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Abstract: We study effi ciency and fairness properties of the equal cost shar-
ing with maximal participation (ECSMP) mechanism in the provision of a
binary and excludable public good. According to the maximal welfare loss
criterion, the ECSMP is optimal within the class of strategyproof, individu-
ally rational and no-deficit mechanisms only when there are two agents. In
general the ECSMP mechanism is not optimal: we provide a class of mech-
anisms obtained by symmetric perturbations of ECSMP with strictly lower
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maximal welfare loss. We show that if one of two possible fairness conditions
is additionally imposed, the ECSMP mechanism becomes optimal.
JEL Classification: D71
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1 Introduction

An excludable and non-rivalrous binary public good is a good that can be
used by several agents in a group, with the possibility of excluding some
agents from its consumption. However, once an agent gains access to the
public good his valuation is independent of who else has access to it.3 A
group of agents, each privately informed about his valuation of the good,
has to jointly decide on its provisioning. The good costs a fixed amount to
produce independent of the number of users. Two decisions have to be made:
(i) the set of users if the public good is provided, and (ii) the list of agents’
contributions (or individual prices).
An example of the kind of problem we have in mind is the provision of

online classes. Suppose a world-famous scientist considers offering a course
involving several online lectures. The lectures would be recorded and students
would be able to follow them at any time and any place. Of course, one
would first need to enroll by paying a price to be able to virtually attend
these lectures, which takes the form of, say, visiting a website and entering an
individualized password. In this sense exclusion is feasible and, perhaps more
importantly, implementable. As importantly, an enrolled student’s value
does not depend on who else has access to the lectures, hence there are no
allocation externalities. In other words, following the lectures does not entail
rivalry in consumption. Teaching takes time and its cost on the lecturer
would typically depend on the size of his class in a lecture hall. But in the
online context the time value of the lecturer would be independent of who
he is virtually addressing, as all he would have to do would be to lecture
in front of a camera. Hence his compensation could reasonably be designed
independent of the users of the service he provides. Now (i) who among the
grand set of potential students should have access to these online lectures,
and (ii) how should they share the compensation of the lecturer?
These decisions will typically depend on agents’valuations; however, since

these are private information they have to be elicited from the agents. In
other words, the mechanism that maps profiles of valuations into allocations
or decisions must be incentive compatible. We impose the requirement of
strategyproofness that guarantees that no agent can gain by misrepresenting
his true valuation irrespective of his beliefs about the valuations of other

3For instance, Deb and Razzolini (1999a, 1999b), Dobzinski et al. (2008), Moulin and
Shenker (2001), Mutuswami (2005, 2008), Osheto (2000, 2005), Olszewski (2004), and Yu
(2007).
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agents. A second basic requirement is that the mechanism be individually
rational, i.e. an agent who is a user cannot be charged more than his valuation
while a non-user cannot make a positive payment. This requirement ensures
that all agents participate voluntarily in the decision-making process. Finally,
we shall require that there be no-deficit, i.e. agents’ contributions should
cover the cost of provisioning the public good.
A simple and attractive mechanism that can be used to provide a binary

and excludable public good is the equal cost sharing with maximal participa-
tion (ECSMP) mechanism. It can be implemented by auction-like indirect
mechanisms.4 At every profile of valuations, the ECSMP mechanism selects
the allocation that maximizes (in the set-inclusion sense) the group of users
subject to the following requirements: (i) each user’s contribution is the cost
of provision divided by the number of users, (ii) this contribution is no greater
than his valuation, and (iii) all non-users pay zero. It is easy to verify that
this mechanism is well-defined at every profile and satisfies strategyproofness,
individual rationality and no-deficit.
It is well-known that strategyproofness, individual rationality and no-

deficit are incompatible with effi ciency. Since there is no rivalry in consump-
tion, excluding an agent with a strictly positive valuation is not effi cient
when aggregate valuation is above cost. Since individual rationality requires
that the contribution paid by each agent is not larger than his valuation of
the public good, agents will have incentives to misreport their own valuation
in order to lower their contribution. As a way out one could reduce prices,
possibly all the way to zero. But then one would violate the requirement of
no-deficit. In view of this incompatibility, a second-best approach is increas-
ingly being adopted in the literature on mechanism design. This approach
identifies a mechanism that minimizes the maximal welfare loss in the class
of all strategyproof and individually rational mechanisms.5

The welfare loss of a mechanism at a profile of valuations is the difference
between the aggregate welfare of the first-best and the aggregate welfare
of the mechanism evaluated at the profile. The maximal welfare loss of

4See Deb and Razzolini (1999a, 1999b).
5The worst-case welfare objective function is a well-established and widely-used crite-

rion. For applications in related areas, see Moulin and Shenker (2001), Moulin (2008),
and Juarez (2008a, 2008b) in the context of public good provision. See also Koutsoupias
and Papadimitriou (1999), Roughgarden (2002), and Roughgarden and Tardos (2002) in
the computer science literature on the price of anarchy, introduced to measure the effects
of selfish routing in a congested network.
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a mechanism is the largest welfare loss, taken over all profiles of valuations.
Then, each mechanism is evaluated according to its maximal welfare loss and
the goal is to select a mechanism that minimizes it. Since we are interested in
mechanisms satisfying individual rationality, it turns out that ineffi ciencies
arise from the exclusion (as users) of some (or all) agents who have strictly
positive valuations. The maximal welfare loss of a mechanism is then the
sum of the valuations of all non-users of the good at the preference profile
which maximizes this sum.
We show that when there are two agents, the ECSMP mechanism mini-

mizes maximal welfare loss in the class of all strategyproof, individually ratio-
nal and no-deficit mechanisms. However, this result does not hold in general:
we construct mechanisms which outperform ECSMP in terms of maximal
welfare loss. These mechanisms fail certain fairness properties, which are
inherent in ECSMP. We identify two such properties which we call weak
demand monotonicity and weak envyfreeness. When there are more than
two agents, these two properties come into conflict with our second-best no-
tion of effi ciency. In the class of all strategy-proof, individually rational and
no-deficit mechanisms which satisfy weak demand monotonicity or weak en-
vyfreeness, we show that the ECSMP mechanism minimizes maximal welfare
loss. Thus, if one wants to improve upon the level of "effi ciency" generated
by the ECSMP mechanism, one has to give up on these notions of fairness.
We say that a mechanism violates weak envyfreeness if there is a profile

of valuations where an agent with a lower valuation of the good is a user at
the cost of the exclusion of an agent with a higher valuation. This condition
is a weak notion of fairness in the sense that it is implied by the standard
conditions of envyfreeness6 or free entry.7 Weak demand monotonicity re-
quires that when the valuation of all agents (weakly) increases for the public
good, the set of users should not lose any member. This notion of fairness
is implied by demand monotonicity.8 These implications are discussed in
Section 5.

