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We propose a new method, namely an eigen-rational kernel-based scheme, for multivariate interpolation
via mesh-free methods. It consists of a fractional radial basis function (RBF) expansion, with the
denominator depending on the eigenvector associated to the largest eigenvalue of the kernel matrix.
Classical bounds in terms of Lebesgue constants and convergence rates with respect to the mesh size of the
eigen-rational interpolant are indeed comparable with those of classical kernel-based methods. However,
the proposed approach takes advantage of rescaling the classical RBF expansion providing more robust
approximations. Theoretical analysis, numerical experiments and applications support our findings.
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Introduction

Multivariate approximation is one of the most investigated topics in applied mathematics and finds
applications in a wide variety of fields. Many successful methods, such as multivariate splines, mesh-
free or meshless approaches and finite elements (see e.g. De Boor, 1978; Brenner & Scott, 1994), have
already been proven to be effective numerical tools. All these approaches have useful properties and
we here concentrate on mesh-free methods (refer e.g. to Buhmann, 2003; Wendland, 2005; Fasshauer,
2007). Concerning approximation theory, their historical foundation lies in the concept of positive
definite functions or, more generally, positive definite kernels. Their development can be traced back
to the work of both Mercer (1909) and Mathias (1923). Nowadays many positive definite functions are
classified as radial basis functions (RBFs), a new term that appeared for the first time (Dyn & Levin,
1983).

Such mesh-free methods, taking advantage of being easy to implement in any dimension, adapt to
different applications. Their main branches deal with interpolation, collocation and quasi-interpolation
(refer e.g. to Franke, 1982; Kansa, 1990; Buhmann & Dai, 2015). The kernel of this investigation
lies in interpolation. The linear spaces spanned by RBFs provide useful properties for multivariate
approximation. Nevertheless, it might be advantageous to study approximants in nonlinear spaces
generated by RBFs. A few examples of these kinds of approaches already exist in the literature
and are known as rational RBFs, introduced in Jakobsson et al. (2009) and further developed in
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ANALYSIS OF A NEW CLASS OF RATIONAL RBF EXPANSIONS 1973

De Marchi et al. (2019), Perracchione (2018) and Sarra & Bay (2018). The scheme essentially
consists in considering quotient expansions of two kernel-based interpolants. The authors show that
they provide more accurate results for functions with steep gradients, in analogy to rational polynomial
approximation. However, the rational basis is constructed by means of function values and consequently
it is not a data-dependent method.

To avoid this drawback, we propose a new approach, namely what we now call the eigen-rational
method, which is extended to work with conditionally positive definite kernels and enables us to define
a rational RBF expansion depending exclusively on kernel and data. Roughly speaking, it consists in
rescaling the classical RBF interpolant, taking into account the eigenvector associated to the largest
eigenvalue of the kernel matrix. Being rescaled, it shows strong similarities with the approach presented
in De Marchi et al. (2017). However, the latter paper limits its attention to compactly supported RBFs
(CSRBFs).

Moreover, despite the fact that from the analysis of Lebesgue functions and error bounds it turns
out that the eigen-rational method behaves similarly to classical kernel-based interpolants, weighting
the interpolant numerically provides more accurate approximations. Such a phenomenon is particularly
evident for RBFs characterized by a fast decay, such as the Gaussian. This is shown by means of
numerical evidence and applications to real data.

The paper is organized as follows. In Section 1 we review the main theoretical aspects of kernel-
based interpolation. Section 2 is devoted to the presentation of the eigen-rational interpolant and to its
theoretical analysis. Extensive numerical tests and applications to image registration are presented in
Sections 3 and 4, respectively. Concluding remarks and a brief outline of future work are discussed in
Section 5.

1. Review of kernel-based interpolation

In this section we review the main theoretical aspects of kernel-based interpolation methods. For further
details we refer the reader to the books Buhmann (2003), Fasshauer (2007), Fasshauer & McCourt
(2015) and Wendland (2005). The approximation problem we consider can be formulated as follows.
Given XN = {xi, i = 1, . . . , N} ⊂ Ω , which should be a set of distinct data points (or data sites or
nodes), arbitrarily distributed on a domain Ω ⊆ R

d, with an associated set FN = {fi = f (xi), i =
1, . . . , N} of data values (or measurements or function values), which are obtained by sampling some
(unknown) function f : Ω −→ R at the nodes xi, the scattered data interpolation problem consists in
finding a function Pf : Ω −→ R from our vector space (e.g., spanned by shifts of our RBF; see below)
such that

