALS patient by only using information recorded during his/her
first visit (see Section 3.4.2.3) and analyzing his/her simulated repetitions to get a probabilistic
characterization of the prognosis.

This single-patient prognosis prediction was implemented as a dashboard using the Shiny
framework for R and will be made available to clinicians as an interactive web application.
Figure 3.7 shows the GUI of the developed web tool. The physician can enter the clinical data
recorded during the first contact with the patient in the left side of the screen, under the “Insert
patient data:” label. The variables required by the tool constitute the standard features collected
in the clinical practice to assess and monitor the patient’s clinical condition over time. After
inserting the variable values, the user can start the simulation with up to 1 000 repetitions (100
repetitions were used in the presented example). The tool will produce on the right side of the
screen the probability of impairment in each of the four main MITOS domains, computed for
each patient over her/his repetitions. In our implementation, different simulations can be run
sequentially, allowing the user to decide whether to keep the plots from previous simulations
to be viewed alongside with the plots from the last one. This way, it is possible to estimate
the effect of one or more biomarkers on the ALS prognosis: for instance, Figure 3.7 compares
the effects of the “spinal” and “bulbar” onsets while leaving all other parameters unchanged.
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(a) Simulation after imposing in turn the different
values of onset site

(b) Real impairment times

Figure 3.6: Density probability plots of the times to MITOS swallowing impairment for the pa-
tients of the reduced test set stratified by the values of onset site (spinal or bulbar). Most patients
experience the impairment in correspondence with the maximum of the probability density curve
(mode). In (a), for each patient 100 distinct simulations of the disease progression were per-
formed starting from the first visit values. The occurrence time was then computed as the median
of the impairment times, if the outcome was experienced in at least 50% of the repetitions.

The developed dashboard can also be used to generate in silico populations. For example, it is
possible to simulate a population of subjects with bulbar onset by sampling the other variables
from real data. Similarly, it is possible to simulate an untreated population, which could serve as
control group for clinical trials.

3.4.4 Discussion: Applicability and Advantages of a DBN-based Progres-
sion Model

Integrated analyses of large multidimensional datasets by new mathematical and statistical ap-
proaches are required to unravel the heterogeneous nature of ALS.

In this work, we developed a probabilistic predictor of the progression of ALS by building
a DBN model on real-world data including demographic, genetic and longitudinally-collected
clinical variables. Being comprised of patient visits from clinical contexts and partly never in-
vestigated before, the dataset employed in this work is more representative of the general ALS
population than PRO-ACT or other clinical trial datasets. Moreover, it includes variables that
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widely characterise the patients’ clinical history from premorbidity to the survival endpoint, cov-
ering symptom evolution and support interventions.

Relying on DBNs, the implemented model is trained with the entire dynamics of the available
data of disease progression, and can be effectively used to simulate, starting from a single time
point, the entire disease progression in terms of survival or time to the loss of independence in
walking/self-care, swallowing, communicating, and breathing.

The prediction accuracy was assessed by comparing the predicted patients’ prognoses with
the real data: different performance metrics confirmed that the proposed model offers good per-
formance in terms of both survival and domain impairment prediction. In addition, the model
can also be used to stratify ALS patients into subgroups of different progression and to assess
the effect of specific phenotypes on the entire disease course.

According to the chosen technique, the method allows the identification and explicit repre-
sentation of the relationships between the different variables and of the pathways along which
they influence the disease evolution. In this work, several notable inter-dependencies among
variables were identified and validated by comparison with literature results. Given a specific
variable, its parents in the DBN graph can be intended as “composite biomarkers”, since the
value of the variable at a certain time point can be inferred by their values at the previous one,
thus extending the classic “standalone” biomarkers that have been used to date.

A possible limitation of our approach is that the proposed model can only employ discrete
variables. This implies that: (1) all continuous variables must be discretized into a finite set of
levels before being processed; (2) the model can only predict the most probable range of each
variable instead of their actual continuous values. Moreover, in order to correctly predict the
prognosis of a given patient, all the information regarding his/her first visit must be available
(missing data are not allowed). From this standpoint, it could be beneficial to develop simpler
models that employ less variables to predict the patient’s prognosis (as we proposed in [213, 37,
38]). On the other hand, a model based on a vast number of variables allows a more detailed
characterization of the disease.

Notably, the developed model was also implemented as an interactive web application that
can be used by clinicians to simulate the most probable prognosis of a patient already at his/her
first visit. An instrument able to simulate patients’ outcomes in the main areas of disability
will have a strong impact in scheduling the allocation of resources both at individual and health
system level, likely reducing the cost of care by improving the provision of pharmacological
and non-pharmacological therapies. Furthermore, a reliable model of ALS progression could
potentially serve as a control group when the use of placebo may not be appropriate or feasible,
or could allow a smaller control group if used in combination [152].

3.5 Final Remarks
The availability of longitudinally-collected clinical data represents an invaluable resource for
modeling the clinical progression of patients with conditions.

In this Chapter I presented my experience in building a descriptive and predictive probabilis-
tic model of disease progression, through the employment of a technique intrinsically able to
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manage and exploit the dynamic dimension of the data.
In this implementation, I also showed how the data require an appropriate preprocessing

phase able to take into account their heterogeneous nature, devoting particular attention to how
the temporal dimension should be handled with respect to the working hypotheses of the selected
technique. Here, the implemented automatic time slicing algorithm allows training a DBN that
respects the time-independence assumptions in each slice.

Effectively preprocessing and structuring the data represents a crucial step when implement-
ing this kind of models on a new dataset or case study. In this process, special attention should
be given to how the time variable is coded: first of all, an analysis of how the time dimension is
included in the available data should be performed; then, some considerations on the variables to
be included in the model with respect to the outcomes of interest should be made. For instance,
let’s consider a disease for which the age of onset is expected to be a strong predictor of the
survival outcome: in this case, it may be convenient to code both a static variable representing
the subject’s age at onset and a time-evolving variable coding the time passing from the onset
itself. In other cases, it could be more effective to include only one variable representing the age
of the subject at each measurement point.

Another key point in the model design is the definition of the network layers and the pos-
sible rules among them: even here, some domain knowledge should be carefully included in
order to effectively “guide” the model toward the inspection of interesting relationships without
introducing any bias or artificial effects.

Employing modeling approaches such as DBNs allows to learn upon the whole dynamics of
the data, thus fully exploiting the information being collected in the dataset. Such technique is
indeed able to inspect the longitudinal information to catch the relationships among variables
over time and the pathways along which they influence the disease evolution.

A first valuable output of the employed methodology consists in the structure of the network
itself, that provides a very practical way to visualize the emerged dependencies. Moreover,
by inspecting the CPD learnt in the learning phase it is possible to further investigate these
relationships, thus overcoming the limitation of other “black-box” methods.

In addition, the prediction output consists of a longitudinal simulation of the patient evo-
lution, whose inspection allows to follow the disease progression in terms of survival, as well
as time to impairment of functional abilities proper of the domain. By setting up a multiple
simulations framework and exploiting its Bayesian nature, the method can provide a probabilis-
tic prediction of the outcome occurrence over time, also allowing an interpretation in terms of
confidence interval (for instance by visually inspecting the probability distribution curves).

Noticeably, the tool can be used both at patient level, to predict the evolution of the disease in
the next future, and at population level, to compare the prognosis of cohorts with different char-
acteristics or to assess the effect of specific variables on the prognosis by performing stratification
analyses.





Chapter 4

Process-Oriented Approaches to
Healthcare Analytics

In this Chapter, a fully process-oriented approach is employed to analyze clinical data with a
temporal dimension. Process Mining for Healthcare is a discipline that, starting from a set of
data structured as successions of events, provides a number of unsupervised and supervised tech-
niques that can easily be employed on dynamically evolving clinical data. Their employment
allows to inspect the patients’ clinical history by mining the processes generating the data, fol-
lowing the patients’ clinical patterns, characterizing the timing between events and the outcome
occurrence. Remarkably, the algorithms often provide as outcomes the visual representations of
the mined processes, represented for instance in terms of graphs or networks. This additional fea-
ture constitutes one of the strengths of this technique, which facilitates access to the information
and improves dissemination of the results.

4.1 Process Mining

Process Mining (PM) is a family of process analysis methods that aim at discovering, monitoring
and improving the efficiency of real processes by extracting knowledge from a set of executions
recorded by an information system. This set of executions, recorded together with their execution
times, is also referred to as an Event Log (EL).