6See, for example, Sprumont (2013).
7See, for example, Deb and Razzolini (1999a, 1999b).
8See, for example, Ohseto (2000) and Deb and Razzolini (1999).
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2 Literature Review

Our paper complements the closely related paper of Dobzinski et al. (2008).
They show that the ECSMP mechanism is a maximal-welfare-loss minimizer
in the class of mechanisms that are strategyproof, budget balanced and that
satisfy an axiom called equal treatment. The authors write: "An interest-
ing research problem is to characterize the class of mechanisms obtained
by dropping the (admittedly strong) equal treatment condition." We do not
offer such a characterization because we do not claim that the ECSMP mech-
anism is the unique maximal-welfare-loss minimizer. However as mentioned
earlier, in the two agent case, we show that the ECSMP mechanism is a
maximal-welfare-loss minimizer in the larger class of mechanisms when the
equal treatment axiom is dropped and budget-balancedness is relaxed to the
no-deficit condition.
For more than two agents, the example that we provide shows that the

result in Dobzinski et al. (2008) does not hold when budget balancedness is
relaxed to the no-deficit condition (but equal treatment is maintained). The
Dobzinski et al. (2008) result is important because budget balancedness im-
plies a certain notion of effi ciency. Surpluses generate wastage when valuable
resources are not made use of. If however, surpluses can be committed to
other uses or agents (not under consideration), then budget balancedness may
seem to be a strong restriction. On the other hand, under our fairness crite-
ria, the budget balanced ECSMPmechanism is indeed a maximal-welfare-loss
minimizer.
Another related paper is Moulin and Shenker (2001). They consider the

provision of a binary, excludable public good when the cost function is a
submodular function of the set of users. They show that the mechanism as-
sociated with the Shapley value cost sharing formula (which corresponds to
the ECSMP mechanism for the case of a binary public good with fixed cost of
provision) is the unique mechanism that minimizes maximum welfare loss in
the class of mechanisms that are defined from a cross monotonic cost sharing
method and are group strategyproof, individually rational, non-subsidizing
(the cost shares are non negative), budget balanced, and that satisfy con-
sumer sovereignty. Cross monotonicity requires the price paid by a user to
weakly decrease when the set of users expands.9 Group strategyproofness is

9Cross monotonicity is related to the axiom of population monotonicity introduced and
analyzed in Thomson (1983a, 1983b).
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an incentive compatibility requirement when coalitions of agents are allowed
to coordinate messages for mutual benefit. Consumer sovereignty ensures
that every agent has a valuation that guarantees his participation irrespec-
tive of the valuations of other agents. Thus our result applies to a more
specialized setting than that in Moulin and Shenker (2001) but establishes
the optimality of the ECSMP mechanism amongst a much broader class of
mechanisms. We also note that strategyproofness is a more compelling axiom
than group strategyproofness from a decision-theoretic perspective. If agents
are ignorant of the valuations of other agents, assumptions about the ability
of coalitions to coordinate their messages for mutual benefit require stronger
justification. Group strategyproofness can also be a demanding requirement
in this setting (see Juarez (2008b)).

3 Model

A binary and excludable public good is to be provided to a club of agents.
The grand set of agents is N = {1, ..., n} and a club is a possibly empty
subset of N . If the good is provided to no agent, i.e., if the club is empty, no
cost is incurred. Providing the good to any nonempty club generates a cost
of 1, regardless of the size or the membership structure of the club.
Each agent i ∈ N has a type ti which gives his value for being in a club.

We assume that ti can take on any nonnegative value, in other words, the type
space is Ti = <+. A type profile is a vector t ∈ <n+, and is flexibly denoted
t = (ti, t−i) for any i, where t−i is a list of the types of all agents except for
i. Agents’payoffs are quasilinear in money and there are no informational
or allocative externalities. Hence i’s payoff is determined by his own type
and payment only. In particular it does not depend on who else might be
included in the club. To be precise, suppose that club S is formed, i’s type
is ti and his payment is pi. Then his payoff is Ii(S)ti − pi where Ii(S) is the
indicator function, i.e., Ii(S) = 1 if i ∈ S and Ii(S) = 0 otherwise.
A mechanism is a function m = (S, p) : <n+ → 2N ×<n, which, for every

type profile t ∈ <n+, determines a (possibly empty) club S(t), and a payment
pi(t) for every agent i ∈ N . Note that agents inside or outside the club could
be making or receiving payments.
We are interested in a domain of mechanisms which satisfy three basic

requirements: strategyproofness, individual rationality and no-deficit.

Definition 1 A mechanism m = (S, p) is admissible if it satisfies the follow-
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ing three conditions.

1. Strategyproofness (SP): for every i, t = (ti, t−i) and t′i, Ii(S(t))ti −
pi(t) ≥ Ii(S(t′i, t−i))ti − pi(t′i, t−i).

2. Individual Rationality (IR): for every i and t, Ii(S(t))ti − pi(t) ≥ 0.

3. No-deficit (ND): for every t,
∑

i∈N pi(t) ≥ 1 whenever S(t) 6= ∅, and∑
i∈N pi(t) ≥ 0 otherwise.

Let Φ be the class of admissible mechanisms. Notice that our conditions
are all ex post, eliminating the need to include a prior on the joint type space
in the model. Strategyproofness says that it is a weakly dominant strategy
for the agent to report his true type in the revelation game induced by the
mechanism. Individual rationality says that at every type profile each agent
receives at least his type-independent payoff from an outside option, which
we normalize to zero. Finally no-deficit says that at every type profile the
cost of the club is covered by agents’payments.
We next give without proof a classical result on the characterization of

strategyproof and individually rational mechanisms (see Myerson (1981) for
example).

Proposition 1 A mechanism m = (S, p) is strategyproof and individually
rational if and only if for every i ∈ N , there exist functions φi : <n−1

+ →
<+ ∪ {∞} and hi : <n−1

+ → <+ such that for every t = (ti, t−i)

1. if ti > φi(t−i), then i ∈ S(t) and pi(t) = φi(t−i)− hi(t−i),

2. if ti < φi(t−i), then i 6∈ S(t) and pi(t) = −hi(t−i),

3. if ti = φi(t−i), then either [i ∈ S(t) and pi(t) = φi(t−i) − hi(t−i)] or
[i 6∈ S(t) and pi(t) = −hi(t−i)].

