Dosimetry of ⁵¹MnCl₂ and ⁵²MnCl₂ for PET application

Authors

De Nardo L.1-2, Ferro-Flores G.3, Bolzati C.4, Esposito J.5, Meléndez-Alafort L.6

¹Department of Physics and Astronomy, University of Padova, Padova, Italy. ²INFN-Padova, Padova, Italy. ³Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Mexico. ⁴Institute of Condensed Matter Chemistry and Energy Technologies ICMATE-CNR, Padova, Italy. ⁵INFN- Legnaro National Laboratories, Legnaro, Italy. ⁶Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy

Introduction

Manganese has been so far mainly used for in-vivo animal studies of tissue anatomy of liver, kidneys, heart and pancreas, as well as to monitor cellular activity, cytoarchitecture and neuronal tract tracing in the brain by using the so-called Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)-based techniques. However, the large amount of manganese necessary for MEMRI may induce neurotoxic effects that result in manganism, a neurological syndrome similar to Parkinson's disease. The much higher sensitivity of positron emission tomography (PET) over MRI enables, instead, the use of non-toxic trace level concentrations of Mn. The radioisotopes ⁵²Mn ($t_{1/2}$ = 5.591 d, β^+ = 29.4%, E(β^+)_{avg}= 241.6 keV) and ⁵¹Mn ($t_{1/2}$ = 45.59 min, β^+ =97.1%, E(β^+)_{avg} = 970.2 keV) have already been used for preclinical PET imaging in the past, mainly administered in free ionic form as MnCl₂ ¹⁻². However, internal radiation dose assessment due to the administration of ⁵²MnCl₂ to humans is still missing, while only one study has been reported for ⁵¹MnCl₂ dosimetry calculations². The aim of this work is to fill this gap by assessing the radiation effective dose (ED) of ⁵¹MnCl₂ and ⁵²MnCl₂.

Materials and Methods

Biodistribution data in healthy mice after ⁵²MnCl₂ injection¹ and the reported manganese biological half-life in human³ have been used to obtain the number of disintegrations in the main human organs, by the relative mass scaling method. The calculated number of disintegrations was used to assess the ED through the anthropomorphic phantoms based on human standardized masses defined by ICRP 89⁴ and tissue-weighting factors recommended by the ICRP 103⁵ with the OLINDA code v2.0⁶.

<u>Results</u>

Organ dose assessment shows that, for both radioisotopes, pancreas is the critical organ, followed by kidneys and liver, both for male and female phantoms. The ED due to ⁵²MnCl₂ for male phantoms is 1.35 mSv/MBq, about one hundred thirty times higher than that of ⁵¹MnCl₂, 0.0102 mSv/MBq. Female EDs calculated for both radionuclides are about 30% higher than male EDs.

Conclusions

The ED of ⁵¹MnCl₂ is comparable to that of ¹⁸FDG (0.0192 mSv/MBq, gender-averaged value), allowing its safe application for PET imaging. The high ED due to ⁵²MnCl₂ is instead a limiting factor for human application. To exploit the potentiality of ⁵²Mn, whose low positron energy value is similar to that of ¹⁸F, this radionuclide should be linked to receptor-specific molecules that could improve its pharmacokinetic properties.

References

- 1. Hernandez, R. et al. 2017 Diabetes 66, 2163-2174
- 2. Graves, S.A. et al. 2017 Sci. Rep. 7, 3033
- 3. Mahoney, J.P., Small, W.J., 1968 J. Clin. Invest. 47, 643-653
- 4. ICRP, 2002. ICRP Publication 89. Ann. ICRP 32 (3-4)
- 5. ICRP, 2007. ICRP Publication 103. Ann. ICRP 37 (2-4)
- 6. Stabin, M. and Farmer, A., 2012 J. Nucl. Med. 53, 585