Pf

(
xi

) = fi, i = 1, . . . , N. (1.1)

1.1 Well-posed problems

We restrict our attention to conditionally positive definite radial kernels called K : Ω −→ R of order �

on R
d; see e.g. Wendland (2005, Def. 10.14, p. 141). Denoted by Πd

�−1, the set of polynomials of total
degree less than or equal to � − 1 in d variables, conditionally positive definite radial kernels are so that
for all c ∈ R

d \ {0},
N∑

j=1

cjp(xi) = 0
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1974 M. D. BUHMANN ET AL.

Table 1 Examples of conditionally positive definite radial kernels depending on the shape parameter
ε. The truncated power function is denoted by (·)+
K φ(r) �

Gaussian C∞ (GA) e−ε2r2
0

Inverse multiquadric C∞ (IM) (1 + r2/ε2)−1/2 0
Generalized multiquadric C∞ (GM) (1 + r2/ε2)3/2 2
Matérn C2 (M2) e−εr(1 + εr) 0
Matérn C6 (M6) e−εr(15 + 15εr + 6 (εr)2 + (εr)3) 0
Wendland C2 (W2) (1 − εr)4+ (4εr + 1) 0
Wendland C6 (W6) (1 − εr)8+

(
32(εr)3 + 25(εr)2 + 8εr + 1

)
0

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6 0
Buhmann C3 (B3) 112/45r9/2 + 16/3r7/2 − 7r4 − 14/15r2 + 1/9 0

for all p ∈ Πd
�−1 and

N∑
j=1

N∑
k=1

cjckK(xj, xk) > 0. (1.2)

To each conditionally positive definite kernel we can associate a univariate function φ : [0, ∞) → R

(possibly depending on a shape parameter ε > 0), such that for all x, y ∈ Ω ,

K(x, y) = Kε(x, y) = φε(||x − y||2) := φ(r).

Here, r = ||x − y||2. For several examples of RBFs and their regularities we refer the reader to Table 1.
Such functions will be used for the numerical experiments. Usually, since C∞ functions might lead to
instability (see e.g. Fasshauer, 2007), RBFs with finite regularities are strongly recommended in appli-
cations. Moreover, observe that the Buhmann functions (Buhmann, 2000; Zastavnyi, 2006; Porcu et al.,
2017; Zastavnyi & Porcu, 2017) are independent of the shape parameter and, as the Wendland ones,
belong to the class of CSRBFs. Indeed, the Buhmann kernels listed below are defined for 0 ≤ r ≤ 1.

An RBF interpolant Pf : Ω −→ R assumes the form (Fasshauer, 2007)

Pf (x) =
N∑

k=1

αkK
(
x, xk

) +
L∑

m=1

γmpm (x) , x ∈ Ω , (1.3)

where p1, . . . , pL are a basis for the L-dimensional linear space Πd
�−1, with

L =
(

� − 1 + d
� − 1

)
.

Since the conditions (1.1) must be satisfied, the interpolation problem (1.3) leads to solving a linear
system of the form (

ΦK P

PT O

) (
α

γ

)
=

(
f

0

)
, (1.4)
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where

(ΦK)ik = K
(
xi, xk

)
, i, k = 1, . . . , N,

(P)ik′ = pk′
(
xi

)
, i = 1, . . . , N, m = 1, . . . , L.

Moreover, α = (
α1, . . . , αN

)T, γ = (γ1, . . . , γL)T, f = (
f1, . . . , fN

)T, and the 0 denotes a zero vector of
length L and, finally, O is an L × L zero matrix.

In order to establish sufficient conditions under which the interpolation problem is well posed
(uniquely solvable), we give the following definition (cf. Fasshauer, 2007, Definition 6.1, p. 53).

Definition 1.1 A set XN = {xi, i = 1, . . . , N} ⊂ Ω of data points is called an (� − 1)-unisolvent set
if the only polynomial of total degree at most �−1 interpolating zero data on XN is the zero polynomial.

In this situation the following theorem provides suitable conditions under which the stated
approximation problem admits a unique solution; we refer e.g. to Fasshauer (2007, Theorem 7.2, p. 64).