Thus if m is strategyproof, then whether i will belong to the club at a
type profile or not depends on how his type compares to a cutoff φi(t−i)
determined by other agents’ types. If his type is above the cutoff, then
i belongs to the club. Furthermore his payment is the difference between
his cutoff and an amount hi(t−i) which, again, is only dependent on others’
types. If his type is below the cutoff, then he does not belong to the club and
his payment is the negative of hi(t−i). If, on the other hand, a mechanism
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m is generated by functions {φi, hi}i=1,...,n with these features, then it is
strategyproof. Furthermore a strategyproof mechanism m is individually
rational if and only if the functions hi are all nonnegative valued. In this
paper, we will always break the tie in case 3 of Proposition 1 in favor of
including the agent in the club. None of our results depend on this restriction.
The no-deficit requirement in our notion of admissible mechanisms im-

poses a nontrivial condition on the cutoffs and lump sum amounts associated
with a strategyproof and individually rational mechanism. A mechanism m
is admissible according to Definition 1 if and only if, at every t,

S(t) 6= ∅ implies
∑
i∈S(t)

φi(t−i)−
∑
i∈N

hi(t−i) ≥ 1, and

S(t) = ∅ implies hi(t−i) = 0 for all i ∈ N

where the functions {φi, hi}i=1,...,n generate m as in Proposition 1. Note
that an admissible mechanism necessarily balances the budget whenever it
forms the empty club: pi(t) = −hi(t−i) = 0 for all i. To the best of our
knowledge, there is no tractable characterization of the class Φ of admissible
mechanisms. We view this as the main diffi culty in front of mechanism design
in our environment.

Maximal Welfare Loss Effi ciency The classical notion of effi ciency dic-
tates in our model that a mechanism should either include all in the club,
or else, exclude all from the club. More precisely, m is effi cient if S(t) = N
whenever

∑
i∈N ti ≥ 1, and S(t) = ∅ otherwise. Hence under effi ciency the

public good is essentially non-excludable. This stems from the fact that once
the club has some member, the marginal net benefit of including another is
nonnegative.
Unfortunately this notion of effi ciency is incompatible with the properties

that admissible mechanisms have to satisfy. In other words, there is nom ∈ Φ
which is effi cient. Even though this is a well-known result, let us review the
argument as it applies in our environment for the special case of two agents.
We will concentrate on three type vectors, (1, 0), (0, 1) and (1, 1). Suppose

that m is admissible and effi cient. Then S(1, 0) = S(0, 1) = S(1, 1) = {1, 2}
by effi ciency. Furthermore p2(1, 0) = p1(0, 1) = 0 by IR. Now SP gives
p2(1, 1) = p1(1, 1) = 0 as well, leading to a budget deficit at (1, 1) and hence
to a contradiction with the assumption thatm is an admissible mechanism.10

10According to our definition of effi ciency the grand club must be formed at type vectors
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Given this impossibility, the literature has turned to relaxing either the
requirements that admissible mechanisms have to satisfy and/or effi ciency.
Of our interest is a relaxation of effi ciency called maximal welfare loss effi -
ciency. In order to define this notion, we need some preparations.
First-best welfare at a type profile t, which we will denote W FB(t), is the

total welfare in the society achievable under complete information. Hence

W FB(t) = max
{∑

i∈N
ti − 1, 0

}
.

First-best welfare serves as the benchmark to evaluate the performance of a
mechanism under incomplete information. For any m = (S, p) ∈ Φ and any
type profile t, let Wm(t) be the welfare generated by m at t, i.e.,

Wm(t) =
∑

i∈S(t)
ti −

∑
i∈N

pi(t).

Now let
WLm(t) = W FB(t)−Wm(t).

Thus WLm(t) is the welfare loss of m at t in comparison to the first-best.
Finally letMWLm denote the maximal welfare loss (MWL) of m taken over
all type profiles, i.e.,

MWLm = sup
t∈<n+

WLm(t).

Our mechanism designer will evaluate each mechanism m on the basis
of its maximal welfare loss MWLm and will be interested in employing a
mechanism whose maximal welfare loss is minimal.

Definition 2 For any subset Φ0 ⊆ Φ, we will say thatm∗ is maximal welfare
loss effi cient in Φ0 if

m∗ ∈ arg min
m∈Φ0

MWLm.

In what follows, we will investigate a particular mechanism, the equal cost
sharing with maximal participation mechanism, with respect to its maximal
welfare loss.

(1, 0) and (0, 1), although the empty club would have induced the same total welfare of
zero. However the argument would still work if we replaced (1, 0) and (0, 1) with (1, ε)
and (ε, 1) where ε is a small positive number.
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4 Equal Cost Sharing with Maximal Partici-
pation

We begin by defining the equal cost sharing with maximal participation (EC-
SMP) mechanism, which will be the main focus of our paper. For any set
S ⊆ N , let #S denote the cardinality of S.

Definition 3 The equal cost sharing with maximal participation (ECSMP)
mechanism mE = (SE, pE) is defined as follows: for every t

SE(t) =
⋃
{S ⊆ N\{∅} : for all i ∈ S, ti ≥

1

#S
}

pEi (t) =

{ 1
#SE(t)

if i ∈ SE(t),

0 otherwise.

The mechanism mE forms the largest club whose members can individu-
ally rationally and equally share cost. Indeed, for every t, ti ≥ 1/#SE(t) for
all i ∈ SE(t), in other words, the set {S ⊆ N : for all i ∈ S, ti ≥ 1/#S} of
clubs is closed under the union operation. To see this, take two clubs T and
T ′ in {S ⊆ N : for all i ∈ S, ti ≥ 1/#S}. Note that for all i ∈ T ∪ T ′, either
ti ≥ 1/#T ≥ 1/#(T ∪ T ′) or ti ≥ 1/#T ′ ≥ 1/#(T ∪ T ′).
Clearly mE ∈ Φ.11 Note that mE is in particular budget-balanced, i.e., the

sum of agents’contributions exactly cover the cost of the club. Furthermore
mE has the following anonymity property: the associated cutoff functions
and their arguments are independent of the names of the agents. If there are
three agents, for example,

φE1 (x, y) = φE2 (x, y) = φE3 (x, y) = φE3 (y, x).

To proceed, we will calculate the maximal welfare loss of mE.

Lemma 1 The maximal welfare loss of the ECSMP mechanism isMWLE =∑n
k=2 1/k.

Proof. We will first show that WLE(t) <
∑n

k=2 1/k. If
∑

i∈N ti < 1, then
W FB(t) = WE(t) = 0 giving WLE(t) = 0 as well. So take any t such

11Strategyproofness of mE follows because the following monotonicity property is sat-
isfied: if i ∈ SE(ti, t−i) and ti < t′i, then i ∈ SE(t′i, t−i).
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that
∑

i∈N ti ≥ 1 so that W FB(t) =
∑

i∈N ti − 1. There are two cases. If
SE(t) = N , then WE(t) =

∑
i∈N ti − 1 = W FB(t) and WLE(t) = 0. If

#SE(t) = n0 ∈ {0, 1, ..., n − 1}, then let (t(1), t(2), ..., t(n−n0)) be a listing
of the types of agents in N\SE(t) from highest to lowest, with ties broken
arbitrarily. We claim that t(k) <

1
n0+k

for every k = 1, ..., n − n0. If not, let
k′ be the largest k ∈ {1, ..., n − n0} such that t(k) ≥ 1

n0+k
. It follows that

t(k) ≥ 1
n0+k′ for all k ≤ k′ and SE(t) should have had n0 + k′ instead of n0

members, a contradiction. Hence

WLE(t) =
∑

i 6∈SE(t)

ti =

n−n0∑
k=1

t(k) <

n−n0∑
k=1

1/(n0 + k) ≤
n∑
k=2

1/k

giving WLE(t) <
∑n

k=2 1/k as we wanted to show.
Hence for all t,WLE(t) <

∑n
k=2 1/k and consequentlyMWLE ≤

∑n
k=2 1/k.

