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Abstract

When dealing with absolute quantification of the tracer kinetics in
Positron Emission Tomography (PET), one of the most reliable and widely
used family of methods are the physiologically-consistent compartmen-
tal Ordinary Differential Equation (ODE) models introduced in the 70s
mainly by Sokolov and Patlak.

In this work we introduce the kinetic Neural Network (kNN), a novel
ODE-based technique for absolute quantification inspired by compartmen-
tal models and Neural Networks commonly used in Deep Learning.
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We applied this method on the PET Grand Challenge 2018 consisting
in simulated PET images of the same subjects before and after an in-
tervention. At last, we compared the derived parameter images by using
Hostelling’s t-squared statistic to evaluate the regions of the brain affected
by the treatment.

Keywords: Kinetic Models, Positron Emission Tomography, Ordinary Differ-
ential Equations, Neural Networks.

1. Introduction to Tracer Kinetics Models

Positron Emission Tomography (PET) is a nuclear medical imaging technique
that produces an image of metabolic processes in the body. The PET scanner
detects pairs of gamma rays originated from the annihilation of a positron emit-
ting radioactive element (as the 18-Fluore-deoxy-glucose or 18FdG), injected
into the body.

One of the peculiarities of PET stands in the possibility to reconstruct a
list mode acquisition as a time series of images. This allows the researchers to
study the evolution of the tracer kinetics [8, 4]. A tracer is a small quantity
of substance used for the purpose of traking the kinetics of a traced molecule
For instance 18FdG is a tracer for glucose. In fact the tissues cannot distinguish
such molecule from the glucose and hence it follows the same kinetics of the
traced.

1.1. What are compartment models

A compartment model [1, 3, 5] is a type of mathematical model used for de-
scribing how materials or energies are transmitted among the compartments of
a system. Each compartment is assumed to be a homogeneous entity. Hence
a compartment represents, in medical application, a tissue (or homogeneous
group of tissues) exchanging material at the same speed with another.
The kinetics of the material is described by an Ordinary Differential Equations
(ODE) system with as unknown functions the concentration of the considered
material in each compartment.

The Sokolov model [7] (1970s) is the main model studying the kinetics of
the tracer 18FdG in the brain. It uses a sequence of PET reconstructed images
as input.

The model, represented in Fig. 1, is built under the hypothesis that the
tracer, injected in the plasma Cp is excanged with the brain tissue Cf , and
part of it, called Cb undergoes an irreversible chemichal bound. Defined the
volume fraction of the compartment Cp as Vb, it’s easy to compute the joint
volume fraction of Cf and Cb as 1 − Vb. Since it is impossible from a PET
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Figure 1: Grafical representation of the Sokolov Model.

image to distinguish the compatments, the PET-derived measured signal C at
each time will be a weigthed sum between the tracer concentration of all the
compartments, with the volume fractions as weights.
Under these assumptions we can write this model as the following ODE system:

.
Cp = u(t) −k1Cp +k2Cf.
Cf = k1Cp −k2Cf −k3Cf.
Cb = k3Cf
C(t) = VbCp(t)+ (1− Vb) (Cf (t) + Cb(t))

(1)

An ODE model describing the kinetics of the tracer can be written in a more
general form. Under the assumptions that the tracer:

1. can be measured independently from the traced

2. follows the dynamics of the traced and do not perturb the state of the
system (small quantity)

3. is kinetically indistinguishable from the traced

the model goes under the category of Linear Time-Invariant model in state-space
form (LTI state-space) and can be witten as follows{ .

x = Ax+Bu , x(0) = x0
y(t) = Cx(t)

(2)

where u is the input, y the neasured output and the system is determined by
(A,B,C).
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For instance, the Sokolov model decribed in (1) can be rewritten as follows:

A =

 −k1 k2 0
k1 −(k2 + k3) 0
0 k3 0

 ,

B = (1, 0, 0),

C = (Vb, 1− Vb, 1− Vb)

(3)

with x = [Cp, Cf , Cb], and (with a small notation abuse) y(t) = C(t).

1.2. Analytical solution of compartment models

The system (A,B,C) is equivalent to the direct input-output relation

y(t) = Cx(t) = (C exp(tA) B) ∗ u(t) , (4)

where ∗ is the convolution operator. This direct formula comes from the general
solution of the ODE

.
x = Ax+Bu

which is given by

x(t) = exp(At)

∫ t

0

exp(−Aτ)Bu(τ)dτ =

=

∫ t

0

exp(A(t− τ))Bu(τ) dτ = (exp(At)B) ∗ u(t).

