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ABSTRACT
In this study, a new distribution-free Phase I control chart for retrospectivelymonitoringmultivariate data is
developed. The suggested approach, based on themultivariate signed ranks, can be applied to individual or
subgroupeddata for detectionof location shiftswith anarbitrarypattern (e.g., isolated, transitory, sustained,
progressive, etc.). The procedure is complemented with a LASSO-based post-signal diagnostic method for
identification of the shifted variables. A simulation study shows that the method compares favorably with
parametric control chartswhen theprocess is normally distributed, and largely outperformsothermultivari-
ate nonparametric control chartswhen the process distribution is skewedor heavy-tailed. An Rpackage can
be found in the supplementary material.

1. Introduction

Statistical process control (SPC) consists of ideas and methods
that are useful for maintaining a process in a stable and, hope-
fully, satisfactory state. There are generally two phases in the
application of these methods. In Phase I, a fixed-size sample
of time-ordered data is analyzed to assess the process stability.
Specifically, Phase I control charts are statistical and graphical
tools used to understand the nature of process variation over
time. Using the knowledge of the process gathered during the
first phase, a sequential scheme is then designed for the prospec-
tive monitoring of the incoming data (Phase II).

Distribution-free techniques for Phase I analysis have
received increasing attention in recent literature. Indeed, the
ability of parametric Phase I control charts to correctly distin-
guish between in-control (IC) and out-of-control (OC) obser-
vations is connected to the correct specification of the IC prob-
ability model. However, during Phase I, little information on
IC distribution is available to practitioners.When distributional
assumptions underlying a parametric control chart are not sat-
isfied, or cannot be tested, the performance and sensitivity of
parametric Phase I methods deteriorate. For example, the real
false alarm probability (FAP), that is, the probability of declar-
ing a stable process unstable,may be substantially larger than the
desired value. Thus, several researchers (see, e.g., Chakraborti,
Human, and Graham 2009; Jones-Farmer et al. 2014; Capizzi
2015) recommend verifying the form of the underlying IC dis-
tribution only after process stability has been established using a
suitable distribution-free control chart.

Several distribution-free methods have been suggested for
analyzing Phase I univariate data (e.g., Zou et al. 2007; Jones-
Farmer, Jordan, and Champ 2009; Jones-Farmer and Champ
2010; Graham, Human, and Chakraborti 2010; Capizzi and
Masarotto 2013; Zou et al. 2014; Capizzi 2015). When the
joint distribution ofmultiple quality characteristics is unknown,
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some distribution-free control charts have also been proposed
for Phase II monitoring (see, e.g., Liu 1995; Qiu and Hawkins
2001, 2003; Qiu 2008; Zou and Tsung 2011; Holland and
Hawkins 2014; Li 2015; Chen, Zi, and Zou 2016; Liang, Xiang,
and Pu 2016). These proposals can be properly modified for
Phase I data. However, statistical methods for these two phases
may benefit of being different because of practical and statis-
tical peculiarities of prospective and retrospective monitoring
(see Qiu 2013, p. 7). For example, the main aim of Phase II
control charts consists in detecting a single change-point while
Phase I data can be easily contaminated by multiple change-
points. Unfortunately, although some multivariate distribution-
free methods have been proposed for Phase II, “very little pub-
lished research has considered the issue of robust, distribution-
free, or nonparametric multivariate control charts for use in
Phase I” (Jones-Farmer et al. 2014, p. 276).

The current state-of-the-art approach consists of the two
multivariate Shewhart-type control charts recently proposed by
Bell, Jones-Farmer, and Billor (2014) and Cheng and Shiau
(2015) for the detection of location shifts for subgrouped data
from elliptical distributions. The two control charts are based
on the ranks of the Mahalanobis depths and the spatial signs,
respectively. However, concerning the practical applicability and
efficiency of these proposals, we would point out that: (a) Both
control charts require subgrouped observations, notwithstand-
ing the collection of individual data is increasingly common
in many applications. (b) These procedures are not completely
distribution-free. Indeed, they require to test in Phase I, before
establishing the stability of the process, the assumption that the
IC process distribution is elliptical. (c) The ranks of the Maha-
lanobis depths only depend on the magnitude of the distances
of the observed points from the center of the data cloud. On
the contrary, the spatial signs only reflect the directions of the
vectors connecting the observed points to the center. It seems
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intuitively reasonable that a more efficient scheme could be
based on both the distances and directions. (d) Shewhart-type
control charts offer a very good performance against isolated
shifts. However, since they do not explicitly use the time-order
of the data, they are not efficient against other types of shifts
(transitory, sustained, progressive, oscillatory, etc.) that are often
encountered in Phase I data.

In an effort to overcome these drawbacks, we develop a new
distribution-free Phase I control chart for both individual and
subgrouped multivariate data. We avoid the need for any dis-
tributional assumption using a permutation approach (Pesarin
2001; Good 2005; Lehmann and Romano 2005). The new con-
trol chart is based on the multivariate signed ranks that opti-
mally integrate the spatial signs and ranks of the Mahalanobis
depths (Hallin and Paindaveine 2002, 2004, 2005). Following
an idea developed in the univariate framework by Capizzi and
Masarotto (2013), the chart combines different elementary con-
trol statistics designed for detecting the presence of one, two, or
more, either isolated or step location shifts. As other types of
shifts can be approximated using multiple step shifts, the pro-
posed scheme offers good protection against a wide range of
shift patterns. Furthermore, since in many practical situations
shifts involve only a small number of variables, we complement
the procedure with a LASSO-based method for identifying the
variables that are likely to be responsible for an OC condition.
An easy-to-use R package, available as supplementary material,
allows practitioners to perform the proposed Phase I analysis.

Following Bell, Jones-Farmer, and Billor (2014) and Cheng
and Shiau (2015), we consider the “standard framework” han-
dled inmultivariate statistical process monitoring. In particular,
we assume that (i) the number of data points is larger than
number of the variables, and (ii) the observation vectors are

independent and identically distributed (iid) when the process is
IC. Extensions to the high-dimensional and/or time-dependent
frameworkwill require further research. Some possible ideas are
outlined in Section 5 (and also in Section S1 of the supplemen-
tary materials). Notwithstanding these limitations, we believe
that the suggested method can be quite useful in many practical
situations, and provide a viable and effective alternative to the
procedures described by Bell, Jones-Farmer, and Billor (2014)
and Cheng and Shiau (2015).

The article is organized as follows. In Section 2, we illustrate
two practical applications of the proposed procedure. In Section
3, we describe the suggested Phase I control chart. In Section
4, we compare the new proposal with other methods. Conclud-
ing remarks are given in Section 5. Additional comments, per-
formance evaluations, and examples are provided in the online
supplementary material.

2. Examples

As a first example, we use the data given in Table 9.2 by Ryan
(2011, p. 323). The sample comprises 20 subgroups, each with
four observations, on two quality characteristics X1 and X2.
According to Ryan (2011), the 10th and 20th subgroups are OC.
Figure 1(a) illustrates the application of the proposed Phase I
analysis. The p-value, shown in the center above the graphics,
can be used to assess the stability over time of the process loca-
tion. In particular, the procedure gives an alarm and the process
is declared unstable if the p-value is less than α, where α denotes
an acceptable value for the false alarm probability. As previ-
ously mentioned, the validity of the p-value does not require
any assumption on the IC distribution. In this example, the
observed p-value (0.001) is so small that an alarm is given for all

Figure . Phase  analysis of two datasets.
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conventional levels of α, say 0.01, 0.05, and 0.1. Graphics can
be used for diagnostic purposes. In particular, the solid lines
in the two panels show the sample subgroup means of X1
and X2, respectively, and the dashed lines an estimate of the
possibly time-varying process means. In this case, the dashed
lines correctly suggest that the subgroups 10 and 20 could have
a different location. Figure 1(a) points to the OC subgroups
but also provides additional information. Indeed, the constant
dashed line in the second panel indicates no shift for X2 and,
hence, the procedure suggests that only X1 is OC. In addition,
the estimated mean of X1 offers information on the direction
and magnitude of the shifts. In particular, it suggests that,
for both subgroups, the shift was toward lower values and
that the process was more severely OC for subgroup 10 than
for subgroup 20. In Section 4.3, we show that this diagnostic
information is usually quite accurate.

In the second example, we consider a dataset consisting of
56 individual observations from a European gravel-producing
plant, which have already been considered by Holmes and Mer-
gen (1993) and Sullivan andWoodall (2000). There are two vari-
ables measuring the percentage of the particles (by weight) that
are large or medium in size, respectively. Figure 1(b) shows the
output of the proposed Phase I procedure. The small p-value
points to an unstable process, and, in particular, Figure 1(b) sug-
gests the presence of two step-shifts: the first, at time 25, due to
an increase in the percentage of large particles and a simultane-
ous decrease in the percentage of medium particles; the second,
at time 44, due to an increase of the percentage of large particles
not involving the other variable.

3. Detecting Location Changes in Multivariate Data

3.1 Overview

Assume that a sample of m time-ordered subgroups of size n,
collected on g variables, is available, and denote with xi, j the g-
dimensional vector containing the jth observation from the ith
subgroup. Individual observations, that is, process data without
subgrouping, can be accommodated by setting n = 1. We also
assume that (i)mn > g, that is, the number of the observed vec-
tors is greater than the number of the variables; (ii) when the
process is IC, xi, j are iid with an unknown but common density
function p0(·); (iii) we are interested in the detection of location
shifts, that is, when the process is OC, at least two subgroups
have a different location.