To finish, we establish the reverse inequality by taking a sequence of type
vectors at which mE generates welfare losses converging to

∑n
k=2 1/k. For all

suffi ciently small ε > 0, let tε = (1− ε, 1/2− ε, ..., 1/n− ε). Note SE(tε) = ∅
and if

∑
i∈N t

ε
i ≥ 1, which happens if ε is small enough, then WLE(tε) =∑

i∈N t
ε
i − 1 =

∑n
k=2 1/k− nε. Now as ε ↓ 0, WLE(tε)→

∑n
k=2 1/k, indicat-

ing that MWLE = supt′WLE(t′) ≥
∑n

k=2 1/k.

We will now show that when there are only two agents, there is no ad-
missible mechanism in Φ whose MWL is less than that of mE.

Proposition 2 The ECSMP mechanism mE is maximal welfare loss effi -
cient in Φ if N = {1, 2}.
Proof. By Lemma 1, MWLE = 1/2. Suppose MWLm < 1/2 for some
m = (S, p) ∈ Φ. We first claim that for all suffi ciently small ε > 0, we
must have S(1 − ε, 1/2 − ε) 6= ∅. Otherwise Wm(1 − ε, 1/2 − ε) = 0 and
WLm(1−ε, 1/2−ε) = 1/2−2ε givingMWLm ≥ limε↓0WLm(1−ε, 1/2−ε) =
1/2, a contradiction. Similarly we must also have S(1/2− ε, 1− ε) 6= ∅ for
all suffi ciently small ε > 0. Fix such ε. It follows that S(1 − ε, 1/2 − ε) =
S(1/2 − ε, 1 − ε) = {1, 2} as neither individual alone could individually
rationally cover the cost of a nonempty club at these type profiles. Now SP
and IR imply

S(1− ε, 1− ε) = {1, 2}
p1(1− ε, 1− ε) = p1(1/2− ε, 1− ε) ≤ 1/2− ε and
p2(1− ε, 1− ε) = p2(1− ε, 1/2− ε) ≤ 1/2− ε,

12



leading to a budget deficit at the type vector (1−ε, 1−ε). Hence (S, p) could
not have been admissible.

Remark 1 The ECSMP is not the unique admissible mechanism that is
maximal welfare loss effi cient. Consider a mechanism where the cutoffs are
symmetric and given by φi(tj) = 1 + ε− 2εtj for tj ≤ 1/2, and φi(tj) = 1/2
otherwise, with payments equal exactly to cutoffs. If ε is small enough, this
mechanism has the same MWL as the ECSMP mechanism, i.e., 1/2.

It turns out, however, that when N contains three agents or more, mE is
no longer maximal welfare loss effi cient in Φ. To establish this, we will later
present an example of an admissible mechanism which is MWL superior to
mE. We will first show, however, that there exist interesting subsets of Φ
wheremE is MWL effi cient even with n > 2 agents. To this end, we introduce
two distinct and arguably rather weak notions of fairness.

Definition 4 A mechanism m = (S, p) satisfies weak demand monotonicity
(wDM) if S(t) ⊆ S(t′) whenever ti ≤ t′i for all i ∈ N .

Definition 5 A mechanism m = (S, p) satisfies weak envyfreeness (wEF) if
for every i, j and t, i ∈ S(t) whenever j ∈ S(t) and ti > tj.

Note that neither condition has an imposition on how payments are deter-
mined. In a discussion section to follow, we will argue that these two condi-
tions are independent and that they are weaker than the demand monotonic-
ity, free entry and envy-freeness conditions that appear in the literature. Let
ΦwDM and ΦwEF denote the classes of admissible mechanisms satisfying wDM
and wEF respectively. It is clear that mE ∈ ΦwDM ∩ ΦwEF .

Proposition 3 The ECSMP mechanism is maximal welfare loss effi cient in
ΦwDM ∪ ΦwEF .

Proof. We will prove this result here for the special case when N = {1, 2, 3}.
The argument extends to n > 3 agents at the cost of some investment in
notation as we show in Appendix 1. By Lemma 1, MWLE = 5/6.
We first claim that if MWLm < 5/6, then, for ε > 0 small enough,

m forms a nonempty club at the type profiles (1 − ε, 1/2 − ε, 1/3 − ε) and
(1/2− ε, 1− ε, 1/3− ε). If not, the welfare loss of m at these profiles would
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be 5/6−3ε, and taking the limit as ε falls to zero would giveMWLm ≥ 5/6,
a contradiction.
Now supposem = (S, p) satisfies SP, IR and ND, and thatMWLm < 5/6,

and fix a suffi ciently small ε > 0 such that S(1 − ε, 1/2 − ε, 1/3 − ε) and
S(1/2− ε, 1− ε, 1/3− ε) are both nonempty.
Weak demand monotonicity: Suppose that m satisfies wDM as well.

We claim that 3 ∈ S(1− ε, 1− ε, 1/3− ε). To see this, first note that, by the
observation above, m forms nonempty clubs at the type profiles (1− ε, 1/2−
ε, 1/3− ε) and (1/2− ε, 1− ε, 1/3− ε). If 3 belongs to either of these clubs,
then 3 ∈ S(1− ε, 1− ε, 1/3− ε) as well by wDM. If not, then,

S(1− ε, 1/2− ε, 1/3− ε) = {1, 2} = S(1/2− ε, 1− ε, 1/3− ε)

by ND and IR. Now SP and IR give

{1, 2} ⊆ S(1− ε, 1− ε, 1/3− ε),
p1(1− ε, 1− ε, 1/3− ε) = p1(1/2− ε, 1− ε, 1/3− ε) < 1/2, and

p2(1− ε, 1− ε, 1/3− ε) = p2(1− ε, 1/2− ε, 1/3− ε) < 1/2.