In fact, since the vector C is constant, it follows

y(t) = Cx(t) = (C exp(At)B) ∗ u(t) = φ(t) ∗ u(t)

where φ(t) = C exp(At)B is called impulse response function (IRF). The
IRF is the solution in case u(t) is the unitary pulse, i.e. the Dirac function δ(t).
It will be shown in Section 2.2 that the explicit solution can be used for es-
timating the parameters contained in (A,B,C) given the input-output signals
(u(t), y(t)).

2. A Kinetic Neural Network approach

If we observe the representation of the model in Fig. 1, we understand that in
priciple1 any oriented graph with a knot as input and another as output can be
eligible for a kinetic model.
In this work we use the graph stucture of a Neural Network as a kinetical model

1given for granted some assuptions on model identifiability that we don’t discuss in this
report for the sake of conciseness.
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Figure 2: Grafical representation of the simple 2x2 kNN model.

and we call it Kinetic Neural Network (kNN). Amongst all possible kNN
models, we choose the simple 2x2 model whose representation can be seen in
Fig. 2, described by the following model:



.
L
(1)
1 = 1

3u(t) −k1,1L(1)
1 −k1,2L(1)

1

.
L
(1)
2 = 2

3u(t) −k2,1L(1)
2 −k2,2L(1)

2

.
L
(2)
1 = k1,1L

(1)
1 +k2,1L

(1)
2

.
L
(2)
2 = k1,2L

(1)
1 +k2,2L

(1)
2

C = kL
(2)
1 + (1− k)L

(2)
1

(5)

It has to be noted that 1/3 and 2/3 are chosen arbitrarily to guarantee
reachability and identifiability, and that all the parameters are supposed to lie
in the interval [0, 1].

The model (5) can be rewritten in LTI form (2) with (A,B,C):

A =


−(k1,1 + k1,2) 0 0 0

0 −(k2,1 + k2,2) 0 0
k1,1 k2,1 0 0
k1,2 k2,2 0 0

 ,

B = (1/3, 2/3, 0, 0),

C = (0, 0, k, 1− k).

(6)

Using this model the physiological consistence is lost in favor of a number of
(voxel-by-voxel) parameters representing the tracer kinetics in the given model.
Such parameters can be used for comparing PET images of different groups of
subjects or the same subject before and after a medical treatment.
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2.1. Computing φ

To get the ODE model’s explicit solution we decided to compute φ = C exp(tA) B
symbolically with the Python package SymPy [6], by using the Padè approxi-
mation [2] of the exponential matrix exp(tA).
The Padè approximation of a squared, real-valued matrix M is obtained by
computing the matrices

Np,q(M) =

p∑
j=0

(p+ q − j)! p!
(p+ q)! j! (p− j)!

M j

Dp,q(M) =

q∑
j=0

(p+ q − j)! q!
(p+ q)! j! (q − j)!

(−M)j

with p, q ∈ N properly chosen. The approximant is hence given by

exp(M) ≈ Fp,q(M) = Np,q(M)−1Dp,q(M).

From literature [2] it is known that if the matrix has norm ||M || < 5.4 then
|| exp(M)− F13,13(M)|| < 10−16 and hence p = q = 13 is a reasonable choice.

2.2. Identification of the model

The model is evaluated on at Volume Of Interest (VOI) level or on a voxel basis
with PET data and fitted numerically using the Gradient Descent technique.
From last Section we explained how to obtain an approximate value for φ(t) as
a symbolic function of the model parameters set θ = {θ1, . . . , θn}. From that
values we can obtain an approximation of the expected output

yθ = φθ ∗ u

that we have to compare to the real measured output y. Namely, we want to
find the paramater set θ tha minimizes the functional

J(θ) =
1

2nt

nt∑
i=1

(yθ,i − yi)2

with nt the numer of timepoints. As optimization algorithm, we choose the
Gradient Descent technique

θ ← θ − α ∇θJ

starting from a randomly chosen set θ0 of parameters in [0, 1]. To get ∇θJ we
calculate

∂J

∂θj
=

1

nt

nt∑
i=1

(yθ,i − yi)
∂yθ,i
∂θj

=
1

nt

nt∑
i=1

(yθ,i − yi)
∂φθ,i
∂θj

∗ u(t)

that can be obtained numerically with realtive ease, given our knownlegde of
φθ at a symbolic level. The symbolic variables are at last evaluated numerically
using numpy in Python, in order to obtain the “optimal” set of parameters θ
for each level (VOI or voxel).
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2.3. Statistics