Analytic algorithms are applied to ELs with the main goals of: (i) mining the data in order
to represent the process able to produce them (Process Discovery, PD) [208], (ii) measuring to
which extent a given process can represent an input EL or how much an EL complies with a given
process (Conformance Checking, CC) [206], and (iii) improving process efficiency, by allowing
problem diagnosis and delay prediction, recommending process redesigns or supporting decision
making (Process Enhancement, PE) [201].

PD is acknowledged as the most prominent process mining technique [75]. In PD, process
models are mined from an EL without using any a priori knowledge, by handling instead data-
driven approaches. PD algorithms, such as the α-algorithm [208], the Heuristic Miner [218], or
the Fuzzy Miner [83], are employed on the EL to achieve models able to describe the observed

89
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behaviour of processes according to several possible perspectives (such as the control-flow [98],
organizational [125, 184], performance [183], or data [174] perspective). The mined processes
are then expressed, for instance, in terms of Petri nets [207, 209, 219], Event-driven Process
Chains (EPCs) [210], Activity graphs [4, 47], or Control-Flow Graphs [51].

In CC, the EL is used to check if the observed behaviour conforms to a given (discovered or
hand-made) process model [175]. Through CC, deviations can be detected and measured both in
terms of inability of the model to capture the real data behaviour, or inconsistency of the observed
reality with respect to the desired model. The first analysis is taken when the model is supposed
to be descriptive, and thus expected to capture or predict reality; the second one when the model
is normative, or used to influence or control reality [202]. CC can be used for business auditing
and compliance checking, for measuring the performance of process discovery algorithms and
for repairing models that are not aligned well with reality [201].

Whereas CC assesses the alignment between reality and an a priori given model, PE aims
at changing and improving the model itself. By employing the diagnostic provided in CC, the
model can be modified to better reflect reality, or extended by adding new information (like costs,
risks, or resource usage) and replaying the EL on the model to analyze the additional attributes
[202].

In all its forms, PM sits therefore between computational intelligence and data mining on
one hand, and process modeling and analysis on the other hand [205]. Since each domain where
information can be described as a series of events could potentially be subject to PM analyses,
in the last years this data-driven technique has been successfully applied in a variety of research
and industrial fields, ranging from manufacturing and logistics, to technology and healthcare.

4.2 Process Mining for Healthcare
Focusing on healthcare, the increasing abundance of clinical and administrative data collected
in today’s care centres undoubtedly represents a great resource: this precious amount of infor-
mation is more and more massively exploited by the communities that constitute the healthcare
sector (such as the medical, scientific and managerial ones) to constantly move, through the em-
ployment of a variety of different analytical approaches, towards the enhancement of the quality
of care while dealing with the constant reduction of public spending on health. Among these
possible approaches, we find PM.

In PM for Healthcare (PM4HC), processes are meant as a graph of activities which can be per-
formed with the aim of diagnosing, treating and/or preventing diseases to improve the patients’
health status. They include both clinical and non-clinical activities (as for instance treatment ad-
ministrations or medical billings) provided by different stakeholders, and may present different
behaviours according to the specific organization [132]. These processes are highly dynamic,
highly complex, and increasingly multidisciplinary [88]. Furthermore, processes in Healthcare
are often only partly structured and with many exceptional behaviours, due to their intrinsically
required flexibility [132]. Not least, most of the activities that compose these processes are often
high-cost. All these characteristics make processes in healthcare either crucial to improve and
interesting to analyse. Using PM techniques not only ensures that such procedures are deeper
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understood, but can also generate benefits associated with process efficiency that, ultimately, will
have a direct or indirect impact on the patients’ level of assistance. Figure 4.1 shows a general
outline of the application of PM in Healthcare.

Figure 4.1: Overview of Process Mining in Healthcare. Taken from [171].

More specifically, processes in healthcare can be classified into two main classes: medical
treatment processes and organizational processes [54, 118, 165].

Medical treatment processes are the clinical processes related to patient care, including tasks
ranging from diagnosis to the execution of actions for treating patients. These processes are
often denoted as diagnostic–therapeutic cycle comprising observation, reasoning, and action,
with each pass of this cycle aimed at decreasing the uncertainty about the patient’s disease or the
actual state of the disease progress [150]. This results in a very complex decision process, since
medical knowledge includes medical guidelines of various kinds and evidence levels, as well as
individual experience of physicians [118]. Notably, their complexity recently increased due to the
advent of personalized approaches to care, in which treatments are tailored to the specific profile
of the patient and disease, such that the diversity of therapeutic pathways explodes compared to
traditional standardized care guidelines.

On the other hand, organizational processes focus on managerial understanding of healthcare
activities, capturing the knowledge necessary to coordinate collaborating health care profession-
als and organizational units [98]. Unlike medical treatment processes, organizational processes
do not provide any support for medical decision making [118] and are mainly of a repetitive
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nature.
For the purposes of this thesis, in the following sections I will mainly focus on medical

treatment processes. It is worth emphasizing how, in this framework, a process-oriented perspec-
tive intrinsically allows to manage the temporal dimension of data collected in clinical contexts.
PM4HC provides indeed algorithms able to exploit the time dependency among events when
inspecting patient care processes and outcomes.

4.3 Previous Work on PM4HC
Pragmatically, PM4HC has shown interesting application in many domains [171] such as Cardi-
ology [112], Oncology [111], Emergency cares [135], Diabetology [46], Anestesiology [98].

Mans et al. [133] and Rojas et al. [170] outlined five frequently asked questions posed by
medical experts which guided the majority of PM4HC performed analyses:

• What are the most commonly followed paths and what exceptional paths are followed?

• Are there any differences between care paths followed by different patient groups?

• Do we comply with internal and external guidelines?

• Where are the bottlenecks in the process?

• What are the roles and the relationships among the users who performed the activities (for
instance, do they belong to the same organizational units?).

Through the employment of its methodologies, PM4HC can help in answering these ques-
tions. For instance, PD can be an objective way of analyzing care pathways of patients with
conditions, without being biased by perceptions or normative behaviors [223]. With this aim, the
control-flow perspective, based on discovering the execution order of process activities, has been
applied in most of the case studies. Moreover, both PD and CC can support in inspecting the fol-
lowed paths and detecting patients with infrequent/exceptional behaviours, allowing to further
inspect possible differences in terms of outcomes or progression.

CC allows to study how measured ELs comply with protocols or guidelines, in a way that par-
tially overlaps with a similar research topic, called Computer Interpretable Clinical Guidelines:
after representing the process model corresponding to the prescribed behaviours, it is possible to
monitor how patients flow through it. Conformance between EL and model can thus be checked,
easily identifying those groups of patients that did not follow the expected paths (for instance,
patients non compliant to a given protocol), in the quest of understanding why that was the case
and the related implications [70].

Finally, analyzing execution time of activities and collaboration between resources through
PD and PE analyses permits to identify bottlenecks, synchronization and idle time, allowing
to design how to improve care pathways and hospital performance. Moreover, some techniques
explicitly allow to handle the possible different timing of a same activity across different patients,
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by providing for instance formalisms to include the activity in the process investigation only if it
occurred within a selected time span.

It is also worth emphasizing how, in general, the graphical representations that PM4HC al-
gorithms provide as outcomes promote dialogue and exchange of views with all stakeholders,
allowing to effectively visualize (and thus, in a way, to better “touch”) the data.

For a more complete overview on case studies and applications, please refer to the recent
review by Rojas et al. [171].

4.4 Open Issues and Contribution
Technically, PM4HC can be challenging. When applied to the healthcare domain the traditional
process mining approaches may experience difficulties related to the complex and generally un-
structured nature of the processes, resulting in process models unable to provide clear insights
on the data [130].

Among the possible issues when performing PM4HC analyses we find the Spaghetti Effect:
healthcare processes are often low-structured, being constituted of many activities performed by
a potential high number of actors and often in a variable order. When PD algorithms are applied,
this results in wide and sparse model representations with few instances for each branch. Simi-
larly, performing CC and PE can be challenging too, being the process model hard to delineate
and to tweak, respectively. In the case of such processes, therefore, only a subset of available
process mining techniques is applicable, sometimes requiring the development of new algorithms
or an ad hoc extension of the existing ones. As an alternative, the EL can be split into smaller yet
more homogeneous logs, each corresponding to a limited, but more accessible, process model
[200, 223].