Hence 3 ∈ S(1− ε, 1− ε, 1/3− ε) so that no-deficit obtains, as we wanted to
show. Now the same reasoning applies and 1 ∈ S(1/3 − ε, 1 − ε, 1 − ε) and
2 ∈ (1 − ε, 1/3 − ε, 1 − ε). Using SP and IR once again we conclude that
S(1 − ε, 1 − ε, 1 − ε) = {1, 2, 3} but no agent makes a payment larger than
1/3− ε at this type profile. This leads to a budget deficit, and therefore, to
a contradiction. Hence m cannot satisfy wDM.
Weak envy freeness: Suppose now that m satisfies wEF. Then 1 ∈

S(1/2− ε, 1− ε, 1/3− ε) since otherwise S(1/2− ε, 1− ε, 1/3− ε) = {2, 3}
and wEF fails. Similarly 2 ∈ S(1− ε, 1/2− ε, 1/3− ε). Consequently

{1, 2} ⊆ S(1− ε, 1− ε, 1/3− ε),
p1(1− ε, 1− ε, 1/3− ε) = p1(1/2− ε, 1− ε, 1/3− ε) < 1/2, and

p2(1− ε, 1− ε, 1/3− ε) = p2(1− ε, 1/2− ε, 1/3− ε) < 1/2.

Thus we must have, as in the case of wDM, 3 ∈ S(1 − ε, 1 − ε, 1/3 − ε)
to avoid a budget deficit. Same reasoning applies in getting 1 ∈ S(1/3 −
ε, 1− ε, 1− ε) and 2 ∈ (1− ε, 1/3− ε, 1− ε). Consequently, by SP and IR,
S(1 − ε, 1 − ε, 1 − ε) = {1, 2, 3}, with pi(1 − ε, 1 − ε, 1 − ε) < 1/3 for all i,
and m fails ND.
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It is instructive to juxtapose the proofs of Propositions 2 and 3 in order
to understand the complications that arise with three or more agents. Both
proofs rely on exploiting the behavior of mechanisms at hand at certain
critical type profiles. For small enough ε > 0, take the profile (1− ε, 1/2− ε)
in the two-agent case, and the profile (1−ε, 1/2−ε, 1/3−ε) in the three-agent
case. To beat mE in MWL, an alternate mechanism must form nonempty
clubs at these profiles. Now in the former scenario, this nonempty club is
necessarily the grand coalition {1, 2}. In the latter, however, the nonempty
club is either the grand coalition {1, 2, 3}, or one of the doubletons {1, 2}
and {1, 3}. It is precisely this multiplicity of possible clubs at critical profiles
that creates the complications with three or more agents. We need, in order
to attain a budget deficit at the profile (1 − ε, 1 − ε, 1 − ε), that at every
permutation of the profile (1 − ε, 1 − ε, 1/3 − ε) the agent whose type is
1/3 − ε should belong to the club formed. Unfortunately, admissibility of a
mechanism alone may fail to lead to this conclusion as our Example 1 below
shows.
In order to show that Proposition 3 is tight, in other words, to show that

a failure of wDM and wEF leads to the suboptimality of mE, we will next
present a class of admissible mechanisms obtained from small perturbations
of mE. In doing so we will make use of the anonymity property, which is also
satisfied by the perturbations by construction.

Example 1 Suppose N = {1, 2, 3} and take ε ∈ (0, 1/24). Consider the
following perturbation of the ECSMP mechanism mE, which we call mε and
present together with mE for comparison purposes. Both mE and mε are
anonymous and the diagrams give the cutoffs, denoted φk and φ

ε
k respectively,

of some k ∈ N as a function of (ti, tj) where i, j and k are distinct agents in
N .
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The cutoffs for mE and mε

In both diagrams the arguments of φk and φ
ε
k are omitted to economize

on space. For both mechanisms, at any vector (ti, tj) which lies at the border
of two or more distinct regions, the effective cutoff is the smallest one. At
(ti, tj) = (1/3, 1/2) for example, mE imposes a cutoff of 1/3 on agent k.
Similarly at (ti, tj) = (2/3 + ε, 1/2), mε imposes the cutoff 1/3 − ε on k.
Both mechanisms charge each member of any nonempty club exactly his
cutoff. Hence their hi functions are zero-valued.
We would like to point out various features of the mechanism mε in Ex-

ample 1.

1. Generated by symmetric cutoff functions as given in the plot, mε satis-
fies SP. Furthermore since the associated hi functions are zero-valued,
IR obtains and members of any club pay their cutoffs. In Appendix 2,
we exhibit how mε behaves in detail by partitioning <3

+ into 6 distinct
sets of type vectors and analyzing them individually.

2. As ε vanishes, the mechanism mε converges (pointwise) to mE. Hence
we interpret mε to be a perturbation of mE.

3. In order to calculate the maximal welfare loss MWLε of mε, take the
type vectors (1/3 − ε, 1/2, 1) and (1/3 + 2ε, 1/3 + 2ε, 1) or any one of
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their permutations. At type vectors suffi ciently close to these vectors
from below -as represented by dots in the diagram- we will now show
that mε forms the empty club. Let us verify this leisurely. First take
(1/3 − ε, 1/2, 1) and a suffi ciently small δ > 0. Omitting subscripts
note that the cutoffs imposed by mε are

φε(1/3− ε− δ, 1/2− δ) = 1,

φε(1/3− ε− δ, 1− δ) = 1/2, and

φε(1/2− δ, 1− δ) = 1/3− ε.

Hence if t is suffi ciently close to (1/3 − ε, 1/2, 1) from below, then
S(t) = ∅, causing a welfare loss of 5/6− ε.
Similarly if we take (1/3 + 2ε, 1/3 + 2ε, 1) and a small δ > 0, we get

φε(1/3 + 2ε− δ, 1/3 + 2ε− δ) = 1,

φε(1/3 + 2ε− δ, 1− δ) = 1/2.

Note that as ε < 1/24, 1/3+2ε < 1/2. Hence at type vectors suffi ciently
close to (1/3 + 2ε, 1/3 + 2ε, 1) from below, no agent meets his cutoff
and the empty club is formed. The associated welfare loss this time
is 2/3 + 4ε < 5/6 as ε < 1/24. In either case MWLε < MWLE.
Appendix 2 demonstrates in detail the calculation of MWLε.

4. An interesting question is to identify that ε for which MWLε is the
lowest among {mε : 0 < ε < 1/24}. This obtains by equating the two
candidates forMWLε above: 5/6−ε = 2/3+4ε, which gives ε = 1/30.
In other words

inf
0<ε<1/24

MWLε = MWL1/30 =
4

5
.

5. Our perturbation mε fails both wDM and wEF. For example, mε forms
the club {2, 3} at the type profile (1/3 + 2ε, 2/3 + ε, 1/3). However,
when all types are larger at (1, 1, 1/3 + ε), mε excludes 3 and forms the
club {1, 2}. This is a failure of wDM. Furthermore, the fact that agent
1 does not belong to the club {2, 3} at (1/3 + 2ε, 2/3 + ε, 1/3) even
though t1 > t3 is a failure of wEF. This was of course to be expected
because of Proposition 3 above: any mechanism which satisfies wDM
or wEF cannot possibly be superior to mE in MWL.
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6. We would like to re-emphasize that mε is by construction anonymous:
for every i, t and permutation π on {1, 2, 3},

mε
i (t1, t2, t3) = mε

π(i)(tπ(1), tπ(2), tπ(3)).