As illustrated in the previous section, the proposed Phase I
analysis provides a statistical test to verify if the process is in-
control or out-of-control and some graphical aids able to suggest
times and types of the shifts and responsible variables. It can be
divided into four distinct stages.

1. Preprocessing. During the first stage, using suitable
location and scatter estimates, data are standardized and
transformed to the corresponding multivariate signed
ranks, in the following denoted by ui, j . This transfor-
mation has some optimal properties (see Hallin and
Paindaveine 2002, 2004, 2005), and we have verified that
it improves the performance when the process distribu-
tion is heavy-tailed and/or skewed, without substantially
affecting the test procedure in other cases.

Essentially, the next three stages consist in fitting the fol-
lowing multivariate linear regression model

ui, j = βcommon +
m−1∑
τ=2

βstep,τ I
(
i ≥ τ

)
+

m∑
τ=1

βisolated,rI
(
i = τ

)+ (residual)i, j (1)

where the β’s are unknown g-dimensional vectors of
parameters, and I(C) is equal to one if condition C is
true, and to zero otherwise. Observe that (i)βcommon rep-
resents the “stable” level of the signed ranks; (ii) βstep,τ
introduces a level change starting from time τ and affect-
ing all the subsequent observations; (iii) βisolated,τ affects
only the observations at time τ and, hence, it corre-
sponds to an isolated outlier. In the framework of model
(1), checking process stability is equivalent to test the null
hypothesis

H0 : all the βstep,· and βisolated,· are zero.

Observe that in a “pure” distribution-free framework it
is not possible to detect an isolated outlier when n = 1.
Indeed, a single observation that is far from the others
can be the consequence of an isolated shift. However, it
can also be due to an extremely long-tailed IC distribu-
tion. Since discrimination between the two possibilities
is not possible without further information on the shape
of the IC distribution, only the presence of (multiple)
step shifts is considered for individual observations.
Note that model (1) is able to represent exactly any pos-
sible time-varying location patterns. Since m location
vectors are represented using 2m − 1 vectors of param-
eters, the model is clearly overparameterized. However,
we expect the model to be sparse, that is, that most of
the β’s are zero. Hence, following what have been done
for Phase II monitoring by Zou and Qiu (2009); Capizzi
and Masarotto (2011); Jiang, Wang, and Tsung (2012);
Liang, Xiang, and Pu (2016), the next three stages are
based on a variable-selection approach. Observe that the
idea of using variable-selection methods for retrospec-
tively detecting outliers and step changes is not new (see
Harchaoui and Lévy-Leduc 2010; She and Owen 2011;
Ciuperca 2014; Zou, Tseng, and Wang 2014, for some
recent examples). However, we believe that our proposal
is distinct from earlier works because (i) it addresses the
multivariate Phase I framework; (ii) it tries to simulta-
neously detect multiple isolated and step changes; (iii) it
emphasizes the testing phase (see below) and the control
of the FAP.

2. Screening. During the second stage, we use the pop-
ular forward search (FS) algorithm to select, between
the 2m − 2 parameter vectors βstep,· and βisolated,·, K <

m vectors, which can be viewed as “promising” shifts
suggested by the data. Here, K denotes the maximum
number of shifts we want to search for. When no a
priori information is available, we suggest using K =
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min(50, integer closest to
√
m), which offers good per-

formances in a variety of OC scenarios (see also Ing and
Lai 2011).
We choose the FS algorithm since (i) it is simple, fast,
and well-known to practitioners; (ii) it offers a very good
screening performance, that is, FS can identify all the
relevant predictors, together with few irrelevant ones,
even if the predictor dimension is larger than the sam-
ple size (see Wang 2009; Ing and Lai 2011); (iii) as
shown by Capizzi and Masarotto (2015), Phase II FS-
based control charts are competitive with schemes based
on other variable-selection approaches like LASSO, LAR,
etc.

3. Testing. During the second stage, K elementary test
statistics are computed for detecting the presence of 1,
. . ., K either isolated or step shifts. Then, in the third
stage, these statistics are aggregated and a single p-value
is computed.

4. Post-signal diagnostic. The FS algorithm tends to select
the relevant predictors together with some unneeded
shifts. Hence, following a suggestion by Wang (2009),
when the hypothesis of a stable process is rejected, we
prune the model using the adaptive LASSO algorithm
(Zou 2006) and the information criterion proposed by
Chen and Chen (2008). During this stage, the g variables
enter into the model independently, that is, we use the
adaptive LASSO also for identifying the subset of vari-
ables involved in each shift.

3.2 Stage 1: Data Standardization and Computation of the
Multivariate Signed Ranks

This stage consists of the following two steps.
1. Compute suitable estimates of the multivariate location

vector and dispersion (scatter) matrix. Since an investi-
gation of the properties of our Phase I method, based on
different estimates of location and scatter, is beyond the
aim of this article, we here consider only the following
estimates:
• Location. We use the transformation-retransfo-
rmation spatial median (see Oja and Randles 2004;
Oja 2010) of the subgroup means, that is,

� = S1/2(spatial median of S−1/2x1, . . . , S−1/2xm),

where

xi = 1
n

n∑
j=1

xi, j (2)

and S1/2 is any square-root of the scatter matrix S
given by Equation (3), that is, S1/2 is a g × g matrix,
so that S = S1/2(S1/2)′. This location estimate is
extremely robust, and can be computed using the
fast and simple algorithm given by Oja (2010, p. 71).

• Dispersion. The estimate is different in the case of
individual (n = 1) or subgrouped data (n > 1). In

particular, we use

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2(m − 1)

m∑
i=2

(xi,1 − xi−1,1)(xi,1 − xi−1,1)
′ if n = 1;

1
m(n − 1)

m∑
i=1

n∑
j=1

(xi, j − xi)(xi, j − xi)′ if n > 1.

(3)
Both estimators have been studied in the SPC lit-
erature. See Williams et al. (2007) and Paynabar,
Qiu, and Zou (2015) for individual data, and Mont-
gomery (2009), Ryan (2011), andQiu (2013) for sub-
grouped data. In particular, note that S tends to be
resistant against location shifts. In the following, we
will assume that S is nonsingular. Otherwise, the
monitoring can be restricted to a set of linearly inde-
pendent variables.

2. Using � and S, standardize the observed data obtaining
zi, j = S−1/2(xi, j − �) and then compute the multivariate
signed ranks of the standardized data as

ui, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if zi, j = 0;√
F−1
χ2
g

(
ri, j

1 + mn

)
||zi, j|| zi, j if zi, j �= 0,

(4)

where ||v|| = √
v′v denotes the Euclidean norm of v,

ri, j is the rank of ||zi, j|| among ||z1,1||, . . . , ||zm.n||, and
Fχ2

g
(·) is the cumulative function of a χ2 random vari-

able with g degrees of freedom. Observe that the multi-
variate signed ranks, are g-dimensional vectors with the
same directions as z’s. However, they are scaled so that
the norms ||u||’s are those expected for a Gaussian IC
process.

3.3 Stage 2: Screening and Computation of the
Elementary Tests Statistics

In this stage, a model with an increasing number of parameters
(either isolated or step shifts) is fitted to the signed ranks using
an FS algorithm. In particular, the fitted values at the kth step are
û(k)
i = β̂

(k)
0 + β̂

(k)
1 ξ

(1)
i + · · · + β̂

(k)
k ξ

(k)
i (i = 1, . . . ,m) where

β̂
(k)
r , r = 0, . . . , k, are g-dimensional vectors of parameters and

ξ
(k)
i is a scalar sequence corresponding either to an isolated or
a step shift, that is, ξ (k)

i = I(i = τ (k)) or ξ
(k)
i = I(i ≥ τ (k)), for

some τ (k). The type (isolated or step) and time (τ (k)) of the
shift ξ

(k)
i introduced at step k as well as the parameters β̂

(k)
r ,

r = 1, . . . , k, are determined by minimizing the residual sum
of squares

∑m
i=1
∑n

j=1 ||ui, j − û(k)
i ||2 conditionally to the shifts

(type and time) identified during the previous k − 1 steps. After
every step, we compute the explained variance

Tk = n
m∑
i=1

||û(k)
i ||2 − mn||u||2,
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where u = ∑m
i=1
∑n

j=1 ui, j/mn. Since we are dealing with a lin-
ear model, the FS implementation is straightforward. In partic-
ular, in our R package, we use a Gram–Schmidt approach that is
optimized by the exclusive presence of dummy regressors in the
model.

3.4 Stage 3: Testing

Following the approach proposed for Phase II monitoring by
Zou and Qiu (2009) and Capizzi andMasarotto (2011), the idea
consists of aggregating theK elementary statisticsTk in the over-
all test statistic

WOBS = max
k=1,...,K

Tk − E0(Tk)√
var0(Tk)

and then computing the p-value as p-value = Prob0(W >

WOBS). Here,W denotes the random variable underlyingWOBS,
and Prob0, E0 and var0 are computed under the IC hypothesis.

The direct application of this idea is unfeasible, since
the IC probability distribution of T1, . . . , TK depends on
p0(·), the IC density function of the Phase I data. How-
ever, we can use a permutation approach (Pesarin 2001;
Good 2005; Lehmann and Romano 2005). In particular, orga-
nize the Phase I multivariate observations in the matrix
Y = (x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xm,1, . . . , xm,n), and let
PY be the set of all the matrices obtainable by permuting
the columns of Y. If we assume that, when the process is
IC, the observations are iid, the IC density of Y, that is,∏m

i=1
∏n

j=1 p0(xi, j), is constant over PY. Hence, the IC con-
ditional distribution of Y given PY does not depend on the
unknown density function p0(·).