A further distinctive feature of PM4HC applications is the necessity to incorporate medical
knowledge in basically each step of analysis. Data often require a considerable pre-processing
constrained by medical knowledge and medical relations to be eventually structured as informa-
tive ELs. This step may for instance consist in the extraction of specific values from continuously
monitored time series, with the aim to define specific events that make sense medically. Besides,
the employed algorithms require to be adapted to the specific clinical domain, to customize sound
analyses and steer the outcomes towards medically relevant results [98].

Another characteristic of logs in the healthcare domain is that they frequently consist in
the aggregation of information collected from multiple sources, often constituted by many au-
tonomous, independently developed information systems. This can cause noise or inconsisten-
cies as duplication or incompleteness in the EL, resulting in wrong detected dependencies and
models [114].

Altogether, even from a process-oriented perspective particular attention should be payed
when approaching the analysis of healthcare data, carefully evaluating the available information,
the state-of-the-art algorithms that better fit the research questions, and possibly considering
extension of existent methodologies to the specific case study.

However, PM4HC carries great potential in helping to understand different aspects of clinical
processes workflows [223]. In [132], Mans et al. delineate the possible directions of PM4HC
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analyses, mainly corresponding to the descriptive/discovery (what happened/which novelties
emerge?), diagnostic (why did it happen?), predictive (what will happen next?), and prescrip-
tive (what are the steps towards improvements?) facets of health analytics described in Chapter
1. However, most of the PM4HC works on clinical data apply process-oriented techniques to
address only a few of these questions, possibly combining them with other classical analytics
methodologies. In particular, there is a limited number of works (as [117]) where PM4HC tech-
niques were employed for statistical inference, concretely developing process-oriented predictive
models that assess the role of covariates in determining disease evolution or the patient’s clinical
pathway.

Based on these considerations, in my research work I explored the potential of a fully process-
oriented approach when performing some of the classical statistical analyses on clinical data with
a temporal dimension, namely preprocessing, descriptive, and inferential statistics.

In the following section, I will outline the potential of this approach in analyzing a case-
study oncological clinical dataset. The temporal characteristic of the data allowed to identify the
sequence of clinical events constituting the care pathway, thus permitting to set up a proper EL.
Some covariates were included in the EL with the aim to characterize the subjects in descriptive,
inferential, and stratification analyses. In this work, PD and CC tools have been employed to
perform the classical steps of the analysis workflow. Survival analyses have been performed to
characterize patients following distinct treatment patterns, thus allowing to gain insights not only
on the course of the events, but also on the clinical outcomes.

This research resulted in a work presented at the 55th Annual Meeting of the American
Society Of Clinical Oncology (ASCO 2020) [73] and in a contribution at the 3rd International
Workshop on Process-Oriented Data Science for Healthcare 2020 (PODS4H 2020), part of the
2nd International Conference on Process Mining (ICPM 2020) [190].

4.5 A Process Mining Approach to Statistical Analysis
In this section, I outline my exploration of a process-oriented approach when performing statis-
tical analyses on clinical data with a temporal dimension.

The dataset used in this work as a case study consists in a collection of dynamic information,
referred to meaningful clinical events (from diagnosis to survival) and related covariates of a
real-world cohort of advanced melanoma patients treated at the Lausanne University Hospital
(CHUV). Here, employing a number of PM4HC techniques, from PD to CC, it was possible
to delineate how PM can guide and/or assist researchers in three classical steps of a statistical
analysis, that is, data preprocessing, descriptive statistics, and inferential statistics. Figure 4.2
summarizes these steps.

In the preprocessing step, we approached the data inspecting their structure, their informa-
tion content, and their quality: after identifying the clinical milestones of interest (like diagnosis,
treatments, survival outcome), data were first shaped as an EL. We then employed the visualiza-
tion tools provided by PM to detect data inconsistencies due to input errors or missing values.
This allowed us to go back to the data sources, recheck and correct the recorded information,
thus recursively improving the data quality.
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Figure 4.2: Workflow of the classical steps of a statistical analysis, here implemented exploiting
a process-oriented approach.

In the descriptive analysis step, we first employed the EL time-oriented structure to inspect
cardinality and order of the pharmacological treatments administered to patients. Then, we im-
plemented both unsupervised and supervised methods to capture the flow of the patients’ path-
ways over data-driven graphs (PD approach) or user-defined graphs (CC approach), respectively.
In this part of the analysis, the graphical outputs provided by PM allow a fast access to the design
and/or interpretation of the models, and an immediate assessment of the treatments in terms of
type, order and timing of consecutive administrations.

Finally, in the inferential statistics step, we built upon the processes constructed in the previ-
ous step to quickly select sub-cohorts of patients characterized by similar patterns of care and/or
clinical attributes. The cohorts were then compared in terms of time-to-event outcome and over-
all survival (OS), using Kaplan-Meier analysis and the log-rank test.

4.5.1 Material: Longitudinal Data of a Real-World Advanced Melanoma
Cohort

In this work, we analyzed the data of a cohort of patients treated at the CHUV and diagnosed
with advanced melanoma.

Melanoma is an aggressive cancer that arises from melanocytes (pigment cells). Cutaneous
melanoma is the most common type. Additionaly, uveal and mucosal melanomas can occur
in the eye and in the mucosa (such as the mouth or the vulva), respectively. The primary risk
factor of cutaneous melanoma is ultraviolet light exposure. As outdoor activities are a way of
life in Switzerland, melanoma incidence is high in the country [24]. The extent of the disease
progression is described by the staging system of the American Joint Committee on Cancer
(AJCC), 8th edition [74], with stages ranging from 0 to IV: stage 0 represents a localized and
not diffused tumor; stage I includes small primary tumors that have not spread to lymph nodes;
stages II and III indicate larger or more extensive primary tumors without or with, respectively,
melanoma extending to lymph nodes; stage IV indicates metastatization of melanoma cells to
distant organs. Surgery is the most common and resolutive approach for the lowest stages, but,
when the disease is more extensive, systemic treatments such as Immunotherapy are required. In
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addition, Radiotherapy can also be used as palliative or local treatment.
Specifically, Immunotherapies constitute new revolutionary treatments, but their administra-

tion has only recently entered standard of care, and the guidelines are still shifting. In addition,
some of the patients included in the case study dataset were treated in clinical trials, i.e. outside
of standard guidelines. In the performed analyses, therefore, a specific focus was given on the
inspection of the patterns of care including this kind of treatments.

The study cohort includes 184 patients diagnosed with advanced melanoma between March
18th, 2008 and November 17th, 2019, with follow-up up to 2019, December 30th.1 Data were
sourced from the EHRs available at CHUV and curated by trained oncologists.

Data includes: sex, date of birth, primary tumor type (among conjunctival, cutaneous, melanoma
of unknown primary, mucosal, and uveal), stage and diagnosis date, advanced tumor diagnosis
date and mutation type (among BRAF-V600, BRAF-nonV600, NRAS, wild type (wt)), pharma-
cological treatments, and survival information (date of death or last follow-up). In this study,
only the medications administered after the stage IV diagnosis were considered.

A brief description of the data is reported in Table 4.1.

4.5.2 Methods: Automatic and Supervised Process Mining Techniques

In Oncology, PM4HC was previously successfully applied to identify the most common pattern
of cares for many kind of tumors, even though the purpose remained exploratory. Rectal cancer
[72], gynecological cancer [131], breast cancer [46], and melanoma [168] were investigated both
in terms of PD and CC: many works were addressed to measure how protocols or guidelines were
respected, while the application of PD remained maily descriptive of the general trends [111].
Specifically on melanoma, further analytics approaches (similar to but not explicitly declared as
process-oriented) were also applied for treatment patterns inspection [40].

In this work, we implemented the classical statistical analysis pipeline shown in Figure 4.2
by fully employing PM4HC techniques to achieve the goals of each step. To perform the analy-
ses, we used pMineR, an open source R library implementing PM4HC functionalities [69]. By
handling data in the form of ELs, this tool allows, among its features, to implement PD and CC
analyses.

We started with the raw data set, which we first assumed to be clean from mistakes. First, we
cast the data in the form of ELs, by selecting the main clinical events of interest for the analysis
and defining the rules to cope with missing values. Then, we implemented a PD algorithm
based on First Order Markov Models (FOMMs) [69], to provide a fast and easy-to-understand
representation of the subsequent events. This representation allowed us to visually identify some
unexpected links between clinical events (e.g. due to mistakes in some dates). With the help of
a physician, we iteratively reviewed the data and rerun the PD algorithm in order to increasingly
approach the expected graph and thus refine the data quality.