Let ΦA be the class of anonymous and admissible mechanisms. Thus
the ECSMP mechanism mE is not MWL effi cient in ΦA as mε ∈ ΦA.
This notion of anonymity is, of course, stronger than anonymity in util-
ity terms, which appears in Sprumont (2013). It appears in Dobzinski
et al. (2008) where it is called equal treatment.

7. As opposed to the equal sharing mechanism mE, its perturbation mε

is not budget balanced. However the budget surplus induced by mε is
at most 6ε and this is not large enough to offset the effi ciency gain in
the worst-case scenario. Details are in Appendix 2.

5 Discussion

To the best of our knowledge, wDM and wEF are novel modifications of
closely related (and stronger) conditions that appear in the literature. Note
that there is no logical implication between our conditions. To see this sup-
pose N = {1, 2, 3}. Suppose that S(t) = {1} if t1 ≥ 1 and S(t) = ∅
otherwise, with agent 1 being charged the full cost of the club whenever he
is in the club. This mechanism is in Φ, it satisfies wDM and fails wEF. On
the other hand consider the mechanism given by S(t) = {i} if tj ≤ 1, tk ≤ 1
and 1 ≤ ti, with i, j and k distinct, and and S(t) = ∅ otherwise. Suppose
that the agent in the club covers the cost of the club fully. This mechanism
belongs to Φ, satisfies wEF but fails wDM. Thus the class ΦwDM ∪ΦwEF on
which me is MWL effi cient is a strict superset of both ΦwDM and ΦwEF .
We note that Proposition 2 is not a corollary to Proposition 3, as there

exist admissible mechanisms outside ΦwDM ∪ΦwEF in 2-agent environments.
As an example, consider the mechanism defined by S(t) = ∅ if t1 < 1,
S(t) = {1, 2}, p1(t) = 1 and p2(t) = 0 if 1 ≤ t1 < 2 and S(t) = {1} and
p1(t) = 1 if t1 ≥ 2.
Our wDM condition is a straightforward weakening of the demand monotonic-

ity condition that appears in Ohseto (2000), which requires, on top of our
wDM, that S(t) = S(t′) whenever ti ≤ t′i for every i ∈ S(t) and t′i ≤ ti for
every i 6∈ S(t).
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Furthermore for any admissible mechanism, our wEF condition is implied
by the free entry condition which appears in Deb and Razzolini (1999). A
mechanism m satisfies free entry if for every i, j and t, i ∈ S(t) whenever
j ∈ S(t) and ti > pj(t). Suppose that m is a admissible mechanism which
satisfies free entry. If for some t, i and j, j ∈ Sm(t) and ti > tj, then
ti > pmj (t) as well by individual rationality. Consequently i ∈ Sm(t) by free
entry. This establishes that m satisfies wEF as well.
A different condition that implies wEF is the classical notion of envyfree-

ness (see, for example, Sprumont 2013). A mechanism m is envyfree if for
every t, i and j, Ii(S(t))ti − pi(t) ≥ Ij(S(t))ti − pj(t). Suppose that m is a
admissible mechanism. If at some type profile t, j ∈ S(t) and i 6∈ S(t) even
though ti > tj, then i envies j since

Ii(S(t))ti − pi(t) = 0

< ti − tj
≤ Ij(S(t))ti − pj(t)

where the weak inequality follows by individual rationality. Hence if m is an
envyfree and admissible mechanism, it also satisfies wEF.

6 Conclusion

The ECSMP mechanism is a simple and appealing procedure with desir-
able incentive properties. We show in this paper that, in general, it is not
maximal welfare loss effi cient. Hence a mechanism designer with the worst-
case-scenario in mind, may opt to employ a different mechanism, perhaps
a small perturbation of ECSMP which may lead to budget surplus as we
exhibit in Example 1. If the designer is restricted to use a mechanism with
certain fairness properties (as embodied in our weak demand monotonicity or
weak envyfreeness conditions), however, then ECSMP cannot be improved
upon.
We leave for future work the investigation of the consequences of re-

placing the no-deficit condition in our definition of admissible mechanisms
with budget balance. As we remarked above, our perturbation of the EC-
SMP mechanism which fares better in terms of maximal welfare loss leads
to budget surpluses. Hence it may very well be that ECSMP mechanism
is maximal welfare loss effi cient within the class of admissible and budget
balanced mechanisms.
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We also leave for future work the ambitious question of how to solve the
mechanism design problem

min
m∈Φ

MWLm.

We perceive the main diffi culty here to be the absence of a tractable charac-
terization of the set Φ of strategyproof, individually rational and no-deficit
mechanisms.
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Appendix 1: Proof of Proposition 3

Let N = {1, ..., n} where n > 3. Here we will generalize the argument
presented in the main text for n = 3. To this end we will need to develop some
notation. For any type vector t ∈ <n+, let P (t) be the set of all permutations
of t. In other words t′ ∈ P (t) iff there is a bijection π : N → N such that for
every i, ti = t′π(i). Now for any ε ∈ (0, 1/n) and any k = 1, ..., n, define the
type vector tk(ε) as follows:

tki (ε) =

{
1− ε if i ≤ k,

1/i− ε if k < i.

Hence

t1(ε) = (1− ε, 1/2− ε, 1/3− ε, ..., 1/n− ε),
t2(ε) = (1− ε, 1− ε, 1/3− ε, ..., 1/n− ε),

· · ·
tn(ε) = (1− ε, ..., 1− ε).

Now let
T k(ε) = P (tk(ε)) for every 1, ..., k.

Note that k also indicates the number of agents whose types are 1 − ε in
every element of T k(ε). Furthermore if k > 1, then for every t ∈ T k(ε), there
exists some t′ ∈ T k−1(ε) such that

ti =

{
t′i if t′i 6= 1/k − ε, and

1− ε if t′i = 1/k − ε.

Hence for every k > 1 and every t ∈ T k(ε), there exist k vectors t1, ..., tk ∈
T k−1(ε) such that t is obtained by increasing the type of the agent with
1/k − ε in any one of t1, ..., tk to 1− ε.
If ε is small enough, any mechanism which has a lower maximal welfare

loss than ECSMP must form a nonempty club at all members of T k(ε) for
every k. We record this rather straightforward observation next.