The results suggest to compute the p-value conditionally to
Py. However, the exact computation of the conditional p-value
is possible only ifm and n are very small, saym · n < 10. There-
fore, we suggest proceeding as follows:

(a) Compute the statistics T1, . . . ,TK for L randomly gener-
ated (column) permutations of Y. Let T �

l,k be the value
of the kth statistic obtained in the lth replication, l =
1, . . . , L, k = 1, . . . ,K.

(b) Compute the p-value as

p-value = 1
L

L∑
l=1

I
(

max
k=1,...,K

T �
l,k − ak
bk

> max
k=1,...,K

Tk − ak
bk

)
,

where ak = ∑L
l=1 T

�
l,k/L and b2k = ∑L

l=1(T
�
l,k − ak)2/

(L − 1).
We found that using L = 1000Monte Carlo replications pro-

vides sufficient accuracy. An alternative approach based on the
assumption that the IC distribution is elliptical is discussed in
the supplementary material.

3.5 Stage 4: Post-Signal Diagnostic

In this subsection, we discuss how the process mean can be esti-
mated. When p-value ≥ α, with α equal to a desired FAP, the
hypothesis that the process is IC is accepted. Therefore, the com-
mon mean of each subgroup can be estimated by the overall

sample mean

x = 1
mn

m∑
i=1

n∑
j=1

xi, j. (5)

On the contrary, when p-value < α, the test suggests that the
process location is not stable. Hence, it is important, for diagnos-
tic purposes, to identify the times of the location changes as well
as the involved variables. With this aim in mind, substitute, in
the model obtained at the last step of the FS outlined in Section
3.3, the parameter vectorsβkwith S−1/2δk, k = 0, . . . ,K, obtain-
ing the regression model

ui, j =S−1/2δ0+S−1/2δ1ξ
(1)
i +· · ·+S−1/2δKξ

(K)
i + (residual)i, j.

(6)
In Equation (6), δ0 is the intercept term while δ1, . . . , δK

represent the directions of the potential location shifts in the
observed data. Indeed, sinceui, j ∝ S−1/2(xi, j − �), a shift of δ in
xi, j results in a shift with direction S−1/2δ in the corresponding
signed rank ui, j (see Figure 2). An estimate of these parameters
can be obtained by minimizing the sum of squares

s2(δ0, . . . , δK ) =
m∑
i=1

n∑
j=1

||ui, j − S−1/2δ0 −
K∑

k=1

S−1/2δkξ
(K)
i ||2.

However, we expect that part, if not most, of the elements of δ1,
. . . , δK are zeros since (i) K can be larger than the true number
of change-points, and (ii) only a subset of the variables can be
involved in a shift. Therefore, we suggest fitting model (6) using
the adaptive LASSOmethod, that is, to estimate δ0, . . . , δK min-
imizing the penalized sum of squares

s2(δ0, . . . , δK ) + λ

K∑
k=1

g∑
h=1

∣∣∣∣∣δk,hδ̂lsk,h

∣∣∣∣∣ , (7)

where δk,h is the hth element of δk and δ̂lsk,h is its estimate obtained
using the unpenalized least-square method. See Zou (2006) for
the definition andmotivation of the adaptive LASSO; Tibshirani
(1996) for the definition of the original, nonadaptive LASSO;
and Zou, Jiang, and Tsung (2011) for an application of a simi-
lar idea in Phase II post-signal diagnosis.

In (7), λ is a positive tuning parameter. The unpenalized
least-square estimate is obtainedwhenλ = 0. Asλ increases, the
estimates are progressively shrunk toward zero, with some (or
many) of the parameters becoming exactly zero. The LARS algo-
rithm developed by Efron et al. (2004) can be used to compute
the estimates for every λ ≥ 0, with a computational cost equal
to that necessary to compute the unpenalized least-square esti-
mate. In selecting λ, we obtain good results using the extended
BIC criterion proposed by Chen and Chen (2008):

EBICγ (λ) = mng log

(
s2(δ̂0(λ), . . . , δ̂K (λ))

mng

)

+ν(λ) log(mng) + 2γ log
(
2gm − g

ν(λ)

)
,

where δ̂k(λ) denotes the estimate of δk obtained by mini-
mizing (7), and ν(λ) is the number of nonzero elements in
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Figure . Two simulated datasets (m = 20, n = 5) and their signed ranks. The IC data have been simulated from a bivariate Student’s t distribution with  degrees of
freedom, so that E(X1) = E(X2) = 0, var(X1) = var(X2) = 1, and cor(X1, X2) = 0.8. Each dataset contains one OC subgroup, obtained adding the shift δ. The arrows
show the direction of (i) δ in the left panels; (ii) S−1/2δ in the right panels.

δ̂0(λ), . . . , δ̂K (λ). Observe that 2gm − g is the dimension of the
searched parameter space. Indeed, in addition to δ0, we have
2m − 2 possible choices for ξ

(k)
i , each introducing g parameters

in the model. As illustrated in Section 4.3 and in the supple-
mentary material, γ can be used to balance the probability to
detect real changes with that of signaling false changes. Typical
values are γ = 0, corresponding to the standard BIC criterion,
and γ = 0.5 or γ = 1, which offer better protection against false
signals.

Notwithstanding that all computation has been performed
using the signed ranks, it seems reasonable to present the results
to users on the scale of the original, untransformed observations
(see, e.g., Figure 1). Therefore, the last step of our procedure con-
sists of refitting the model selected using the adaptive LASSO
to the x’s. Numerical details are discussed in the supplementary
material.

4. Simulation Study

4.1 Study Design

In this section, we summarize the results of an extensive simula-
tion study. In particular, in Section 4.2, we compare the IC and
OC alarm probabilities of the Phase I control charts described in
Table 1. Then, in Section 4.3, we study the performance of the
post-signal diagnostic method based on the adaptive LASSO.

Additional performance results are presented in the supplemen-
tary material. All the presented performance measures have
been estimated using 10,000 Monte Carlo replications.

The multivariate distributions considered in the study are
presented in Table 2. Observe that Normal and Student belong
to the family of the multivariate elliptical distributions, Student
having heavier tails than Normal. In contrast, Gamma and Pois-
son are not elliptical. In particular, Poisson is a discrete distribu-
tion introduced to show that the suggested method also attains
the desired FAP when the distribution is not continuous.

For studying the OC performance of the considered Phase
I methods, we assume that the observations are generated by
xi, j = δξi + εi, j, where δ is a g-dimensional vector giving the
direction and size of the shift, ξi a scalar sequence describing
the dynamic pattern and εi, j are iid drawn from the distributions
described in Table 2. The considered patterns, which represent
some of the real patterns encountered in Phase I, are summa-
rized in Table 3. Observe that the onset and duration of the shifts
are stochastic. Indeed, in a real application, they are unknown
and vary from case to case.

4.2 In-Control andOut-of-Control Alarm Probabilities

In this section, we compare the proposed test procedure with
that of other Phase I control charts. As performance metrics, we
use the FAP, that is, the probability of declaring unstable an IC
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Table . Six parametric and nonparametric Phase I control charts (CL= control limit).

Chart Description and references Applicability

MPhase The procedure described in this article (K = (integer closest to
√
m), L = 1000, lmin = 5). Individual(∗) and subgrouped observations

from any distribution.
T 2 The Hotelling’s T 2 chart that signals if, for some i, n(xi − x)′S−1(xi − x) > CL

(Montgomery ; Ryan ; Qiu ). See (), (), and () for the definition of xi , x, and
S. We also consider the version with x and S replaced by the minimum covariance
determinant (MCD) estimates.

Individual and subgrouped normally
distributed observations.

GLR The scheme signals if GLR = max
τ=2,...,m lr

τ
> CL where lr

τ
is the likelihood ratio test

statistic for verifying, assuming a normal distribution, that themean of xi, j , i < τ , is equal
to the mean of xi, j , i ≥ τ (Zamba and Hawkins ; Chen and Gupta ; Qiu ).

Individual(∗∗) and subgrouped normally
distributed observations.

LLC The procedure, proposed by Lung-Yut-Fong, Lévy-Leduc, and Cappé (), is a GLR-type
control chart based on component-wise ranks.

Individual(∗) observations from any
distribution.

Depth Ranks The scheme, proposed by Bell, Jones-Farmer, and Billor (), signals if, for some i,∑n
j=1(nm + 1 − MDRi, j )/n > CL where MDRi, j denote the ranks of the Mahalanobis

depth 1/[1 + (xi, j − �BACON)′S−1(xi, j − �BACON)]. Here, �BACON is the center of the data
cloud computed using the BACON algorithm (Billor, Hadi, and Velleman ) and S the
scatter estimate given in Equation ().

Subgrouped observations from elliptical
distributions.

Spatial Signs The scheme, proposed by Cheng and Shiau (), signals if, for some i,
n||∑n

j=1 vi, j/n||2 > CL where vi, j = S−1/2
HR (xi, j − �HR)/||S−1/2

HR (xi, j − �HR||. Here, �HR
and SHR denote the Hettmansperger–Randles location and scatter estimates, respectively
(Hettmansperger and Randles ).

Subgrouped observations from elliptical
distributions.

NOTES: (∗) MPhase and LLC are not effective against isolated shifts in individual observations (see Section .).
(∗∗) GLR has a low power against isolated shifts in individual observations.

Table . Four multivariate distributions.

Distribution Definition Properties

Elliptical distributions

Normal xi, j ∼ Ng(0, �). (i) The univariate marginal distributions are normal; (ii) E(xi, j ) = 0 and
var(xi, j ) = �.