To describe the general statistics of the population and quantify the flux of patients though

1This study was approved by the Research Ethical Committee of Canton de Vaud (CER-VD) and includes only
patients who did not oppose usage of their data, and was conducted according to the Swiss Federal Act on Research
involving Human Beings.
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Table 4.1: Description of the cohort of advanced melanoma patients used in this work.

Variables Subjects (%)(n=184)

Gender
Females 71 (38.6)
Males 113 (61.4)

Age at primary diagnosis
mean +- SD (years) 58.1 ±16.5

Stage primary tumor
0 1 (0.5)
I 23 (12.5)
II 44 (23.9)
III 52 (28.3)
IV 27 (14.7)
<NA> 37 (20.1)

Subtype of melanoma
Conjunctival 1 (0.5)
Cutaneous 134 (72.8)
Melanoma of unknown primary 25 (13.6)
Mucosal 10 (5.4)
Uveal 12 (6.5)
<NA> 2 (1.1)

Age at IV stage diagnosis
mean +- SD (years) 62.0 ±15.4

Mutations
BRAF mutated 89 (48.4)
NRAS mutated 46 (25.0)
wt 32 (17.4)
<NA> 17 (9.2)

Survival
Alive 87 (47.3)
Dead 97 (52.7)

different patterns of cares (the second step in Figure 4.2), we exploited both PD and CC tech-
niques. A first unsupervised PD analysis was based on the same FOMM model as described
above. A following supervised CC approach was based on a pre-defined representation of the
different treatment lines implemented with the Pseudo-Workflow formalism (PWF) available in
the software tool. After performing both PD and CC, patients were grouped according to their
paths through the graphs using the selection language provided by the tools. Finally, Kaplan-
Meier survival curves and log-rank tests were used to quantify statistical differences between the
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groups, considering time-to-event and OS as end-points in PD and CC, respectively.

4.5.2.1 Process Discovery

PD methods allow users to automatically mine processes based on an EL of observed events,
often providing graphical visualizations [203]. Among the possible Process Discovery algo-
rithms (see [49] for a complete review), we selected for our analysis first order Markov Models
(FOMMs).

Markov Models (MMs) are stochastic models act at describing a randomly changing system
that satisfies the Markov property, that is, the assumption that a system’s future state only depends
on its previous states in a number that can be fixed (fixed-order MMs, with the number being the
order of the MM) or variable (variable-order MMs) [68]. The changes of state of the system
are called transitions. When the probability of any transition is independent of time, they are
named time-homogeneous MMs and can be visualized with a labeled directed graph, with nodes
representing the states and for which the sum of the labels of any nodes’ outgoing edges is 1.

In healthcare analytics, MMs are well suited for representing disease processes that evolve
over time being, as in our case, the patients’ paths of care modeled as sequences of transitions
over a set of discrete states (events) of health [179, 192].

In this work we built first order time-homogeneous MMs, that is, we worked on the assump-
tion that the transition probability to a state only depends upon the previous state attained by
the system, with transition probabilities constant over time. In other words, we inspected the
relations occurring in the EL over consecutive events. These FOMMs correspond to one of PD’s
most diffused process representations, named directly-follows graphs (DFGs). As a difference,
in the pMineR FOMM implementation a cutoff can be applied on the maximal number of edges
per pathway to reduce the “Spaghetti Effect”, in which complex ELs give rise to overcrowded
graphs with very long branches and few subjects in each branch [201] (see Section 4.4). Even
if DFGs have some well-known limitations [204], they are very intuitive and can be helpful to
share with clinicians a first representation of the data.

4.5.2.2 Conformance Checking

CC was performed by using the PWF, designing a diagram that describes the expected flow
of events in terms of diagnoses, treatment lines, and survival events. Graphically, this results
in a set of nodes, representing the status that the subjects can assume, and a set of conditions
(triggers) which fire transitions between status [71]. This representation allows to count which
triggers/status are activated while automatically running down the events of each subjects, thus
capturing the population behaviours through the diagram.
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4.5.3 Results: Process-Oriented Statistical Analysis
4.5.3.1 Data preprocessing

Event Log

In order to proceed with a PM analysis, the data needs to be structured as an EL, that is, sequences
of records each constituted by the tuple: ID, event, timestamp, and, where appropriate, one or
more attributes that describe specific characteristics of the event itself.

Therefore, we identified among the available patients’ data the main events constituting their
clinical history. Specifically, for each patient, we built the EL with the following events, each
associated with a time stamp:

• Primary Stage: the primary diagnosis, with melanoma type, tumor stage at the diagnosis,
and somatic mutation harboured by the tumor as attributes;

• Stage IV: the diagnosis of stage IV;

• T-Begin: the begin of a line of treatment, with the type of the given drug(s) as attribute;

• T-End: the end of a line of treatment, with the type of the given drug(s) as attribute;

• Dead, Censored: the survival information, consisting in death of the patient or in his/her
last follow-up date.

The collected treatments belong to the following categories:

• Immunotherapy (IO): anti-CTLA4, anti-PD1, anti-CTLA4 + anti-PD1 (in combination),
or other IO;

• Chemotherapy (Chemo);

• Targeted therapy: tyrosine kinase inhibitors (TKI), other targeted therapy (TT).

In this study, only the treatments after stage IV diagnosis were considered.
Please notice that in the EL patients who received more than one line of treatment present

multiple consecutive begin-end treatment instances. The patients included in this dataset record
up to 7 lines of treatments.

Missing data

During the preprocessing, we had to handle the issue of missing values in the data. Uncollected
data can in general have multiple causes, from poor handwriting, missing recordings, or mea-
surements being documented in inconsistent locations. Ad hoc choices have to be made when
facing this issue, as for example deciding to consider for the analyses only the complete-cases
records, to discard the variables with at least one missing value, to impute the gaps with plausible
information, or even to select analytic tools that admit the presence of unrecorded information
(see Chapter 2).
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In time-oriented analyses, missing information can consist either in unrecorded events or in
missing dates associated to the events themselves. The main cause of missed collection in this
case was the non-availability of some data in the expected locations (like visit notes).

PM uses all and only the information made available in the given EL, thus intrinsically deal-
ing with the missing values issue. According to the adopted preprocessing, if one or more of
the above-described milestones/dates are missing in the original data, then the corresponding
events were not created in the EL. This results in a shorter sequence of available events for those
subjects with unrecorded information, but with no flag indicating that something is missing.

Designed to focus on treatment patterns, timing and effects, the performed analyses requires
complete treatment lines (here corresponding to both the treatment beginning and the treatment
end events). Therefore, we additionally chose to explicitly manage the cases of treatment lines
with missing start or end event, in order to preserve the clinical information. Indeed, given a
patient with one of these events missing, the choice of completely ignoring the line with partial
information would have caused possible misinterpretations of the effects of the other adminis-
tered treatments on survival (the sequence would have been incomplete and thus inconsistent
with reality). As an alternative, imputing the missing date with a plausible time point obtained
from the adjacent events would have introduced an artifact in the treatment duration. Therefore,
we decided to truncate the patient EL records to the last available certain information, artificially
introducing a Censored event before the line with missing information.

Specifically, if the beginning date of a treatment was missing, the censoring event was set to
the day after the last previously recorded information (stage IV diagnosis or end of another line).
The choice of adding one day in the date calculation is to avoid the conjunction of more than
one event in the same time point, a circumstance that, if possible, should be avoided in time-
oriented analyses to preserve the consequentiality of the events. If, instead, the missing date was
the treatment end – because unrecorded or still on-going at the last follow-up – then the patient
was censored the day before the corresponding treatment start date. In both cases, we set the
censoring event date in such a way that any possible effect induced by the incomplete line on the
outcomes is left out. As a trade-off, this introduced more and/or earlier censored patients.

Data Cleaning

To detect mistakes in the data, we adopted an iterative approach: a FOMM process was discov-
ered and visually analyzed to detect inconsistencies on unexpected edges. Then, the data were
updated and the procedure repeated until no more mistakes were found.