Theorem 1.2 If K in (3) is conditionally positive definite of order � on R
d and the set XN = {xi, i =

1, . . . , N} ⊂ Ω of data points forms an (� − 1)-unisolvent set, then the system of linear equations (1.4)
admits a unique solution.

Remark 1.3 If � = 0, then we have conditionally positive definite functions of order zero, i.e. strictly
positive definite functions. As a consequence, we can interpolate without adding the polynomial term
in (1.3).

1.2 Error bounds

In this subsection, we report error estimates for the interpolation process based on conditionally positive
definite kernels. To this aim, we need to introduce the so-called native spaces. For each conditionally
positive definite kernel K with respect to Πd

�−1, we define an associated real Hilbert space, the native
space NK(Ω). Following Wendland (2005), we start by introducing the space

HK(Ω) :=
{

N∑
i=1

αiK(·, xi), xi ∈ XN , with
N∑

i=1

αip(xi) = 0 for all p ∈ Πd
�−1

}
,

equipped with the bilinear form (·, ·)HK(Ω) defined as

( N1∑
i=1

αiK(·, xi),
N2∑

k=1

βkK(·, xk)

)
HK(Ω)

=
N1∑
i=1

N2∑
k=1

αiβkK(xi, xk).

Since HK(Ω) is only a pre-Hilbert space, we define a Hilbert space HK(Ω) associated to the kernel K
as the completion of HK(Ω) with respect to the norm

‖ · ‖HK(Ω) :=
√

(·, ·)HK(Ω).

To get the native space NK(Ω), we consider the (� − 1)-unisolvent set EL = {ξ1, . . . , ξL} ⊂ Ω

and the Lagrange basis pj, j = 1, . . . , L of Πd
�−1 constructed on these centres. Then we consider
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1976 M. D. BUHMANN ET AL.

the map T : HK(Ω) −→ C(Ω):

Tf (x) = f (x) −
L∑

k=1

pk(x)f (ξ k) =: f (x) − Qf (x) ∀ f ∈ HK(Ω).

The following definition and the successive theorem (cf. Wendland, 2005, Definition 10.16, p. 144 and
Theorem 11.4, p. 176) provide a first error bound in terms of the power function PK,XN

.

Definition 1.4 The native space corresponding to a symmetric kernel that is conditionally positive
definite on Ω with respect to Πd

�−1 is defined by

NK(Ω) = T(HK(Ω)) + Πd
�−1,

equipped with a semiinner product via

(f , g)NK(Ω) = (T−1( f − Qf ), T−1(g − Qg))HK(Ω).

A first important property for the interpolant in the native spaces is that it has the minimum Hilbert
space norm among all functions interpolating the given data, i.e.

|Pf |NK(Ω) ≤ |f |NK(Ω), (1.5)

which in particular shows the boundedness of the interpolant. Other bounds in terms of L∞ norms can
be found in De Marchi & Schaback (2010) and Rieger & Wendland (2017).

Theorem 1.5 Let Ω ⊆ R
d be open. Suppose that K ∈ C2k(Ω × Ω) is a conditionally positive definite

kernel of order �. Assume that XN = {xi, i = 1, . . . , N} ⊂ Ω is an (� − 1)-unisolvent set. Then, for
every α ∈ N

d
0 with |α| ≤ k, the error between f ∈ NK(Ω) and its interpolant can be bounded by

|Dαf (x) − DαPf (x) | ≤ P(α)

K,XN
(x) | f |NK(Ω), x ∈ Ω . (1.6)

Theorem 1.5 bounds the error with respect to the power function, i.e. a term independent of f and
dependent on K and XN . Moreover, to test the convergence of the method, we need to investigate error
bounds in terms of mesh size. Since we deal with scattered data we consider the following quantity,
known as the fill-distance; see Fasshauer (2007):

hXN
= sup

x∈Ω

(
min

xk∈XN

‖x − xk‖2

)
.

It is an indicator of how Ω is filled out by points. We now report the following error bound in terms of
the fill-distance (refer e.g. to Fasshauer, 2007, Theorem 14.6, p. 123).