Student xi, j = x̃i, j/
√

w2
i, j/3with x̃i, j,r ∼ Ng(0, �) andw2

i, j ∼ χ 2
3 . (i) The univariate marginal distributions are Student’s t with three

degrees of freedom; (ii) E(xi, j ) = 0 and var(xi, j ) = 2�.
Nonelliptical distributions

Gamma xi,j = diag
∑4

r=1 x̃i, j,r̃x
′
i, j,r/2where x̃i, j,r ∼ Ng(0, �) and

diag(A) is the vector of the diagonal entries of matrixA (see
Stoumbous and Sullivan ).

(i) The univariate marginal distributions are gamma with shape
parameter equal to two; (ii) E(xi, j ) = 2diag(�) and

var(xi, j ) = 2�(2) , where�(2) is the matrix obtained by squaring the
individual entries of the matrix�.

Poisson xi, j = (ri, j,0 + ri, j,1, . . . , ri, j,0 + ri, j,g)
′ where ri, j,r are iid.

Poisson random variables with mean θ if r = 0 and 1 − θ

otherwise (0 ≤ θ ≤ 1).

(i) The univariate marginal distributions are Poisson with mean one;
(ii) The correlation between two elements of xi, j is θ .

process (first type error), and the detection power, that is, the
probability to signal as OC an unstable process. All the con-
sidered Phase I methods, with the only exception of LLC, are
invariant with respect to affine transformations. Hence, if the
distribution is elliptical, (i) the IC performance does not depend
on E(xi, j) and var(xi, j); (ii) the OC alarm probabilities depend
only on the noncentrality parameter

√
δ′var−1(xi, j)δ. This is not

exactly true for nonelliptical distributions, and, in general, for
the LLC chart. However, for all the considered cases, we observe
comparable results using different shift directions and covari-
ance matrices. Hence, we will assume that (i) only the first vari-
able shifts, that is, only the first element of δ is different from
zero; and (ii) var(xi, j) is a matrix with all diagonal elements
equal to one and off-diagonal elements equal to 0.6.

Figure 3 shows the real FAPs attained by the proposed
method for the IC distributions given in Table 2 when an
FAP = 0.05 is desired. Since we obtain comparable results for
different numbers of variables, only the case of five variables
(g = 5) is considered in Figure 3. The figure clearly shows that
the suggested Phase I method attains the desired FAP for each
sample size and all the considered multivariate distributions.

Figure 3 also presents the real FAPs of two versions of the
T 2 control charts based on (i) the classical location and scatter
estimates x and S, and (ii) the highly robust MCD estimators.
The results illustrate the disadvantages of using a Phase I con-
trol chart whose distributional assumptions are not satisfied. In
particular, observe that the T 2 schemes can be used only under
their design condition, that is, if the IC distribution is normal.
Indeed, in many nonnormal cases considered in the simulation,
the real FAPs are unacceptably higher, sometimes even close to
one, than the nominal value. It is also interesting to observe that
using a robust estimators like MCD can even worsen the prob-
lem.

Figures 4 and 5 compare the OC performance of the sug-
gested method with those of its competitors in the case of nor-
mally distributed data. Since we obtain similar results using dif-
ferent numbers of subgroups (or individual observations), only
the results obtained for m = 50 are reported. Observe that our
proposal offers basically the same protection as the Hotelling’s
T 2 control chart against isolated shifts in subgrouped data, but
better protection against the other patterns (both for individ-
ual and subgrouped data). The opposite happens with GLR: our
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Table . Five shift patterns(∗).

Pattern Description

Isolated A single, isolated shift: ξi equal to  if i = τ and
to  otherwise with
τ = integer part ofU(1,m + 1).

Sustained A step shift starting at a random instant of time:
ξi equal to  if i < τ , and to 1/

√
n if i ≥ τ with

τ ∼ U(m − 20,m − 5).

Transient A transient shift with random onset and
duration: ξi equal to 1/

√
n if τ1 ≤ i ≤ τ2 and

to  otherwise with τ1 ∼ U(5,m − 15) and
τ2 − τ1 ∼ U(5, 12).

Mixture A process with three operational states with
Markovian switching: ξi is a Markov chain
starting from ξ0 = 0, assuming the values
−1/

√
n, , and 1/

√
n and transition matrix

P = [pr,s] such that pr,s is equal to . if r = s
and to . otherwise.

Linear A linear shift starting at a random point: ξi equal
to zero if i < τ and to (i + 1 − τ )/√
n(m + 1 − τ ) otherwise with

τ ∼ U(m − 20,m − 5).

Note: ∗ U(f1, f2) denotes a uniform random variable between f1 and f2 .

method outperforms this chart in the case of isolated shifts, and
globally offers at least a comparable performance for the other
patterns. Hence, the suggested procedure can be considered a
reasonable alternative to the two normal-based control charts
(T 2 and GLR) offering a satisfactory performance for a wide
range of shift patterns, even when the distribution is actually
normal.

Regarding the comparison with the nonparametric
competitors:

• Figure 4 shows that the suggested Phase I method per-
forms considerably better than the two schemes that are

based on the Mahalanobis depth ranks and the spatial
signs, in the case of subgrouped normally distributed
data.We obtain similar results with nonnormal distribu-
tions. For example, Figure 6 displays the alarm probabil-
ities in the case of a multivariate Student’s t distribution.
In this case, the chart based on the depth ranks is never
competitive with our scheme, while the chart based on
the spatial signs is competitive only in detecting isolated
shift when g is equal to 5 or 10, but is substantially infe-
rior in all the other scenarios. Therefore, when compared
to these recently proposed Shewhart-type control charts,
our procedure not only has a wider applicability (it can
also be used for individual observations and/or nonel-
liptical distributions) but also offers considerably better
protection in the situation (subgrouped data from an
elliptical distribution) for which the control charts based
on the depth ranks and spatial signs have been originally
designed.

• In the case of individual normally distributed data,
Figure 5 shows that our method outperforms the LLC
procedure (Lung-Yut-Fong, Lévy-Leduc, and Cappé
2011), based on the component-wise ranks. Similar
results have been obtained when the distribution is not
normal (see the supplementary material).

4.3 Efficiency of the Post-Signal Procedure

To illustrate the performance of the post-signal diagnostic
method described in Section 3.5, we consider observations
xi, j = (xi, j,1, . . . , xi, j,g)′ generated by the model xi, j,r = μi,r +
εi, j,r, where μi,r denotes the mean at time i of the rth variable
and εi, j = (εi, j,1, . . . , εi, j,g)

′ are iid g-variate Student’s t random
variables with three degrees of freedom, such that E(εi, j,r) = 0,
var(εi, j,r) = 1, and cor(εi, j,r, εi, j,h) = 0.6. We also assume that

Figure . Attained false alarm probability for different distributions, different number of subgroups (m), and different subgroup sizes (n) when the number of variables (g)
is five. The nominal false alarm probability α = 0.05 is shown by the dotted lines.
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Figure . Out-of-control alarm probability of Phase I control charts for subgrouped normal observations (m = 50, n = 5).

Figure . Out-of-control alarm probability of Phase I control charts for individual normal observations (m = 50, n = 1).

the Phase I sample is given by m = 50 subgroups, each with
n = 5 observations, and that the number of variables g is either
5 or 10. The following two scenarios for μi,r are considered:

A. μi,r =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ if i = 11 and r = 1
δ√
5

if i ≥ 31 and r = 2

− δ√
5

if i ≥ 31 and r = 3

0 otherwise

;

B. μi,r =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ√
5

if 1 ≤ i ≤ 10 or 21 ≤ i ≤ 30
or 41 ≤ i ≤ 50
and r = 1 or r = 2

− δ√
5

if 11 ≤ i ≤ 20 or 31 ≤ i ≤ 40
and r = 1 or r = 2

δ if i = 25 and r = 3 or r = 4
0 otherwise

.

In the first case, the process experiences an isolated shift in the
first variable and a simultaneous step shift in the second and
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Figure . Out-of-control alarm probability of Phase I control charts for subgrouped Student’s t observations ( degrees of freedom,m = 50, n = 5).

third variables. This means that the total number of true mean
shifts to detect is three. For the second scenario, themeans of the
first two variables alternate between two values; the third and
fourth variables experience an isolated shift. The total number
of true mean shifts to detect is 10 (four step shifts for each of
the first two variables; one isolated shift for the third and fourth
variables).

Table 4 shows averages (and standard deviations) of the num-
bers of true and false shifts detected by the diagnostic method
based on the adaptive LASSO. Results are shown for δ equal to
1 or 2, and for γ , the tuning parameter of the information cri-
terion EBICγ (λ), equal to 0, 0.5, and 1. We consider a step shift

as approximately detected (third and fourth columns of Table 4)
if the procedure signals a step shift in the involved variables and
|(signaled time) − (true onset)| ≤ 5, that is, for scenario A, the
step shift in the second variable is considered exactly detected
if it is signaled at i = 31, and approximately detected if signaled
at 26 ≤ i ≤ 36. Table 4 also shows the average number of false
shifts detected when the process is IC, that is, when δ = 0.

The suggested approach shows a satisfactory performance
since it consistently detects almost all the medium/large shifts
(δ = 2), and most of the small/medium shifts (δ = 1) even,
when γ = 0.5 and γ = 1, maintaining an acceptable number
of false detections. Observe that the number of false detections

Table . Averages, and, in parentheses, standard deviations, of the number of true or false shifts detected by the post-signal diagnostic method based on the adaptive
LASSO (α = 0.05).

Number of true detections

Exact Approximated Number of false detections

δ = 1 δ = 2 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

Scenario A / Number of variables:  / Number of true shifts: 
γ = 0 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 0.5 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 1 . (.) . (.) . (.) . (.) . (.) . (.) . (.)