With this approach we revealed some previously uncaught mistakes in the data format in the
input csv file, inconsistency in dates representation (e.g. dd/mm/yy vs dd/mm/yyyy), temporal
event inversion (e.g. cancer treatment begin before a tumor diagnosis).

To give a practical example of detection, we report in Figure 4.3a) the FOMM resulting from
an intermediate version of the dataset, where unexpected edges emerge because the beginning of
the first line of treatment was erroneously dated before the stage IV diagnosis for one patient in
the source data.

When reading a FOMM graph, we find on each edge the transition probability to shift from
a node to another, computed over all the instances of the first node. The BEGIN and END
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Figure 4.3: First Order Markov Models obtained on all the events constituting the EL: a) before
cleaning the information of a subject with an error in the dates, b) after data cleaning.

nodes are artificially added to each patient’s path by the algorithm. Such representation allows to
describe the whole sequence of events constituting the data, depicting a general overview of the
patients’ most common paths. In the graph of Figure 4.3a) we can observe how the majority of
the subjects gets, as expected due to the nature of the dataset, a primary stage diagnosis followed
by a stage IV diagnosis, and then begins a pharmacological treatment. As previously mentioned,
in this version of the dataset, because of an input error, one patient presents the begin of the
first line of treatment dated before the diagnosis of stage IV (that is, his/her sequence of events
is: Primary Stage → T-Begin → Stage IV → T-End → . . . ). An user with a proper domain
(and data design) knowledge can detect this issue by observing the FOMM’s graph and noticing
the following unexpected edges: from Primary Stage to T-Begin, from T-Begin to Stage IV, and
from Stage IV to T-End. The low transition probabilities associated with these edges are a further
clue that something unusual (but, in general, not necessarily wrong) appeared in the data. Please
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notice that the transition probability from T-Begin to Stage IV is even lower (< 0.01) than the
other two (0.01), due to the higher total number of occurrences of the T-Begin event (one per
line, with possible multiple lines per patient) with respect to Primary Stage and Stage IV (one
per patient).

In Figure 4.3b) we can observe the FOMM after correction of the inaccurately collected
information. This updated graph, that will be further discussed in Section 4.5.3.2, conversely
presents only relations fully compliant with the nature (and the collection design) of the data.

At the end of the preprocessing, the obtained EL consists of 1196 records referred to the
184 patients, with 6 distinct events labelled as: Primary Stage, Stage IV, T-Begin, T-End, Dead,
Censored.

4.5.3.2 Descriptive statistics

A first descriptive analysis was performed by querying the input EL: its structure easily allowed
us to explore in the first instance cardinality, timing, and order of the administered treatments.
Then, we delved into the data by using the FOMMs, to obtain agnostic data representations, and
a PWF diagram, to verify the consistency of the process with respect to the expected behaviour.

Event Log querying

By analysing the EL it was possible to perform some first descriptive investigations. Specifically,
we focused on the treatments administered to the patients. Considering the events of all the
patients, regardless of the position in the path of care, we extracted a total of 322 administered
treatments. Table 4.2 reports, for each treatment category, its absolute and relative frequency of
occurrence, and its duration in terms of median and inter-quartile range (25%-75%).

By exploring the sequence of consecutive events that chronologically delineate the patients’
paths of care, as structured through the preprocessing, we could also extract the possible patterns
of treatment over all the population. Out of 163 patients that received at least one recorded line
of treatment, we identified 49 distinct patterns of treatment sequence. The most frequent ones
are reported in Table 4.3.

Table 4.2: Occurrences and duration (in days) of the administered treatments collected in the
data. The inter-quartile ranges (IQR) are computed at 25% and 75%.

Drug category Occurrence (%) Median (IQR) duration
(n=322) [days]

TKI 76 (23.6) 122 (76.5–228.0)
anti-CTLA4 + anti-PD1 70 (21.7) 46.5 (0.0–167.8)
anti-PD1 66 (20.5) 84.0 (33.0–253.2)
anti-CTLA4 66 (20.5) 61.5 (31.0–63.0)
Chemo 29 (9.0) 44.0 (22.0–67.0)
Other IO 13 (4.0) 92.0 (22.0–203.0)
TT 2 (0.6) 461.5 (300.7–622.2)



Chapter 4. Process-Oriented Approaches to Healthcare Analytics 103

Table 4.3: Most frequent patterns of treatment recorded in the data. The relative frequency of
occurrence is computed over the total number of patients with at least one recorded treatment.

First line Second line Occurrence (%)(n=163)

anti-CTLA4 + anti-PD1 - 36 (22.1)
anti-PD1 - 22 (13.5)
anti-CTLA4 - 11 (6.7)
anti-CTLA4 + anti-PD1 TKI 11 (6.7)
Chemo anti-CTLA4 9 (5.5)
anti-CTLA4 anti-PD1 8 (4.9)
TKI anti-CTLA4 6 (3.7)
anti-CTLA4 TKI 5 (3.1)
TKI - 3 (1.8)

Process discovery on all the events

As introduced above, in the Data Cleaning step recursive implementations of the FOMM were
performed on all the events constituting the EL until obtaining the FOMM of Figure 4.3b). When
reading it, we can get a first high-level description of the clinical history evolution of the study
cohort.

Since the data were designed as a collection of the treatments prescribed to cure advanced
melanoma – and thus administered to patients that already got stage IV cancer diagnosed – in
this graph all the lines properly follow the stage IV diagnosis chronologically. By analyzing
edges and their probabilities, we can gain further information on the dataset. For instance, by
observing the couple of edges between T-Begin and T-End with their transition probabilities, we
can catch that a number of patients undergo a multiple number of lines. Moreover, accordingly
with the EL design, all the lines are complete (transition probability from T-Begin to T-end equal
to 1). Finally, patients can experience the survival event at the end of a line of treatment, or
after the Stage IV diagnosis. In this latter case, the absence of recorded treatments can be due to
the unavailability of any treatment information in the original data, or, for some of the censored
subjects, correspond to the introduction of the “artificial” censoring events in the preprocessing
when the first line resulted incomplete (see Section 4.5.3.1).

When reading FOMM graphs in general, it is important not to trip up in the interpretation
of the probabilities. Let’s consider for instance the edge from T-End to T-Begin: being the
FOMM computed over all the consecutive first-order couples of events, 0.49 is the probability of
having another line after the previous one. Thus, 0.49 should not be interpreted as the probability
of having a second line of treatment after finishing the first one and, similarly, 49% is not the
percentage of patients with exactly two lines. As an extreme case, the multiple lines could all
belong to a same subject performing consecutive treatments, with all the others experiencing a
single line. If we want to inspect the probability of passing from one specific line to another, we
have to extend the analysis to a model with a higher memory order.
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Figure 4.4: First Order Markov Model obtained on the treatments.
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Process discovery on treatment sequences

We then built a second FOMM focusing on the administered treatments available in the EL only.
Figure 4.4 reports the obtained graph.

Such a process model allows to inspect the temporal causality of the single treatments, high-
lighting the most frequent connections over all the population. It also provides a first overview
of the position of the treatments in the paths: due to limits of the FOMMs of catching only
the one-step successions, however, such considerations mainly restrict to (possibly) stand-alone
treatments and to the ones sourcing in the BEGIN or terminating in the END nodes.

Conformance checking on treatment sequences

We designed a PWF able to capture the chronological order of the events: at the top, we repre-
sented the status related to the staging, and then the different treatment lines.

The PWF was designed as follows. First, since the processes are expected to present at first
the events corresponding to the primary stage and stage IV diagnoses, we introduced two nodes
that activates respectively when the first event is the Primary Diagnosis and when there is a Stage
IV Diagnosis event after it. Then, a sequence of one or more lines of treatments is expected in
the processes: for each line, we defined a set of nodes representing the treatments that turn on if
the patient presents, after the previous event (fixed as Stage IV Diagnosis or end of another line),
the beginning of a drug administration. A number preceding the drug category name marks the
corresponding line. In order to be able to define treatment paths at different levels of granularity
we added a further status for each treatment line, that is, IO (immunotherapy). Each time a
patient presents in his/her event log an immunotherapy treatment among anti-CTLA4, anti-PD1,
the combination of anti-CTLA4 and anti-PD1, or other IO, both the corresponding specific status
and the node IO turn on. This is doable thanks to the possibility in the PWF formalism to define
simultaneous activation of multiple status, thus allowing the inspection of the data at different
levels of abstraction. We then introduced status to mark the end of each line of treatment, that
is reached if the patient’s data present a T-End event while a treatment status is active from
the previous step. Finally, we introduced two additional status to catch the survival outcomes,
namely Dead and Censored, that can be activated without constraints on the previous status, as
soon as a survival event is read in the EL. The activation of the survival status terminates the
inspection of the flow of events for that patient.