Theorem 1.6 Suppose Ω ⊆ R
d is open and bounded and satisfies an interior cone condition. Let

K ∈ C2k (Ω × Ω) be symmetric and conditionally positive definite of order �. Fix α ∈ N
d
0 with |α| ≤ k.
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Then there exist positive constants h0 and C independent of x, f and K, such that

|Dαf (x) − DαPf (x) | ≤ Chk−|α|
XN

√
CK(x)| f |NK(Ω), (1.7)

provided that 0 < hXN
≤ h0 and f ∈ NK(Ω), where

CK(x) = max
|β|+|γ |=2k

(
max

w,z∈Ω∩B
(

x,C2hXN

)
∣∣∣Dβ

1 Dγ
2 K (w, z)

∣∣∣ ),

with C2 from Fasshauer (2007, Theorem 14.4, p. 120), and where B
(
x, C2hXN

)
denotes the ball of radius

C2hXN
centred at x.

Remark 1.7 Referring to Theorem 1.6 and to its proof (see also Wendland, 2005, Theorem 11.3, p.
182), we can see that the error bound is obtained by means of a Taylor expansion of order α of the power
function about the origin. In particular, if |α| = 0, we have (refer also to Fasshauer, 2007, Theorem 14.5,
p. 121)

CK(x) = max
|β|=2k

(
max

w,z∈Ω∩B
(

x,C2hXN

)
∣∣∣Dβ

2 K (w, z)
∣∣∣ ). (1.8)

Theorem 1.6 provides convergence orders for a kernel-based interpolant. Essentially, as long as the
fill-distance decreases and as long as the effect of ill-conditioning is negligible, the error decreases.
Moreover, note that equations (1.6) and (1.7) provide an upper bound for the power function, indeed for
all x ∈ Ω (see e.g. Fasshauer, 2007, p. 121 ),

PK,XN
(x) ≤ Chk

XN

√
CK(x). (1.9)

Remark 1.8 We finally point out that if all the derivatives of order 2k are continuous on (Ω̄ × Ω̄) then
CK(x) is uniformly bounded Ω; see Wendland (2005, p. 183).

2. Eigen-rational kernel-based interpolation

In this section we provide a new definition for a rational RBF expansion. This study is motivated
by the analogy with polynomial rational approximation, which is well known to be particularly well
performing. However, it is a mesh-dependent approach and, as a consequence, extending polynomial
approximation in higher dimensions is quite hard (refer e.g. to Hu et al., 2002; Lehmensiek & Meyer,
2011). This is the main reason for which recent research focuses on rational RBFs.

A rational expansion for RBF-based methods was first introduced in Jakobsson et al. (2009). Later
this scheme was extended to work with the partition of unity method (De Marchi et al., 2019) and for
collocation problems (Sarra & Bay, 2018). This algorithm has already been proven to be an effective
numerical tool for interpolation. However, the main drawback consists of the fact that it does not provide
a basis independent of the function values. On the contrary, the method described in what follows
enables us to provide stability and convergence analysis.
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1978 M. D. BUHMANN ET AL.

2.1 The eigen-rational interpolant

The new class of rational kernel-based interpolants we propose, namely eigen-rational interpolants,
assumes the form

P̂f (x) =
∑N

i=1 αiK(x, xi) + ∑L
m=1 γmpm (x)∑N

k=1 βkK̄(x, xk)
= Pg(x)

Ph(x)
, (2.1)

defined for some function values gi, hi, i = 1, . . . , N. Roughly speaking, once we provide the function
values Ph(xi) = hi, i = 1, . . . , N, we can construct Pg in the standard way, i.e. such that it interpolates

g = (f1h1, . . . , fNhN)ᵀ. Then, obviously, P̂f interpolates the given function values FN at the nodes XN .
Note that we allow the more general case of conditionally positive definite functions for constructing

Pg, but we need to restrict to the case of strictly positive kernels for Ph. As evident from what follows,
this enables us to make the eigen-rational interpolant well defined, i.e. such that Ph(x) 
= 0 for all
x ∈ Ω . Unfortunately, such a choice implies that we might consider two different RBFs in (2.1), i.e.
two different kernel matrices. Indeed, let us suppose that K is a conditionally positive definite kernel;
then we define K̄ as its associated kernel, which turns out to be strictly positive definite. Since many
conditionally positive definite functions φ(r) of order � inherit their properties from the �th derivative
of φ(

√
r), if the numerator is a conditionally positive definite function of order �, then the associated

kernel that we choose for the denominator is any nonzero multiple of

d�

dt�
φ
(√

t
)

t=r2 .

For instance, if K is the GM of Table 1, then the associated K̄ is the IM of Table 1. Finally, if K is
strictly positive definite, we fix K̄ = K so that we deal with the same kernel matrix for both numerator
and denominator.