Scenario A / Number of variables:  / Number of true shifts: 
γ = 0 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 0.5 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 1 . (.) . (.) . (.) . (.) . (.) . (.) . (.)

Scenario B / Number of variables:  / Number of true shifts: 
γ = 0 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 0.5 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 1 . (.) . (.) . (.) . (.) . (.) . (.) . (.)

Scenario B / Number of variables:  / Number of true shifts: 
γ = 0 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 0.5 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
γ = 1 . (.) . (.) . (.) . (.) . (.) . (.) . (.)
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does not essentially depend on either the number of true shifts
or the number of variables. As expected, increasing γ results in a
decrease of the number of false detections, but also in a reduced
ability to detect small/medium shifts. Therefore, γ should be
chosen balancing the importance of detecting small/medium
shifts with the cost of investigating a larger number of false
shifts. In general, our results show that γ = 0.5 provides a rea-
sonable compromise. Alternatively, when there is an alarm, it
is possible to repeat the post-signal procedure with different
values of γ . A practitioner can be highly confident about the
shifts signaled by EBIC1(λ), while additional shifts selected
by EBIC0.5(λ) and, above all, EBIC0(λ) should be investigated
more carefully.

5. Conclusions

We have suggested a new distribution-free approach for Phase
I analysis of multivariate data, which shows wide applicability,
and offers a satisfactory performance in a broad class of OC sce-
narios. The suggested method combines a statistical test, based
on the multivariate signed ranks, for verifying the hypothesis
that the location of the process is stable, with a LASSO-based
post-signal diagnostic procedure for identifying the timing of
the shifts and the involved variables. The application of the sug-
gested Phase I procedure is straightforward using the R package
available in the supplementary material.

Given the good results, it seems worthwhile to investigate the
extension of the proposed approach to themonitoring of the dis-
persion and dependence structure of multivariate observations.
A natural possibility consists of combining the ideas developed
in this articlewith the test based on themultivariate signed ranks
for the homogeneity of scatter, as studied byHallin and Paindav-
eine (2008). It also seems interesting to consider the extension
to high-dimensional data, that is, to situations in which either
g ≈ nm or g > mn. In these cases, it is not possible to estimate
the entire covariance matrix. However, a procedure similar to
our proposal can be based on suitable tests for high-dimensional
data (see, for some examples, Chen and Qin 2010; Ro et al.
2015; Feng, Zou, and Wang 2016). Further, it seems interesting
to investigate the use of alternative estimates of the multivari-
ate location and scatter parameters. In addition, as discussed in
remarks C and D in Section S1 of the supplementary material, it
seemsworthwhile to explore the possibility of handling autocor-
related data using some bootstrap for time series techniques and
the substitution of the two-stage model identification approach
based on the FS and LASSO algorithms with alternative variable
selection algorithms.

SupplementaryMaterials

mphase1-supplementary.pdf: Additional simulation results and com-
putational details.

mphase1-example.pdf: A vignette illustrating the use of the R
package.

mphase1-package.zip: An R package implementing the Phase
I method described in the article. The
archive includes the source package, a
version compiled for MS Windows and
the manual.
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S1 Some Remarks on the Proposed Phase I Method

A. In our implementation, it is possible to constrain the difference between the onset of

two consecutive step shifts (see Subsection 3.3 of the paper) to be greater than an user-

controllable constant, say lmin. In particular, we found that the choice lmin = 5 leads

to a better performance against several types of location shifts without substantially

affecting the possibility of detecting short step shifts or transitory OC periods. Capizzi

and Masarotto (2013) obtained similar results in the univariate case.

B. As mentioned in Subsection 3.1 of the paper, the presence of isolated shifts is

not considered for individual observations. When n = 1, we suggest to plot Gi =

(xi,1 − `)′S−1(xi,1 − `) against i, and to further investigate any data point with a value

far from the others for a possible OC situation. Unfortunately, it is not possible to

provide nonparametric control limits for Gi.

C. The proposed Phase I analysis relies on the assumption that the observations are

i.i.d. when the process is IC. Therefore, we recommend complementing the analysis

by checking the data for the presence of autocorrelation (see, e.g., Wei, 2006). If this

hypothesis cannot be rejected, one possibility consists of computing the p-value replacing

the conditional approach, described in Subsection 3.4 of the paper, with some bootstrap

methods for time-series (Bühlmann, 2002; Politis, 2015). However, further research work

is needed on this topic.

D. The use of the FS algorithm for screening, i.e., for identifying a superset of the

relevant predictors, followed by the adaptive LASSO for pruning have been considered

in a slightly different framework by Wang (2009). We decide to consider this approach

because of its simplicity and very good performance, but, also because the use of the FS

algorithm leads to a very fast computation of the permutation-based p-value. However,

observe that our method can also be implemented using alternative variable-selection

approaches, including fused-type regularizations (Tibshirani et al., 2005) and bi-level

algorithms (Huang et al., 2012). This can be a topic for further research.
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E. In the post-signal diagnostic method described in Subsection 3.5 of the paper, it

is possible to directly use the observations in place of their signed ranks. However,

in a simulation study not reported here, we observed that this substitution leads to a

reduced ability to detect the variables responsible for the shifts when the distribution is

heavy-tailed and/or skewed.

F. Concerning the multivariate signal ranks, observe that

1. They combine the information on the direction of zi,j, given by its spatial sign

zi,j/||zi,j||, with the information on the magnitude of ||zi,j|| given by ri,j.

2. They are invariant with respect to an affine transformation of the data, i.e., the

signed ranks computed from xi,j are the same as those obtained from a + Bxi,j,

where a and B are a g-dimensional vector and a g×g non-singular matrix, respec-

tively. This property ensures that results do not depend on the particular scale

and coordinate system chosen for the data.

3. Their values are influenced by the choice of S−1/2. However, it can easily be shown

that the results of the Phase I procedure, e.g. the p-value, do not depend on this

choice. In our implementation, we use the Cholesky factor of S.

4. Differently from the spatial signed ranks introduced by Oja (2010), the multivariate

signed ranks given in equation (4) of the paper do not require the strong assumption

on symmetry of the underlying distribution.

G. Possible alternatives to multivariate signed ranks are provided by spatial ranks and

spatial signs which have been extensively used in the literature regarding multivariate

nonparametric tests (Oja, 2010). We have performed a simulation study, with a design

similar to that reported in Section 4 of the paper, to investigate the impact of choosing

these alternative scores. Due to lack of space, we cannot reproduce all the results but,

here, we suggest using the signed ranks for the following reasons:

1. Concerning the comparisons between signed and spatial ranks, our simulation re-

sults show that both types of multivariate ranks offer a similar performance in
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terms of OC alarm probability. However, the complexity of the computation of

signed and spatial ranks are on the order of gnm log(nm) and g(nm)2, respectively.

Hence, our proposal is much faster when based on signed ranks, in particular when

nm is not small. Further, it is not easy to understand the relationship between

the direction of a shift in the original data, and in the corresponding spatial ranks.

Therefore, it is more difficult to use spatial ranks in the LASSO-based post-signal

diagnostic method described in Subsection 3.5 of the paper.

2. As shown in Section S6 of this supplementary material, the proposed Phase I

method based on multivariate signed ranks outperforms an analogous procedure

based on spatial signs.

S2 Additional Details on Stage 4

When the null hypothesis of a stable process is rejected, the model given by equation

(6) in the paper can be written in matrix form as

U
gnm×1

= W
gnm×g(K+1)

θ
g(K+1)×1

+ ε
gnm×1

(1)

where

U =



u1,1

...

u1,n

...

um,1

...

um,n


, W =



S−1/2 S−1/2ξ
(1)
1 · · · S−1/2ξ

(K)
1

...
...

...
...

S−1/2 S−1/2ξ
(1)
1 · · · S−1/2ξ

(K)
1

...
...

...
...

S−1/2 S−1/2ξ
(1)
m · · · S−1/2ξ

(K)
m

...
...

...
...

S−1/2 S−1/2ξ
(1)
m · · · S−1/2ξ

(K)
m


, θ =


δ0
...

δK



and ε is the residual vector.

Model (1) is a standard linear regression model. So, the entire path of the adaptive

LASSO can be obtained using the LARS algorithm (Efron et al., 2004) as modified by

Zou (2006).
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Suppose now that, using the information criterion of Chen and Chen (2008), H

elements of θ are selected as different from zero. Let WH be the corresponding gnm×H

submatrix of W. Observe that the selected elements always contain the elements of δ0

since the intercept is not penalized. To obtain the fitted values, shown for diagnostic

purpose as dashed lines in the output of our procedure, we proceed as follows:

1. Regress, using an ordinary least squares approach,

Z =
(
z′1,1, . . . , z

′
1,n, . . . , z

′
m,1, . . . , z

′
m,n

)′
on WH and denote by

Ẑ = (ẑ′1, . . . , ẑ
′
1, . . . , ẑ

′
m, . . . , ẑ

′
m)
′

the corresponding fitted values. Here, the zi,j’s are the standardized observations

described in Subsection 3.2 of the paper. Further, observe that, given the structure

of WH , the fitted values are constant throughout each subgroup.

2. Compute the fitted value for the ith subgroup as

x̂i = `+ S1/2ẑi,1

Remark 1. Some computational saving can be achieved observing that the same fitted

values can be obtained applying a similar procedure to the subgroup means of the signed

ranks and of the standardized observations.