Provided that the set of parameter obtained in the previous Section is at voxel
level, we have to compare statistically two images “before” and “after” the
intervention of n parameters. To perform this we decided to use the Hotelling
test.
Given two matrices X and Y containing repectively nX and nY observations of
m variables and their covariance matrices ΣX and ΣY we compute the matrix

Σ =
(nX − 1)ΣX + (nY − 1)ΣY

nX + nY − 2

that can be used to get the T 2 (scalar) value, defined as

T 2 =
nXnY
nX + nY

(X̄ − Ȳ )Σ−1(X̄ − Ȳ )

with X̄ and Ȳ to indicate the mean across the first axis. The T 2 values are
related to the F-statistic as follows:

F =
nX + nY −m− 1

(nX + nY − 2)m
T 2

and from the F-value we get the probability of the null hypothesis (X and Y
belong to the same normal distribution) by computing the Cumulative Distri-
bution Function of F using the apposite scipy function in Python.

3. Application: the PET Grand Challenge

PET Grand Challenge 20182 has been a competition proposed by King’s Col-
lege (UK) and Imperial College (UK) researchers aimed to compare different
techinques in the study of dynamic PET processing.
A set of 10 simulated PET images was given, 5 after 5 before an ‘intervention’.
The goal was to identify the areas that underwent a change during the inter-
vention, and the magnitude of such change per area.
Every simulated scan lasted 90 minutes after the tracer injection, all the images
were alingned to a template (then no motion correction was needed) and the
nature of the tracer was not known (so there was not a preferable model). Since
the PET were simulated, the ground truth was known to the organizer, in order
to declare a winner.

The simulated data provided for the challenge was chosen to test the method
proposed before.
Since the matrix A from (6) was made of parameters in [0, 1] and the acquisition
time was less or equal than 1.5 hours, we conclude that

||At||∞ ≤ 4.5 ∀t ≤ 1.5

2http://www.petgrandchallenge.com/
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Figure 3: Progressive iterative scheme: the same silces of the k1,1 parameter
image at level: 8 (upper left), 4 (upper right), 2 (down left) and full resolution
image at level 1 (down right).

thus assuring the accuracy of the Padè approximation of the exponential Matrix
expAt as explained in Section .

The image size was 182x218x182x23, which means 3D images of 182x218x182
voxels at 23 different times. The challenge required a voxelwise fitting of the
model, hence about 7 · 106 independent optimization Gradient Descents had
to be performed. Since this is potentially time-consuming, we adopted two
strategies:

1. A progressive refining of the parameters, by undersampling the images of
a factor 8, 4, 2 and then 1 (the original image size) per axis. The solution
at lower level was resampled to the upper level and used as an initial guess.
See Fig. 3.

2. The computation for each voxel stopped once the voxel residual was lower
than the relative tolerance, so less voxels are left to fit at each iteration.
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3. The tolerance increases of order with the level so that finer granularity
requires less computation time.

After the model fitting, all the parameters were normalized by the mean cere-
bellar value, since Cerebellum is usually considered as a stable area of tracer
uptake. Normalized images were given as voxelwise input to the Hotelling test,
which resulted in a 3D 182x218x182 p-value image. Voxels of p-value less than
the significance level 0.05 were saved in a binary mask, containing the voxels
were the parameters were found to change significantly across the 5 simulated
subjects.

At present, no result are present in the webpage, hence it is not possible for
now to evaluate the accuracy of the resulting mask. A consistency analysis of
the parameters between different subjects has been performed, revealing param-
eter’s standard deviations between 0.01 and 0.02, and variation coefficients are
between 15% and 30%. Since the parameters values have order of magnitude
of 10−2, we can affirm that the estimated paramaters lie in an acceptably short
range and are coherently estimated between the different subjects.

4. Conclusions and future work

In this work we proposed a new approach in the modelling of tracer kinetics in
PET, along with an application of such method.
In the context of this work a general, graph-based framework for PET param-
eter estimation has been written in Python, allowing in future studies VOI or
voxel-level parameter estimation, regardless of the tracer injected.

In order to allow the usage of the framework in future studies it will be
important to acheive its validation against traditionally used methods.

Other possible models and applications still has to be tested: for instance we
can use the same framework in change detection in brain tumor PET, allowing to
detect the areas of significant variation in the same subject acquired before and
after neurosurgery. Another interesting task would be to test a larger network
in the ODE model.
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