Figure 4.5 reports the result of the run of our cohort on the PWF graph. Nodes and boxes
report the number of times that a status/trigger was reached/fired. For the sake of readability, the
reported plot is limited to the first two lines of treatment, even if the designed PWF included all
the 7 lines available in the data.

By inspecting the graph, it is possible to follow the population’s paths and read the corre-
sponding number of subjects that run specific patterns. For instance, we can observe that all the
patients included in the dataset (and thus starting in the automatically-introduced BEGIN status)
had a Stage IV diagnosis (expected by design), that only 163 over 184 patients had a first line
recorded, followed in 89 cases by a second line, or that the most frequent first line of treatment
was the combination of anti-CTLA4 and anti-PD1 with a total of 56 occurrences.
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Figure 4.5: Conformance Checking model (limited to the first two lines of treatments) reporting
the status activated by the patients’ processes over the used-defined PWF.

We can also observe how the rule of double-status activation defined for the immunotherapy
treatments is graphically translated into two edges outgoing from the box that represents these
triggers (e.g. triggers T1 03 or T1 07). The presence of the IO node allows to easily count the
cumulative number of subjects that experienced immunotherapy at each line, while the single
drug categories maintain a higher level of detail.

The survival nodes (Dead and Censored) have been graphically separated from the others in
order to limit the number of edges in the graph. However they can be reached from any point in
the graph, and the available query tool can inspect at what precise point they were activated.
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4.5.3.3 Inferential statistics

By exploiting the EL, the FOMM and the PWF diagrams of the previous analyses, we could
easily select cohorts characterized by specific patterns of interest and perform survival analyses.
While the FOMM strongly reflects (and is limited to) the events and the information present in
the EL, the PWF represents an abstraction where the user has the opportunity to provide addi-
tional knowledge in the definition of the PWF status and structure itself. This enhanced semantic
expressiveness is one of the main reasons why PWF was previously used in structuring Clini-
cal Guidelines [117]. Descriptive statistics can help in suggesting hypotheses: in our case, the
previous PWF and FOMM diagrams allowed to easily identify and query cohorts for statistical
inference analyses. We report below two examples of the investigations we performed.

First, we inspected the relationship between type of somatic tumor mutation and time be-
tween primary and Stage IV diagnosis. Here, we consider the following mutation status: BRAF
V600 mutated, BRAF non-V600 mutated, NRAS mutated, and wt. For this study, we limited
the cohort to cutaneous melanoma patients, exploiting a filtering tool to easily query the EL
attributes.

We implemented a survival analysis by first using the FOMM structure of Figure 4.3b) to
query the path of interest (between the nodes Primary Stage and Stage IV) and obtain the time
between the two events. Then, the Kaplan-Meier estimator was computed, with patients stratified
by mutation status, as shown in Figure 4.6. Even if a difference between the BRAF v600 mutated
and the NRAS mutated sub-cohorts seems to emerge, the log-rank test computed between all the
survival distributions pairs reports no significant differences (all p-values were >0.05) for any
combinations.

To demonstrate the potential of the analysis – even if in this case limited by sample cardi-
nality – we performed a further stratification of the data, distinguishing patients by their primary
stage. pMineR facilitates this step too, by allowing direct selection on the patient attributes.
Figure 4.7 reports the plot of the corresponding Kaplan-Meier estimator. Even if, as expected,
no statistically significant clinical evidence emerges from this analysis, mainly due to the low
number of subjects per category, it is interesting to observe how rapidly this approach allows to
enrich the analysis’ level of detail.

The second survival analysis exploits the PWF defined in Figure 4.5. We queried the data in
order to identify any differences in terms of OS based on the following patterns of interest: (1)
only IO (any BRAF status), (2) IO→ TKI, (3) TKI→ IO, (4) only TKI. In defining the rules, we
grouped together consecutive lines belonging to the same category. Patterns interspersed with
TT or Chemo treatments were excluded. Upon the suggestions of clinicians, in case of sequences
with multiple treatment lines, only the first occurring pattern was considered (e.g. a patient with
IO → TKI → IO falls into the sub-cohort IO → TKI). The resulting OS survival curves are
shown in Figure 4.8.

Table 4.4 reports the frequency of occurrence of each pattern, the median OS time (in years),
and the percentage of patients alive at 1.5 and 3 years (CI at 95%), respectively. Statistical signif-
icance of OS differences was assessed with the log-rank test, which turned out to be significant
for IO vs IO → TKI (p-value<0.0001) and IO vs TKI → IO (p-value: 0.012). The difference
between IO and IO→ TKI is expected because patients who receive TKI after IO are those who
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Figure 4.6: Time-to-event analysis based on a mined FOMM: time from primary to stage IV
diagnosis, stratified by mutation.

did not respond to IO. Knowing that the benefits of TKI are usually only temporary, it is not
surprising that these patients have shorter OS. The difference between IO and TKI→ IO is inter-
esting, as it may be related to recent biological findings showing that acquired resistance to TKI
may hinder IO efficacy.

Table 4.4: OS for the main treatment patterns of interest.
Treatment path Occurrence Median OS [years] 1.5-year OS % (95% CI) 3-year OS % (95% CI)

all 100 % 3.87 72.7 (66.1 - 80.1) 54.9 (47.1 - 64.1)
IO 45.7 % NA 76.9 (68.0 - 86.9) 69.4 (59.1 - 81.5)
IO→ TKI 17.9 % 1.77 63 (48.3 - 82.1) 18.6 (7.7 - 45.2)
TKI→ IO 8.7 % 1.92 57.4 (36.6 - 90.1) 25.1 (9.7 - 65.3)
TKI 1.6 % 1.00 0 0

4.5.4 Discussion: Applicability and Advantages of a Process-Oriented Ap-
proach to Statistical Analysis

PM4HC is expected to have an increasingly relevant role in the analysis of healthcare data.
Process-oriented representations, together with tools able to query the data in terms of temporal
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Figure 4.7: Time-to-event analysis based on a mined FOMM: time from primary to stage IV
diagnosis, stratified by mutation and type of primary.

patterns identified through paths in a workflow, are efficient ways to easily generate clinically-
relevant hypotheses and measure statistical significance, in particular in survival analysis.

In this preliminary work, we demonstrated contributions of our process-oriented approach
in analyzing a real-world retrospective dataset of patients treated for advanced melanoma at the
Lausanne University Hospital. Addressing the clinical questions raised by our oncologists, we
integrated PM in almost all the steps of a common statistical analysis. We showed: (1) how
PM can be leveraged to improve the quality of the data (data cleaning/pre-processing), (2) how
PM can provide efficient data visualizations that support and/or suggest clinical hypotheses, also
allowing to check the consistency between real and expected processes (descriptive statistics),
and (3) how PM can assist in querying or re-expressing the data in terms of pre-defined reference
workflows for testing survival differences among sub-cohorts (statistical inference).

The main remarkable points emerging from this experience are: (a) query languages for
EL, PD and CC are efficient tools for data cleaning and preprocessing, by quickly identifying
previously unrecognized mistakes; (b) graphical representations can promote dialogue between
clinicians and data scientists, suggesting alternative perspectives and possible research ques-
tions; (c) PD gives a relevant contribute in representing the data in an agnostic way; on the other
hand CC (with formalisms such as PWF) allows implementing multi-scale data abstractions and
identifying patterns or inconsistencies of the data in pre-defined workflows; (d) the process rep-
resentations, both in PD and CC, effectively support survival analysis techniques, allowing rapid
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Figure 4.8: Overall survival analysis based on a CC graph: time from stage IV diagnosis to
death, stratified by treatment pattern.

definition of sub-cohorts of interest and providing immediate statistical measures of differences
between various paths of the graph.

It is interesting to observe how the missing information, although managed in both PD and
CC, has a different impact on the analysis. In PD, the unsupervised built model does not suffer the
presence of any possible gaps in the data, limiting to the description of relations that it actually
sees in the data. It is up to the user to detect any emerging non-sense causality among the
events caused by the missing information. CC, instead, focuses on testing the adherence of the
processes to predetermined models: the absence of some events can cause a discrepancy between
the recorded sequences and the expected ones, resulting in a decrease in the number of instances
that follow the investigated paths.