Remark 2. We regress the standardized observations zi,j, and not the original data

xi,j, on WH , since we are in a Seemingly Unrelated Regression Equations (SURE)

framework. Hence, better results can be obtained if heteroscedasticity and correlations

between variables are taken into account (see Green, 2012, chapter 10).

S3 Additional Performance Comparisons

Figures 1 and 2 compare, for two non-normal distributions, the OC performance of the

suggested Phase I procedure with that of the method based on component-wise ranks
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Figure 1: Out-of-control alarm probability of the MPhase1 control chart and of the test
suggested by Lung-Yut-Fong et al. (2011) (Student t data with 3 degrees of freedom,
m = 50, n = 1).

proposed by Lung-Yut-Fong et al. (2011). An analogous comparison, in the case of

normally distributed data, has been presented in Subsection 4.2 of the paper.

Results depend on the particular distribution, the number of variables and patterns

of the location shifts. However, they clearly point to an inferior efficiency of the Lung-

Yut-Fong et al. (2011) method. Further, observe that the relative efficiency of this

method decreases as the number of variables increases.

We also studied the OC behavior of our method in scenarios for which no competitor

is currently available. In general, we observe a similar OC performance for different

distributions, as shown in Figure 3 for multivariate normal or gamma data.
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Figure 2: Out-of-control alarm probability of the MPhase1 control chart and of the test
suggested by Lung-Yut-Fong et al. (2011) (Multivariate Gamma, m = 50, n = 1).

S4 Additional Results on the Post-Signal Procedure

Table 1 shows additional simulation results concerning the performance of the post-signal

procedure described in Section 3.5 of the paper. In particular, we want to illustrate that,

in many practical situations, the ability to correctly classify an observation as IC or OC

depends more on γ, the parameter determining the EBIC criteria, than on α, the desired

value for the FAP . Complementing the results presented in Table 4 of the paper, Table

1 can also be interesting for choosing a suitable value of γ. Indeed, results show that

our procedure can be designed to be

liberal: when γ = 0 most of the OC data are correctly classified as OC but also a

substantial proportion of IC observations are flagged as OC.

7



δTvar(xi, j)−1δ

0.0
0.2
0.4
0.6
0.8
1.0

0.5 1.0 1.5 2.0

Number of variables: 2
Linear

Number of variables: 5
Linear

0.5 1.0 1.5 2.0

Number of variables: 10
Linear

Number of variables: 2
Mixture

Number of variables: 5
Mixture

0.0
0.2
0.4
0.6
0.8
1.0

Number of variables: 10
Mixture

0.0
0.2
0.4
0.6
0.8
1.0

Number of variables: 2
Transient

Number of variables: 5
Transient

Number of variables: 10
Transient

Number of variables: 2
Sustained

Number of variables: 5
Sustained

0.0
0.2
0.4
0.6
0.8
1.0

Number of variables: 10
Sustained

0.0
0.2
0.4
0.6
0.8
1.0

Number of variables: 2
Isolated

0.5 1.0 1.5 2.0

Number of variables: 5
Isolated

Number of variables: 10
Isolated

Normal Gamma

Figure 3: Out-of-control alarm probability of the suggested Phase I procedure for sub-
grouped normal and gamma observations (m = 50, n = 5).

conservative: when γ = 1 few data points are falsely signaled as OC but, if the shifts

are small, a not negligible proportion of OC data are not flagged.

balanced: when γ = 0.5 it is possible to reach a compromise between the number of

false and true OC signals.

To illustrate these points, for different values of g, n, m and δ, we proceed as follows:

− m subgroups, each of n observations, are simulated from a g-variate Student’s t distri-

bution (X1, . . . , Xg) with three degrees of freedom, such that E(Xi) = 0, var(Xi) = 1

and cov(Xi, Xj) = 0.6.

− A shift of size δ is added only to the first variable in 20% randomly chosen subgroups.

In the following, these subgroups are considered as OC, the others as IC.
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Table 1: Averages, and, in parentheses, standard deviations, of the false in-control and
out-of-control rates

γ = 0.0 γ = 0.5 γ = 1.0
δ α FICR FOCR FICR FOCR FICR FOCR

g = 5, n = 5, m = 50
1 0.01 0.0470 (0.0478) 0.1878 (0.1316) 0.0994 (0.0519) 0.0428 (0.0918) 0.1557 (0.0410) 0.0132 (0.1001)

0.05 0.0426 (0.0377) 0.1964 (0.1292) 0.0981 (0.0497) 0.0448 (0.0947) 0.1550 (0.0404) 0.0157 (0.1104)
0.10 0.0423 (0.0368) 0.1971 (0.1289) 0.0980 (0.0496) 0.0448 (0.0947) 0.1549 (0.0404) 0.0157 (0.1104)

2 0.01 3e-04 (0.0028) 0.1980 (0.1112) 0.0012 (0.0056) 0.0635 (0.0781) 0.0034 (0.0103) 0.0141 (0.0364)
0.05 3e-04 (0.0028) 0.1980 (0.1112) 0.0012 (0.0056) 0.0635 (0.0781) 0.0034 (0.0103) 0.0141 (0.0364)
0.01 3e-04 (0.0028) 0.1980 (0.1112) 0.0012 (0.0056) 0.0635 (0.0781) 0.0034 (0.0103) 0.0141 (0.0364)

g = 5, n = 5, m = 100
1 0.01 0.0463 (0.0311) 0.1644 (0.0962) 0.1096 (0.0437) 0.0299 (0.0644) 0.1738 (0.029) 0.0156 (0.0846)

0.05 0.0462 (0.0309) 0.1646 (0.0961) 0.1096 (0.0436) 0.0299 (0.0644) 0.1737 (0.029) 0.0158 (0.0734)
0.10 0.0462 (0.0309) 0.1646 (0.0961) 0.1096 (0.0436) 0.0299 (0.0644) 0.1737 (0.029) 0.0158 (0.0734)

2 0.01 4e-04 (0.0034) 0.1241 (0.0792) 9e-04 (0.0071) 0.0654 (0.0582) 0.0021 (0.0087) 0.0371 (0.0525)
0.05 4e-04 (0.0034) 0.1241 (0.0792) 9e-04 (0.0071) 0.0654 (0.0582) 0.0021 (0.0087) 0.0371 (0.0525)
0.10 4e-04 (0.0034) 0.1241 (0.0792) 9e-04 (0.0071) 0.0654 (0.0582) 0.0021 (0.0087) 0.0371 (0.0525)

g = 10, n = 5, m = 50
1 0.01 0.0453 (0.0574) 0.2240 (0.1355) 0.0929 (0.0562) 0.0481 (0.088) 0.1489 (0.0438) 0.0119 (0.0887)

0.05 0.0369 (0.0420) 0.2400 (0.1278) 0.0888 (0.0507) 0.0511 (0.0924) 0.1475 (0.0425) 0.0131 (0.0942)
0.10 0.0351 (0.0377) 0.2429 (0.1255) 0.0882 (0.0497) 0.0511 (0.0924) 0.1473 (0.0422) 0.0131 (0.0942)

2 0.01 1e-04 (0.0014) 0.1946 (0.1129) 3e-04 (0.0027) 0.0821 (0.0817) 0.0010 (0.005) 0.0419 (0.0584)
0.05 1e-04 (0.0014) 0.1946 (0.1129) 3e-04 (0.0027) 0.0821 (0.0817) 0.0010 (0.005) 0.0419 (0.0584)
0.01 1e-04 (0.0014) 0.1946 (0.1129) 3e-04 (0.0027) 0.0821 (0.0817) 0.0010 (0.005) 0.0419 (0.0584)

g = 10, n = 5, m = 100
1 0.01 0.0358 (0.0293) 0.2072 (0.0914) 0.094 (0.0466) 0.0447 (0.0648) 0.1648 (0.0331) 0.0033 (0.0354)

0.05 0.0353 (0.0274) 0.2080 (0.0907) 0.0938 (0.0463) 0.0452 (0.0663) 0.1648 (0.0331) 0.0043 (0.0474)
0.01 0.0353 (0.0274) 0.2080 (0.0907) 0.0938 (0.0463) 0.0452 (0.0663) 0.1648 (0.0331) 0.0043 (0.0474)

2 0.01 1e-04 (0.0011) 0.1271 (0.0835) 3e-04 (0.0021) 0.0276 (0.0382) 7e-04 (0.0031) 0.0150 (0.0265)
0.05 1e-04 (0.0011) 0.1271 (0.0835) 3e-04 (0.0021) 0.0276 (0.0382) 7e-04 (0.0031) 0.0150 (0.0265)
0.10 1e-04 (0.0011) 0.1271 (0.0835) 3e-04 (0.0021) 0.0276 (0.0382) 7e-04 (0.0031) 0.0150 (0.0265)

− Our procedure is applied to the simulated data using different values of α and γ.

Since, we want to study the method’s ability to correctly classify subgroups as IC or

OC, we only focus on the detection of isolated outliers. Indeed, when a step shift is

detected, the automatic classification of an observations as IC or OC can be difficult.

For each simulation run, results can be summarized in the following table

Number of subgroups classified as

in-control out-of-control

In-control subgroups A B

Out-of-control subgroups C D

Table 1 shows averages (and standard deviations) of the false IC rate (FICR), and false
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OC rate (FOCR) defined as follows

FICR =
C

A+ C
and FOCR =


B

B +D
if B +D > 0

0 if B +D = 0

.

The FICR (FOCR) is the proportion of IC (OC) subgroups wrongly classified as OC

(IC). Observe that, in the multiple hypothesis testing literature, the average FOCR

corresponds to the false discovery rate.