Lemma 2 If m = (S, p) ∈ Φ and MWLm < MWLE, then there exists
ε̄ > 0 such that for every ε ∈ (0, ε̄) and t ∈

⋃n
k=1 T

k(ε), S(t) 6= ∅.
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Proof. Take a mechanism m = (S, p) ∈ Φ with MWLm < MWLE. Recall
that MWLE =

∑n
i=2 1/i. By construction of the sets {T k(ε)}k=1,...,n, if

t ∈ T k−1(ε) and t′ ∈ T k(ε), then
∑n

i=1(t′i − ti) = 1 − 1/k > 0 for k > 2.
Consequently for any list {tk}k=1,...,n where tk ∈ T k(ε) for every k, the number∑n

i=1 t
k
i is increasing in k. Thus if S(tk) = ∅ for all k, thenWLm(tn) > · · · >

WLm(t1). So it suffi ces to show that S(t) 6= ∅ for every t ∈ T 1(ε). Suppose,
towards a contradiction, that for every ε̄ > 0, there exists some ε ∈ (0, ε̄)
and t(ε) ∈ T 1(ε) such that S(t(ε)) = ∅. Then there exists a sequence
{εq} ↘ 0 and a corresponding sequence of type vectors tq ∈ T 1(εq) such that
S(tq) = ∅ for all q. Note that such tq is a permutation of the type vector
(1 − ε, 1/2 − ε, ..., 1/n − ε). Then WLm(tq) →

∑n
i=2 1/i, a contradiction to

the hypothesis MWLm <
∑n

i=2 1/i. Thus our supposition is false: there
exists ε̄ > 0 such that if ε ∈ (0, ε̄) and t ∈ T 1(ε), S(t) 6= ∅.

From now on we will fix such small ε ∈ (0, ε̄) and to economize on notation
we will write T k instead of T k(ε). We will also denote by t∗ the type vector
(1 − ε, ..., 1 − ε), the unique element of T n. Our goal is to show that if
(1) m = (S, p) is strategyproof and individually rational, (2) MWLm <∑n

k=2 1/k and (3) m satisfies wDM or wEF, then m runs a budget deficit at
some t ∈

⋃n
k=1 T

k.
To begin, take a strategyproof and individually rational mechanism m =

(S, p) such that MWLm <
∑n

k=2 1/k.

Case 1: Weak Demand Monotonicity Suppose that m additionally
satisfies wDM. Write

T n−1 = {t1,n−1, t2,n−1, ..., tn,n−1},

where for every k, tk,n−1
k = 1/n− ε and tk,n−1

i = 1− ε for all i 6= k. Note that
the only difference between the type profiles tk,n−1 and t∗ is agent k’s type:

t∗i =

{
tk,n−1
i if i 6= k, and

1− ε > tk,n−1
k if i = k.

This observation has an important consequence, which we will use recursively
below. Note that S(tk,n−1) 6= ∅ by the Lemma above. Now if k ∈ S(tk,n−1),
then, by SP and IR,

k ∈ S(t∗) and pk(t∗) = pk(t
k,n−1) ≤ 1/n− ε.
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There are two possibilities: (1) k ∈ S(tk,n−1) for every k and m runs a
budget deficit at t∗, in which case the proof for Case 1 is complete, or (2)
k′ 6∈ S(tk

′,n−1) for some k′. Suppose the latter case, and in particular, without
loss of generality, k′ = 1.
Now consider the following subset of T n−2:

T n−2(1) = {t ∈ T n−2 : t1 = 1/n− ε}.

Hence t ∈ T n−2(1) iff n− 2 agents have type 1− ε, agent 1 has type 1/n− ε
and a different agent has type 1

n−1
−ε. Now to pin down this different agent,

we write
T n−2(1) = {t2,n−2, t3,n−2, ..., tn,n−2}.

where tk,n−2
k = 1

n−1
− ε. Note that for every k > 1, t1,n−1

1 = tk,n−2
1 = 1/n− ε

and

t1,n−1
i =

{
tk,n−2
i if i 6= k, and

1− ε > tk,n−2
k if i = k.

Note that since t1,n−1
i ≤ tk,n−2

i for all i and since we supposed 1 6∈ S(t1,n−1)
above, wDM implies 1 6∈ S(tk,n−2) for any k = 2, ..., n. However S(tk,n−2) 6= ∅
by the Lemma. Now using the exact same logic of the previous paragraph,
if some k ∈ S(tk,n−2), then, by SP and IR,

k ∈ S(t1,n−1) and pk(t1,n−1) = pk(t
k,n−2) ≤ 1

n− 1
− ε.

Once again, there are two possibilities: (1) k ∈ S(t1,n−1) for all k > 1,
leading to a budget deficit and the termination of the proof of Case 1, or (2)
k′ 6∈ S(tk

′,n−2) for some k′ > 1. Suppose the latter case and, without loss of
generality, k′ = 2.
Continuing in this fashion, suppose k 6∈ S(tk,n−k) for all k = 1, ..., n − 2

and write
T 1(1, 2, ..., n− 2) = {tn−1,1, tn,1}.

Now wDM implies that agents 1, ..., n− 2 should belong to neither S(tn−1,1)
nor S(tn,1). However, since a club must be formed at both type vectors, we
must have

S(tn−1,1) = S(tn,1) = {n− 1, n}.
This follows because tn−1,1

n−1 = tn,1n = 1/2− ε and tn−1,1
n = tn,1n−1 = 1− ε. Thus

at either type vector no agent can individually rationally finance the club
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alone. Hence, by SP and IR,

n− 1, n ∈ S(tn−2,2),

pn−1(tn−1,1) = pn−1(tn−2,2) ≤ 1/2− ε, and
pn(tn,1) = pn(tn−2,2) ≤ 1/2− ε.

But now to avoid a budget deficit at tn−2,2 agent n− 2 must be included in
S(tn−2,2) which is the contradiction we need to finish the proof of Case 1.

Case 2: Weak Envyfreeness Now suppose that m additionally sat-
isfies wEF . Define for every k = 1, ...., n− 1 and every t ∈ T k

Nk
k (t) = {i ∈ N : ti = 1− ε} and

Nk
k+1(t) = {i ∈ N : ti ≥

1

k + 1
− ε}.

Note that Nk
k (t) and Nk

k+1(t) differ by a unique element, and this is the agent
whose type is 1

k+1
− ε. Call this agent i∗(t), the agent with the highest type

at t which is not 1− ε. It follows that

Nk
k+1(t) = Nk

k (t) ∪ {i∗(t)}.

Claim: For every k = 1, ..., n− 1 and every t ∈ T k, Nk
k+1(t) ⊆ S(t).

Proof of the claim: We will use induction. Let k = 1 and take any
t ∈ T 1. Since S(t) contains some agent, it contains the agent with type 1−ε.
In other words, N1

1 (t) ⊆ S(t). However we cannot have N1
1 (t) = S(t) as

this would either violate IR, or lead to a budget deficit. Hence S(t) contains
other agents and one of these must be i∗(t) by wEF. Thus

N1
1 (t) ∪ {i∗(t)} = N1

2 (t) ⊆ S(t).