With specific reference to the investigated case study, emerging clinical evidences are mainly
limited by the low data availability with respect to the richness of different patterns of treatment.
However, the current dataset could be expanded by including multicentric studies, in order to bal-
ance the sub-cohorts and be able to include more population attributes. Further process models
could also be considered. Similar investigations may also be performed in other clinical contexts,
with the overall aim to provide real-world insights into future personalized care options.
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4.6 Final Remarks
Thanks to its ability to offer an alternative perspective on the events that characterize the patients’
clinical history, PM4HC is assuming an emerging role in clinical data analytics.

Its process-oriented approach intrinsically allows to exploit the temporal nature of the data,
providing tools to effectively depict and explore the available information. After designing and
setting up a – limited, after all – preprocessing to convert the information into an EL form,
PM4HC offers a portfolio of techniques to treat the available information either in an agnostic
way or integrating a priori domain knowledge. Recent tools integrate functions to perform in-
vestigations typical of the clinical context, such as survival analysis. In addition, this approach
provides important self-consistency checks for data and allows to inspect patterns at different lev-
els of abstraction, together with the associated outcome. Moreover, the visualizations provided
when implementing discovery and conformance algorithms constitute an easy-to-understand and
communicative resource able to boost dialogue and discussion among the working team, sug-
gesting or confirming worthy research directions.

In general, when considering performing a Process-Oriented approach on a new dataset, it
could be useful to first assess the expected variability of the paths among the population. As
mentioned in Section 4.4 indeed, PM techniques can experience some limitations when pro-
cesses are intrinsically characterized by a high variability (because for instance belonging to
complex clinical contexts and/or managed through heterogeneous protocols), leading to sparse
model representations difficult to interpret and potentially little informative. In this cases, beside
considering alternative approaches, some actions can be performed on the events’ preprocessing
in order to reduce the item variability, such as aggregating events by relying on clinical ontolo-
gies. Nevertheless, is also worth noticing how sometimes little represented paths can refer to
very interesting group of patients, characterized for instance by unexpected outcomes or experi-
encing rare adverse events. There is therefore the need to assess case by case if and how PM4HC
can be preferred or not to other approaches.

In the future, PM4HC has great potential to be developed further in synergy with classical
analytics tools to work on healthcare-related data. In particular, the fast-growing amount of real-
world clinical data produced in modern hospitals, each patient’s therapeutic journey being by
nature a temporal process, represents a formidable opportunity for PM4HC to contribute to the
advent of precision medicine.





Chapter 5

Conclusions

Healthcare analytics is increasingly bringing improvements to medical knowledge and patient
care, supporting medicine in its transformation towards personalized approaches.

In the development of clinical decision support systems, longitudinally-collected clinical data
constitute an important resource for many kinds of investigations, ranging from biomarkers iden-
tification to prognosis prediction. Nevertheless, for their employment, techniques able to prop-
erly deal with the temporal dimension of data are needed. In addition, further features related to
the variables’ clinical and heterogeneous nature should be taken into account.

This thesis has explored under a number of aspects the potential as well as the requirements
when employing this kind of data. Ranging from data preprocessing procedures to the implemen-
tation of computational models for descriptive and predictive purposes, the challenges and lim-
itations encountered when exploring the existing methodologies have been introduced. Hence,
innovative techniques developed for addressing these issues have been presented both from a
methodological perspective and with practical cases of use, by performing analyses in different
clinical contexts, from Neurology to Oncology.

In those cases where data usability is limited by missing values, imputation approaches can
constitute a valid tool for curing the missing information. For longitudinal clinical data, imputa-
tion approaches based on the similarity assessed among visits or patients can properly exploit the
data nature and informative content, as depicted in Chapter 2. In general, based on the potentially
vast differences in the data, the most suitable imputation method should be evaluated on a case
by case basis.

In data modeling, different procedures can be set up to approach the information collected
in the temporally-evolving features: dynamic data can be summarized in derived variables cod-
ing their evolution over time, as carried out in the naı̈ve Bayes implementation of Section 2.6.4.
Although constituting a rapid access to the dynamic information, this approach is likely to over-
simplify the informative richness of the data. For greater robustness, techniques such as feature
selection could be employed to effectively identify the derived variables that better preserve the
information, even if at an added computational cost. On the other side, models that require stat-
ically structured information such as the NB classifier, although being easy to design and rapid
to implement, can also limit their prediction ability to static outcomes.

To overcome these limitations, computational approaches able to handle the dynamic nature
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of the data can be employed. In Chapter 3, a DBN-based model of disease progression has been
presented. Thanks to its intrinsic dynamic nature, such approach allows to fully exploit the tem-
poral information in the data, allowing to catch how the relationships among variables change
over time and influence the disease progression. Beside allowing to probabilistically character-
ize the outcome occurrence over time, this method provides a number of additional remarkable
outcomes, such as the graphical description of the mutual relations among variables and the re-
lated CPDs, that explicitly describe how the condition evolves over the study population. On the
other side, a DBN is a sort of craftwork, due to the many attentions and details it requires for its
development, thus constituting a high-demanding approach in terms of time and resources.

An as alternative approach, Process Mining for Healthcare provides a number of techniques
properly designed for handling clinical data with a temporal dimension. As presented in Chapter
4, the patient’s clinical evolution can be modeled in terms of a sequence of events, allowing to
follow the patterns of care and assess their effect on the outcomes. Even if the employment
of these techniques in this thesis has mainly been exploratory, a great potential has emerged in
terms of alternative to other traditional approaches when performing classical statistical analyses.
Noticeably, these methodologies also provide effective visual outcomes, that both get access
to the mined information and constitute a communicative mean to present the results. As a
limitation, but not limited to this approach, a certain grasp on the data is required since the very
first preprocessing steps, in order to identify, follow, and interpret clinical events and paths that
can be complex and often require specific medical knowledge.

From a data scientist’s point of view, this Ph.D. experience on healthcare analytics provided
a number of useful lessons, reported below.

• First of all, real data are complex. The more dimensions they have, the more informative
they are, but also the more challenging to handle.

• When approaching the analysis, the available data should be carefully evaluated in terms
of nature, structure, and informative content, in order to identify the state-of-the-art algo-
rithms that better fit the research questions, or design ad hoc methodologies for the specific
case study.

• An adequate (and sometimes massive) preprocessing is in general required, to aggregate
data from different sources, handle the possible data type heterogeneity or temporal nature,
or structure them as required by the selected analysis methodology. A few techniques can
assist in this process, by providing effective visualizations of the information coded in the
data.

• Some domain knowledge is required at each analysis step, from data structuring to study
design and results interpretation. With this aim, working in a proactive multidisciplinary
research team allows to design and implement studies that meet the clinical needs while at
the same time making the best use of the analytic tools.

• The adoption of “non black-box” methodologies provides a number of advantages: among
these, the chance to monitor and adjust the model during its implementation phase, the
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access to understanding how results are obtained, and an easier dissemination of the gained
knowledge.

• Finally, technology transfer should be a goal of every developed tool, to ensure that re-
search not only provides an advancement of the medical knowledge, but also, where pos-
sible, constitutes a practical mean to support clinicians and patients.

Most of these lessons have been acquired by studying the state of the art, designing and
implementing the methodologies presented in this thesis, and by sharing the progresses with my
working teams as well as the scientific community.

5.1 Publications
The work presented in this thesis has produced the following publications.

5.1.1 Journal Papers
• Daberdaku S*1, Tavazzi E*, and Di Camillo B. A Combined Interpolation and Weighted

K-Nearest Neighbours Approach for the Imputation of Longitudinal ICU Laboratory Data.
Journal of Healthcare Informatics Research, pages 1–15, 2020.

• Tavazzi E*, Daberdaku S*, Vasta R, Calvo A, Chiò A, and Di Camillo B. Exploiting Mu-
tual Information for the Imputation of Static and Dynamic Mixed-Type Clinical Data with
an Adaptive K-Nearest Neighbours Approach. BMC Medical Informatics and Decision
Making, 20(5):1–23, 2020.

5.1.2 Conference Abstract and Short Papers
• Tavazzi E, Gerard CL, Michielin O, Wicky A, Gatta R, and Cuendet MA. Process Mining

approach to statistical analysis: application to a real-world advanced melanoma dataset.
In Lecture Notes in Business Information Processing, ICPM workshops proceedings 2020.