Table 1 shows that both rates almost do not depend on α, while they strongly

depend on γ. Indeed, in the presence of many OC subgroups, our method signals with a

probability close to one also when α is small. Hence, the classification in “good” or “bad”

subgroups seems to strictly depends on the information criterion used during Stage 4.

Similarly to Table 4 in the paper, results in Table 1 point to a good performance of

the proposed method which correctly detects all the medium/large shifts (δ = 2) and

most of the small/medium shifts (δ = 1), even maintaining an acceptable number of

false detections when γ = 0.5 or γ = 1.

S5 Comparison of Permutation and Elliptical Approaches

An alternative to the use of the permutation-based p-value is possible assuming that

the IC distribution is elliptical (Oja, 2010). Indeed, the following result follows from an

analogous property of the multivariate signed ranks (Hallin and Paindaveine, 2002).

Proposition. Assume that xi,j are i.i.d. with a common elliptical probability distribu-

tion. Then,

Prob0(T1 ≤ t1, . . . , Tk ≤ tk) = ProbStandard Normal(T1 ≤ t1, . . . , Tk ≤ tk)

where ProbStandard Normal(·) is the distribution of T1, . . . , Tk, computed by assuming that

xi,j have a g-dimensional standard normal distribution.

Hence, we can compute the p-value by assuming a multivariate normal distribution

with known mean and dispersion. This is the approach followed for the design of the

Shewhart charts by Bell et al. (2014) and Cheng and Shiau (2015).
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Figure 4: Out-of-control alarm probability of the suggested Phase I procedure with p-
values computed using the “permutation” and “elliptical” approaches (subgrouped Stu-
dent’s t observations with 3 degrees of freedom, m = 50, n = 5).

We have extensively studied this possibility to determine whether it could offer some

advantages; however, our conclusion was negative. Indeed, as documented by Figure 4 in

the case of a multivariate Student’s t distribution with three degrees of freedom, the OC

performance of both approaches is essentially the same for every elliptical distribution we

have considered. This means that assuming an elliptical IC distribution would restrict

the applicability of the proposed method, without providing a better performance when

the IC distribution is actually elliptical.
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Figure 5: Out-of-control alarm probability of the MPhase1 control chart based on the
spatial signs and the multivariate signed ranks (isolated shifts, m = 50, n = 5).

S6 Spatial Signs vs Signed Ranks

As mentioned in Section S1, we have studied the performance of our method substi-

tuting the multivariate signed ranks with the corresponding spatial signs, i.e., replacing

equation (4) of the paper with

ui,j =


0 if zi,j = 0;

zi,j
||zi,j||

if zi,j 6= 0.
.

For different distributions and number of variables, Figure 5 shows the detection power

of the original and modified methods when there is an isolated location shift. Similar

results have been obtained for other shift patterns.

Results show that using the multivariate signed ranks, which combine the information
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Figure 6: Out-of-control alarm probability of the MPhase1 control chart using the for-
ward and the optimal search (subgrouped data from a Normal distribution, m = 50,
n = 5).

given by the spatial signs with those given by the ranks of the Mahalanobis depths,

offers a better performance. However, it should be observed that, consistently with some

results regarding the multivariate nonparametric tests (Oja, 2010), the relative efficiency

of the method based on the spatial signs increases with the number of variables.

S7 Optimal vs Forward Search

One of the main goals of the proposed Phase I method, consists of the simultaneous

detection of multiple isolated and step shifts. However, when the identification of iso-

lated shifts is not deemed important, it is feasible to replace the forward search, which

corresponds to a recursive binary partitioning approach, with the search of the opti-
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Figure 7: Out-of-control alarm probability of the MPhase1 control chart using the for-
ward and the optimal search (subgrouped data from a Student’s t distribution with 3
degrees of freedom, m = 50, n = 5).

mal time-ordered partition in the least squares sense, for which some relatively fast

algorithms exist (see Killick et al., 2012 and Qiu, 2013, Chapter 6).

For this reason, we have investigated if the substitution of the forward with the opti-

mal search leads to a better performance when only step shifts are considered. However,

differences in the detection power do not seem of practical importance (see Figures 6

and 7).
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Table 2: Performance of the post-signal diagnostic method based on an alternative
implementation of the Stage 4. (α = 0.05).

Average Number of True Detections Average Number of
Exact Approximated False Detections

δ = 1 δ = 2 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2
Scenario A / Number of Variables: 5 / Number of True Shifts: 3

γ = 0 1.64 1.99 1.89 2.00 0.16 0.05 0.02
γ = 0.5 1.54 1.99 1.76 2.00 0.08 0.01 0.00
γ = 1 1.29 1.99 1.48 2.00 0.06 0.00 0.00

Scenario A / Number of Variables: 10 / Number of True Shifts: 3
γ = 0 1.64 1.98 1.89 2.00 0.14 0.05 0.02
γ = 0.5 1.54 1.98 1.77 2.00 0.08 0.02 0.00
γ = 1 1.32 1.98 1.51 2.00 0.05 0.01 0.00

Scenario B / Number of Variables: 5 / Number of True Shifts: 10
γ = 0 6.01 7.91 7.40 8.21 0.14 0.59 0.25
γ = 0.5 3.92 7.90 4.74 8.21 0.07 0.16 0.07
γ = 1 1.74 7.88 2.10 8.17 0.06 0.04 0.02

Scenario B / Number of Variables: 10 / Number of True Shifts: 10
γ = 0 5.58 7.82 6.97 8.11 0.18 0.97 0.32
γ = 0.5 3.38 7.83 4.09 8.12 0.08 0.19 0.10
γ = 1 1.46 7.83 1.79 8.11 0.06 0.06 0.03

S8 An Alternative Implementation of Stage 4

Given the definition of the overall test statistic

WOBS = max
k=1,...,K

Tk − E0(Tk)√
var0(Tk)

(see Subsection 3.4 of the paper), the application of the adaptive LASSO, during the

post-signal diagnostic stage (Subsection 3.5 of the paper), could be restricted to the first

K̂ = argmax
k=1,...,K

Tk − E0(Tk)√
var0(Tk)

shifts selected during the screening stage. Indeed, TK̂ is in some sense the most unlikely

elementary statistic among T1, . . . , TK . Further, the use of K̂ has been recommended

by Capizzi and Masarotto (2013) in the univariate case.

However, at least in the multivariate case, we found that this choice can reduce the

efficiency of the post-signal diagnostic stage. For example, Table 2 shows the average

number of true and false shifts detected by the modified procedure in the same scenarios
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considered in Subsection 4.3 of the paper. When compared with the results presented

in Table 4 of the paper, Table 2 shows that the use of K̂ decreases the sensitivity of the

proposed method.

In particular, we observe this effect when the δ’s are quite sparse, i.e., when many

variables do not shift. In these scenarios, K̂ tends to be too small because the explained

variances Tk only increase slightly when a non-null but sparse δ is included.

S9 Attained False Alarm Probabilities

Table 3 shows the attained false alarm probabilities displayed in Figure 4 of the paper.
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1 Introduction

This short note illustrates the use of the R package mphase1 accompanying the paper.

The package can be loaded during an R session using

library(mphase1)

2 The mphase1 Function

2.1 A simulated dataset

To illustrate the package, we use a simulated dataset included in mphase1, consisting of

m = 50 subgroups, each with n = 5 observations, on p = 4 variables.

The observations have been generated by

xi,j = δ1ξ
(1)
i + δ2ξ

(2)
i + εi,j (i = 1, . . . ,m; j = 1, . . . , n)

where

(i) xi,j denotes the jth observation vector for the ith subgroup.

(ii) ξ(1)i and ξ(2)i are two scalar sequences describing an isolated and a step shift, respec-

tively. In particular,

ξ
(1)
i =

0 if i 6= 10

1 if i = 10
and ξ

(2)
i =

0 if i < 31

1 if i ≥ 31
.

Note that 10 and 31 are the times of the shifts.

(iii) δ1 and δ2 are four dimensional vectors giving the directions and sizes of the two shifts.

Specifically, we set

δ1 = (1, 0, 0, 0)′ and δ2 = (0, 0, 0.5,−0.25)′.

Note that the first shift involves only the first variable and the second shift only the

third and fourth variables.
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(iv) εi,j = (εi,j,1, . . . , εi,j,4)
′ are four dimensional pseudo-random vectors simulated from

a Student’s t distribution with three degrees of freedom, such that E(εi,j,r) = 0,

var(εi,j,r) = 1 and cor(εi,j,r, εi,j,s) = 0.8|r−s|.

The code used to simulate the data is reported in Appendix A.

The dataset can be loaded in the current R session using

data(Student)

Observe that Student is a p× n×m array

is.array(Student)

## [1] TRUE

dim(Student)

## [1] 4 5 50

such that Student[r,j,i] contains the jth observation on the rth variable belonging

to the ith subgroup.

Therefore, for example, we can “extract” the observations of the 10th subgroup with

the command

Student[,,10]

## [,1] [,2] [,3] [,4] [,5]

## X1 -0.4756779 1.1946432 0.8431024 0.61521671 2.2278333

## X2 -0.4730533 0.1201301 -0.3281686 -0.04584001 0.4629794

## X3 -0.2203015 0.4243876 -0.3012886 -0.41782778 0.5809793

## X4 -1.2312955 0.1677948 -0.1530630 -0.66490621 0.2699826

The following command can be used to plot the data (the lines show the subgroup

means)
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mphase1PlotData(Student)
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Observe that it is not easy to recognize the shifts in the original data (in particular, the

sustained shift).