Now suppose, as induction hypothesis, that for some k ∈ {2, ..., n},
Nk−1
k (t) ⊆ S(t) for all t ∈ T k−1. Take any t ∈ T k. There exist, by con-

struction of the sets T 1, ..., T n, type vectors t1, ..., tk ∈ T k−1 such that for
every l = 1, ..., k

ti =

{
tli if i 6= i∗(tl), and

1− ε if i = i∗(tl).
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It follows that
i∗(tl) ∈ Nk−1

k (tl) ⊆ S(tl).

Furthermore by SP and IR

i∗(tl) ∈ S(t) and

pi∗(tl) ≤ 1/k − ε for every l.

Note that {i∗(tl) : l = 1, ..., k} = Nk
k (t), thus Nk

k (t) ⊆ S(t). But Nk
k (t)

cannot cover the cost of the club at t. Hence either there is budget deficit
at t, or there is at least one more member in S(t). By wEF this member is
i∗(t) and

Nk
k (t) ∪ {i∗(t)} = Nk

k+1(t) ⊆ S(t)

proving the claim.

To finish the proof of Proposition 2, not that we have for all t ∈ T n−1

N = Nn−1
n (t) ⊆ S(t)

where the equality is by construction of the sets Nk
k+1(t) and the set inclusion

is by the claim. Since S(t) ⊆ N as well by definition, S(t) = N for all
t ∈ T n−1. By SP and IR, therefore

S(t∗) = N and

pi(t
∗) ≤ 1/n− ε for all i,

leading to a budget deficit at t∗. �
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Appendix 2: Perturbation of ECSMP

In this appendix, we will elaborate on the family of mechanismsmε which
we introduced in Example 1. Suppose that N = {1, 2, 3} and take ε ∈
(0, 1/24). We would like to re-emphasize that mε → mE pointwise as ε→ 0
and that mε, just like mE, is an anonymous mechanism.
We will describe mε in a series of diagrams, each corresponding to a

particular interval of t3 values in the (t1, t2) space. Sincemε is anonymous, we
need only depict its behavior above the 45 degree line in each diagram. Below
the 45 degree line, the mechanism behaves symmetrically, with the roles of
agent 1 and 2 reversed. In every diagram, we will only indicate the payments
made by the agents. The club that forms at any type profile is precisely the
set of agents for whom a payment is specified in the corresponding area of a
diagram. We will denote by W ε, WLε and MWLε, the welfare, the welfare
loss and the maximal welfare loss of the mechanism mε.
For 0 ≤ t3 < 1/3−ε and 1/3−ε ≤ t3 < 1/3+2ε, mε is defined as follows:

The mechanism mε behaves identical to mE when t3 < 1/3 − ε with
payments pε2 = 1 whenever Sε = {2}, and pε1 = pε2 = 1/2 whenever Sε =
{1, 2}. In particular supt:t3<1/3−εWLε(t) = 5/6 − ε, with the supremum
as the limit of type vectors converging from below to (1/2, 1, 1/3 − ε) and
(1, 1/2, 1/3− ε).

28



Next consider the case 1/3−ε ≤ t3 < 1/3+2ε. Here pε2 = 2/3+ε and pε3 =
1/3−ε whenever Sε = {2, 3}. The club {2, 3} is formed in order to cover the
area where mE suffers large welfare losses, i.e., when types are approaching
from below to (1/2, 1, 1/3). At any t where Sε = {2, 3}, t1 ≥ 1/3 + 2ε > t3.
Hence mε excludes higher type agents from clubs at the benefit of lower type
agents, and therefore violate wEF. Furthermore,mε also violates wDM: when
all types increase the club formed could change from {2, 3} to {1, 2} or from
{1, 3} to {1, 2}. Note also that supt:t3∈[1/3−∈,1/3+2ε) WLε(t) = 2/3 + 4ε which
falls short of MWLE = 5/6 as we took ε < 1/24. This supremum is the
limit of welfare losses that converge (from below) to the critical type vector
(1/3 + 2ε, 1, 1/3 + 2ε).
We move on to higher values for t3. When 1/3 + 2ε ≤ t3 < 1/2 and

1/2 ≤ t3 < 2/3 + ε, mε is defined as follows:

Inspecting type profiles close to (1/3−ε, 1, 1/2) and (1/3+2ε, 1/2, 2/3+ε),
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we find

sup
t:t3∈[1/3+2ε,2/3+ε)

WLε(t) = max{5/6− ε, 1/2 + 3ε}

< 5/6

= MWLE.

Budget surpluses begin in this range for t3. The largest surplus is 6ε which
appears in the set

[1/3 + 2ε, 2/3 + ε)× [1/3 + 2ε, 2/3 + ε)× [1/3 + 2ε, 2/3 + ε).

As we will see below these surpluses are necessary to avoid budget deficits
at higher values for t3.
Further, note that clubs {1, 2} form in when 1/3 + 2ε ≤ t3 < 1/2 at type

vectors where t3 exceeds t1 or t2, indicating another failure of wEF. These
clubs disappear as t3 rises beyond 1/2. Take the club {1, 2} which forms
when 1/3 − ε ≤ t1 < 1/3 + 2ε, t2 ≥ 2/3 + ε and 1/3 + 2ε ≤ t3 < 1/2 for
example. As t3 increases beyond 1/2, this club disappears and in its stead,
{2, 3} forms. These are violations of wDM which are analogous to those that
occur for lower values of t3, with the names of the agents interchanged.
Finally, for t3 ≥ 2/3 + ε, mε is defined as follows:
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The unique difference between the two diagrams is that for t3 < 1 the empty
club is formed at low values of (t1, t2) whereas when t3 ≥ 1, the singleton
club {3} forms at corresponding values of (t1, t2). Note that

sup
t:2/3+ε≤t3<1

WLε(t) = max{5/6− ε, 2/3 + 4ε} < 5/6 = MWLE

as ε < 1/24. Furthermore

sup
t:t3≥1

WLε(t) = 6ε < 5/6 = MWLE

and this is caused solely by budget surpluses.
The new club {1, 3} which appears when 2/3 + ε ≤ t3 < 1 serve the

purpose of keeping the welfare loss below 5/6. However they produce an
important side effect. Take, for example, the club {1, 3} that forms when
1/3 − ε ≤ t1 < 1/3 + 2ε and 1/3 + 2ε ≤ t2 < 1/2. First note that this is
a violation of wEF. Next, since agent 1 now has a lower cutoff, 1/3 − ε, his
payment is lower in every club formed when his type increases and other two

31



types remain constant. In particular when t1 > 2/3 + ε, note that budget is
exactly balanced. This gives the rationale for budget surplus in the previous
plot in the same area when 1/2 ≤ t3 < 2/3 + ε.
As a final note, equating 5/6 − ε = 2/3 + 4ε we find ε = 1/30, the

value for ε which induces the lowest maximal welfare loss, 4/5, in the class
{mε : 0 < ε < 1/24}.
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