• Gerard CL, Tavazzi E, Gatta R, Delyon J, Cuendet MA, and Michielin O. A process min-
ing approach to real-world advanced melanoma treatments., In Proc. 55th the American
Society of Clinical Oncology (ASCO) Conference, 2020.

• Vasta R, Zandonà A, Daberdaku S, Tavazzi E, Nefussy B, Lunetta C, Mora G, Mandrioli
J, Grisan E, Tarlarini C, Calvo A, Moglia C, Gotkine M, Drory V, Chiò A, and Di Camillo
B. Functional Impairment and Survival Prediction in Amyotrophic Lateral Sclerosis Pa-
tients: a Probabilistic Model of Disease Progression. In European Journal of Neurology,
volume 27, pages 172–172, 2020. Abstracts from the 6th European Academy of Neurol-
ogy Congress

1* = equal contribution
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• Tavazzi E, Daberdaku S, Zandonà A, Vasta R, Calvo A, Chiò A, and Di Camillo B. An
Adaptive K-Nearest Neighbours Algorithm for the Imputation of Static and Dynamic Mixed-
Type Clinical Data. In Proc. 16th International Conference on Computational Intelligence
methods for Bioinformatics and Biostatistics (CIBB), pages 285–284, 2019.

• Daberdaku S*, Tavazzi E*, and Di Camillo B. Interpolation and K-Nearest Neighbours
Combined Imputation for Longitudinal ICU Laboratory Data. In Proc. 7th IEEE Inter-
national Conference on Healthcare Informatics (ICHI), pages 550–552. IEEE Computer
Society, 2019.

• Chiò A, Zandonà A, Daberdaku S, Vasta R, Nefussy B, Tavazzi E, Lunetta C, Mora G,
Mandrioli J, Grisan E, Gotkine M, Calvo A, Moglia C, Drory V, and Di Camillo B. Func-
tional Impairment and Survival Prediction in Amyotrophic Lateral Sclerosis Patients: a
Probabilistic Model of Disease Progression. In: Proc. 50th Congress of the Italian Society
of Neurology, 2019.

• Chiò A, Zandonà A, Daberdaku S, Vasta R, Nefussy B, Tavazzi E, Lunetta C, Mora G,
Mandrioli J, Grisan E, Gotkine M, Calvo A, Moglia C, Drory V, and Di Camillo B. Func-
tional Impairment and Survival Prediction in Amyotrophic Lateral Sclerosis Patients: a
Probabilistic Model of Disease Progression. In: Amyotrophic Lateral Sclerosis and Fron-
totemporal Degeneration, volume 20, 2019. Issue sup1: Abstracts from the 30th Interna-
tional Symposium on ALS/MND.

5.2 Patents
• Di Camillo B, Zandonà A, Daberdaku S, Tavazzi E, Chiò A, Vasta R, Calvo A, Moglia C,

Casale F, D’Ovidio F, Mandrioli J, Lunetta C, Drory V, Mora G, and Gotkine M. “Method
for determining the prognosis of disease progression and survival for patients affected by
Amyotrophic Lateral Sclerosis”. International Patent, Serial number PCT/IT2020/000057,
filed on July 22, 2020. Currently patent pending.

5.3 Software projects
• Development of the R package wkNNMI, an adaptive Mutual Information-weighted k-NN

algorithm for the imputation of static and dynamic mixed-type data. Released in January
2020, available on CRAN https://cran.r-project.org/package=wkNNMI.

• Development of PD impute, an Interpolation and K-Nearest Neighbours combined impu-
tation algorithm for longitudinal ICU laboratory data. Developed in the context of the
2019 ICHI Data Analytics Challenge on Missing data Imputation (DACMI). Released in
May 2019, available on github https://github.com/sebastiandaberdaku/
PD_Impute.

https://cran.r-project.org/package=wkNNMI
https://github.com/sebastiandaberdaku/PD_Impute
https://github.com/sebastiandaberdaku/PD_Impute


Appendix

Publications and Side Projects

During my Ph.D., I was involved in further projects and collaborations not included in this thesis,
mainly focused on: the development a Value-Based Healthcare (VBHC) approach for delineating
new procurement models at a regional level; the role and contribution of PM4HC in represent-
ing clinical guidelines; the investigation of adverse events as a result of immunotherapies in
melanoma patients; digital signal processing and psychoacoustics in binaural audio rendering.

These projects have led to the following publications.

Journal Papers

• Gatta R, Vallati M, Fernandez-Llatas C, Martinez-Millana A, Orini S, Sacchi L, Lenkowicz
J, Marcos M, Munoz-Gama J, Cuendet M, De Bari B, Marco-Ruiz L, Stefanini A, Valero-
Ramon Z, Michielin O, Lapinskas T, Montvila A, Martin N, Tavazzi E, and Castellano M.
What Role can Process Mining play in recurrent Clinical Guidelines issues? A Position
Paper, International Journal of Environmental Research and Public Health (2020): 17(18),
6616.

• Comoretto RI, Gasparetto T, Tavazzi E, and Gregori D. Towards Value-Based Healthcare
and the Role of Regional Agencies: the Approach of the Veneto Region, Epidemiology,
Biostatistics and Public Health. 2019 Jun 21;16(2).

• Spagnol S, Tavazzi E, and Avanzini F. Distance rendering and perception of nearby virtual
sound sources with a near-field filter model, Applied Acoustics 115, pages 61-73, 2017.

Conference Abstracts and Short Papers

• Comoretto RI*2, Tavazzi E*, Bortolussi G, Gnoato M, and Gasparetto T. Outlining out-
comes for Transcatheter Aortic Valve Implantation (TAVI) patients: towards a definition of
“value”, International Consortium for Health Outcomes Measurement (ICHOM) Confer-
ence, (2020) [* equal contribution].

2* = equal contribution
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• Comoretto RI*, Tavazzi E*, Gnoato M, and Gasparetto T. Improving value in TAVI pa-
tients: insights from the Veneto Region experience. European Health Economics Associa-
tion (EuHEA) Conference, (2020).

• Ghisoni E, Wicky AM, Latifyan S, Mederos-Alfonso NN, Özdemir BC, Cuendet MA,
Imbimbo M, Marandino L, Delyon J, Gerard CL, Tavazzi E, Gatta R, Valabrega G, Aglietta
M, Obeid M, Coukos G, Peters S, Di Maio M, Bouchaab H, and Michielin O. Long-lasting,
irreversible and late-onset immunerelated adverse events (irAEs) from immune checkpoint
inhibitors (ICIs): A real-world data analysis. American Society of Clinical Oncology
(ASCO) Conference, (2020).

• Tavazzi E*, Comoretto RI*, Gnoato M, and Gasparetto T. ”Value-Based Healthcare: stu-
dio pilota della Regione Veneto in ambito cardiochirurgico”. XXIV AIES Italian Health
Economics Association National Conference, Pisa (2019).

Software projects
• Contribution to the R package pMineR v. 0.45, a tool for building and training Process

Mining models in the clinical domain. Available on github https://github.com/
robertogattabs/pMiner.v045.

https://github.com/robertogattabs/pMiner.v045
https://github.com/robertogattabs/pMiner.v045
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Brooks, and Leonard H van den Berg. Amyotrophic lateral sclerosis: moving towards a
new classification system. The Lancet Neurology, 15(11):1182–1194, 2016.

[6] Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, Giuseppe
Jurman, and Cesare Furlanello. minerva and minepy: a C engine for the MINE suite and
its R, Python and MATLAB wrappers. Bioinformatics, 29(3):407–408, 12 2012.

[7] Rebecca R Andridge and Roderick JA Little. A review of hot deck imputation for survey
non-response. International Statistical Review, 78(1):40–64, 2010.

[8] Claudia Antunes. Pattern mining over nominal event sequences using constraint relax-
ations. Unpublished doctoral dissertation, Instituto Superior Técnico, Lisboa, 2005.
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[213] Rosario Vasta, Alessandro Zandonà, Sebastian Daberdaku, Erica Tavazzi, Beatrice Ne-
fussy, Christian Lunetta, Gabriele Mora, Jessica Mandrioli, Enrico Grisan, Claudia Tar-
larini, Andrea Calvo, Cristina Moglia, Marc Gotkine, Vivian Drory, Adriano Chiò, and
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