The panels of the previous figure can be rearranged (also in multiple plots) using the op-

tional layout parameter. This possibility is particular useful when the number of variables

is large. See the following examples.
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mphase1PlotData(Student,layout=c(2,2))
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mphase1PlotData(Student,layout=c(1,2,2))
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2.2 Basic usage

The main function of the package, mphase1, performs the Phase I analysis described in

the paper. In many practical situations, it is enough to call this function with only one

argument: an array containing the dataset.
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mphase1(Student)
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## Call:

## mphase1(x = Student, plot = TRUE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0.5, K = 7, lmin = 5,

## L = 1000, seed = 11642257)

##

## p-value < 0.001

8



##

## Location Shifts:

## type time variables

## 1 Step 31 3,4

## 2 Isolated 10 1

In this case, the small p-value, shown at the top of the figure, points to an unstable

process. Further, graphics correctly suggest the presence of (i) one isolated shift at time 10

involving only the first variable, and (ii) a step shift starting from time 31 and regarding

the third and fourth variables. The same information (plus the values of the optional

parameters that are described in the manual) is provided by the output printed on the R

console.

2.3 The returned object

Function mphase1 returns an object of class mphase1.

system.time(u <- mphase1(Student,plot=FALSE))

## user system elapsed

## 0.514 0.000 0.512

class(u)

## [1] "mphase1"

Observe that the computation required less than a second.

When the object is assigned to a variable (u is this example), we have access to

− the p-value.

u$p.value

## [1] 0
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− a dataframe containing the results of the LASSO-based diagnostic procedure.

u$alasso

## type time variables

## 1 Step 31 3,4

## 2 Isolated 10 1

− the results of the forward search stage.

u$forward

## type time T a b

## 1 Step 31 129.5188 13.85431 3.201762

## 2 Isolated 10 145.4882 25.19917 4.707573

## 3 Isolated 41 156.9932 35.29905 5.892541

## 4 Isolated 1 167.5158 44.47737 6.854161

## 5 Isolated 23 175.9102 52.95266 7.648564

## 6 Isolated 24 182.3908 60.90623 8.334466

## 7 Isolated 33 188.2676 68.41551 8.991980

In particular u$forward is a dataframe containing the types and times of the shifts

identified during the forward search as well as the values of the elementary statistics,

Ti, and their estimated in-control mean and standard deviations (ai and bi).

− the estimates of the location vector and scatter matrix used to standardize the data.

u$center

## X1 X2 X3 X4

## 0.003218898 0.050398124 0.221409534 -0.035299271

u$scatter

10



## X1 X2 X3 X4

## X1 0.9461620 0.7908112 0.5081340 0.4712398

## X2 0.7908112 1.1107008 0.7538285 0.7381769

## X3 0.5081340 0.7538285 1.0271373 0.8461249

## X4 0.4712398 0.7381769 0.8461249 0.9672659

− Three p× n×m arrays

(i) signed.ranks containing the signed ranks of the original data;

(ii) fitted containing the predicted values computed at the last stage of the procedure;

(iii) residuals containing the difference between the data and the fitted values.

Therefore, for example, the signed ranks can be plotted using the command

mphase1PlotData(u$signed.ranks)
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In addition, we can compute an estimate of the shifts in the four variables at time 10

and 31 using

round(u$fitted[,1,10]-u$fitted[,1,9],3)

## X1 X2 X3 X4

## 0.931 0.000 0.000 0.000

and
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round(u$fitted[,1,31]-u$fitted[,1,30],3)

## X1 X2 X3 X4

## 0.000 0.000 0.365 -0.299

2.4 print, plot and postsignal

Methods print, plot and postsignal are available for objects of class mphase1. The first

one allows to print to the console the main results

print(u)

## Call:

## mphase1(x = Student, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0.5, K = 7, lmin = 5,

## L = 1000, seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 31 3,4

## 2 Isolated 10 1

The same output can be obtained typing the name of the object

u

## Call:

## mphase1(x = Student, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0.5, K = 7, lmin = 5,

## L = 1000, seed = 11642257)

##
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## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 31 3,4

## 2 Isolated 10 1

The plot method can be used to show graphically the results, optionally rearranging

the panels, as shown by the following example

plot(u,layout=c(2,2))
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The postsignal method allows to re-run the LASSO-based post-signal diagnostic pro-

cedure using different values of γ, the extra penalization parameter used in the information

criteria EBIC. In this case, the default value, γ = 0.5, leads to the correct identification of

times and types of the two shifts. On the contrary, using γ = 1, the isolated shift at time

10 is missed

postsignal(u,gamma=1,plot=FALSE)

## Call:
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## mphase1(x = Student, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 1, K = 7, lmin = 5, L = 1000,

## seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 31 3,4

Finally, using γ = 0, i.e., the standard BIC criteria, an additional false isolated shift,

involving only the fourth variable, is identified.

postsignal(u,gamma=0,plot=FALSE)

## Call:

## mphase1(x = Student, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0, K = 7, lmin = 5, L = 1000,

## seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 31 3,4

## 2 Isolated 10 1

## 3 Isolated 1 4

The postsignal method can also be used to re-run the diagnostic procedure using

a different value of α, the desired false alarm probability. For example, if we force the

probability of false detection to be zero, we identify no shift.

16



postsignal(u,alpha=0,plot=FALSE)

## Call:

## mphase1(x = Student, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0, gamma = 0.5, K = 7, lmin = 5, L = 1000,

## seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## [1] "None"

3 The Ryan and Gravel Datasets

Package mphase1 includes the two datasets used in the paper. Hence, the two examples

can be readily reproduced.

3.1 Phase I analysis of the Ryan dataset

data(ryan)

dim(ryan)

## [1] 2 4 20

mphase1PlotData(ryan)
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system.time(u <- mphase1(ryan))
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## user system elapsed

## 0.227 0.000 0.226

u

## Call:

## mphase1(x = ryan, plot = TRUE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0.5, K = 4, lmin = 5,

## L = 1000, seed = 11642257)
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##

## p-value = 0.001

##

## Location Shifts:

## type time variables

## 1 Isolated 10 1

## 2 Isolated 20 1

It is interesting to observe that changing the value of γ does not change the results of

the post-signal identification stage.

postsignal(u,gamma=0,plot=FALSE)

## Call:

## mphase1(x = ryan, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 0, K = 4, lmin = 5, L = 1000,

## seed = 11642257)

##

## p-value = 0.001

##

## Location Shifts:

## type time variables

## 1 Isolated 10 1

## 2 Isolated 20 1

postsignal(u,gamma=1,plot=FALSE)

## Call:

## mphase1(x = ryan, plot = FALSE, post.signal = TRUE, isolated = TRUE,

## step = TRUE, alpha = 0.05, gamma = 1, K = 4, lmin = 5, L = 1000,

## seed = 11642257)

##
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## p-value = 0.001

##

## Location Shifts:

## type time variables

## 1 Isolated 10 1

## 2 Isolated 20 1

3.2 Phase I analysis of the gravel dataset

data(gravel)

dim(gravel)

## [1] 2 1 56

mphase1PlotData(gravel)
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system.time(u <- mphase1(gravel))
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## user system elapsed

## 0.213 0.000 0.213

u

## Call:

## mphase1(x = gravel, plot = TRUE, post.signal = TRUE, isolated = FALSE,

## step = TRUE, alpha = 0.05, gamma = 0.5, K = 7, lmin = 5,

## L = 1000, seed = 11642257)
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##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 25 1,2

## 2 Step 44 1

No additional shift is identified when γ = 0.

postsignal(u,gamma=0,plot=FALSE)

## Call:

## mphase1(x = gravel, plot = FALSE, post.signal = TRUE, isolated = FALSE,

## step = TRUE, alpha = 0.05, gamma = 0, K = 7, lmin = 5, L = 1000,

## seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 25 1,2

## 2 Step 44 1

However, if we set γ = 1, only the step shift at time 25 involving the first variable is

identified.

postsignal(u,gamma=1,plot=FALSE)

## Call:

## mphase1(x = gravel, plot = FALSE, post.signal = TRUE, isolated = FALSE,

## step = TRUE, alpha = 0.05, gamma = 1, K = 7, lmin = 5, L = 1000,
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## seed = 11642257)

##

## p-value < 0.001

##

## Location Shifts:

## type time variables

## 1 Step 25 1

Hence, the additional shifts identified when γ = 0.5 (the default value) should be

analyzed with particular attention.

A Data Simulation

The following code shows how the Student dataset has been simulated:

(a) First, we set the seed of the random number generator to make the example repro-

ducible.

set.seed(1)

(b) Then, we simulate the in-control data from a multivariate Student’s t distribution.

m <- 50

n <- 5

p <- 4

df <- 3

Sigma <- outer(1:p,1:p,function(i,j) 0.8^abs(i-j))

Sigma

## [,1] [,2] [,3] [,4]

## [1,] 1.000 0.80 0.64 0.512

## [2,] 0.800 1.00 0.80 0.640
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## [3,] 0.640 0.80 1.00 0.800

## [4,] 0.512 0.64 0.80 1.000

xnorm <- crossprod(chol(Sigma),matrix(rnorm(p*n*m),p))

xchisq <- sqrt(rchisq(n*m,df)/(df-2))

x <- array(sweep(xnorm,2,xchisq,"/"),c(p,n,m))

dimnames(x)<-list(paste("X",1:4,sep=""),NULL,NULL)

(c) Finally, we add an isolated shift at time 10 (involving only the first variable) and a

step shift starting at 31 (involving the third and fourth variables)

x[1,,10] <- x[1,,10]+1

x[3:4,,31:50] <- x[3:4,,31:50] + c(0.50,-0.25)

It is easy to verify that the simulated dataset is identical to that included in the package.

identical(x,Student)

## [1] TRUE
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