To show under which conditions the rational interpolant is well defined, i.e. such that Ph(x) 
= 0 for
all x ∈ Ω , we need to introduce Perron’s theorem (Perron, 1907).

Definition 2.1 A square matrix is called positive when all entries are positive.

By means of this definition, the following statements find application in our setting (cf. Shapiro,
2016, Theorem 1.8, p. 13 and Theorem 1.10, p. 13).

Theorem 2.2 Every positive square matrix has an eigenpair with a positive eigenvalue and an
eigenvector with all positive components.

The eigenpair, eigenvalue and eigenvector, of the above theorem is known as Perron’s eigenpair.

Theorem 2.3 Each positive square matrix possesses exactly one Perron eigenpair. Among all the (real
or possibly complex) eigenvalues, the Perron eigenvalue has the largest modulus.

We are now able to discuss when the rational interpolant is well defined. The coefficients β =
(β1, . . . , βN)ᵀ are selected so that β is the eigenvector associated to the largest eigenvalue of ΦK̄ , i.e.
such that it satisfies

max
||β̃||2=1

β̃
ᵀ
ΦK̄ β̃, (2.2)

where ΦK̄ is the kernel matrix generated by K̄. Of course (2.2) reduces to finding the eigenvector β

associated to the largest eigenvalue of ΦK̄ .
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ANALYSIS OF A NEW CLASS OF RATIONAL RBF EXPANSIONS 1979

Thus, in our case, if the kernel K̄ is such that K̄(x, ·) > 0, for all x ∈ Ω , by virtue of Theorem 2.3,
we can conclude that Ph(x) 
= 0 for all x ∈ Ω . This is, for instance, the case for all the globally
defined functions listed in Table 1. We can also accommodate the CSRBFs under certain restrictions.
In particular, for the Wendland functions, we know that there always exists a shape parameter εm such
that the kernel matrix generated by the Wendland functions is positive. However, working in this way,
we lose the sparsity of the kernel matrix for CSRBFs, which might be essential for huge data sets.
Therefore, in the case of CSRBFs one can simply define β as in (2.2) subject to the constraint that βi be
positive for all i = 1, . . . , N.

Remark 2.4 The choice made in (2.2) follows from the fact that the aim consists in finding Ph
such that its native space norm relative to the function values is minimized. This would lead to
finding min

β̃
β̃
ᵀ
Φ−1

K̄
β̃. Furthermore, dividing the interpolant by the eigenvector associated to the largest

eigenvalue of ΦK̄ should make the computation more accurate. Moreover, it enables us to give an eigen-
rational RBF expansion independent of the function values of the approximant and depending only on
the kernel and on the data set.

Once we compute the vector β, we calculate the function values Ph(xi) = hi, i = 1, . . . , N. Then,
assuming that K is a conditionally positive definite radial kernel of order � on R

d, we construct the
eigen-rational interpolant P̂f by solving (4), where the vector of function values is replaced by (g, 0)ᵀ,
with g = fh and 0 is a zero vector of length L.

In what follows, we point out that this eigen-rational interpolant is comparable in terms of accuracy
and stability to the standard RBF approximation. However, since we consider in the denominator an
interpolant constructed with the eigenvector associated to the largest eigenvalue, we expect a substantial
improvement in terms of numerical stability.

Unlike Jakobsson et al. (2009), we here define the vector h considering only the interpolation matrix
ΦK̄ , i.e. depending exclusively on the nodes and on the RBF, and not on the function values. This enables
us to construct a data-dependent rational basis. Indeed, let us consider for simplicity a strictly positive
definite kernel K; then the eigen-rational interpolant P̂f reads as follows:

P̂f =
N∑

j=1

αj

K(x, xj)∑N
i=1 βiK(x, xi)

=
N∑

j=1

αj

hjK(x, xj)∑N
i=1 βiK(x, xi)

∑N
i=1 βiK(xj, xi)

,

where we used hj = ∑N
i=1 βiK(xj, xi). Therefore,

P̂f =
N∑

j=1

α̃j

K(x, xj)∑N
i=1 βiK(x, xi)

∑N
i=1 βiK(xj, xi)

=:
N∑

j=1

α̃jKR(x, xj).

Since Ph is not vanishing, the function

KR(x, y) = 1

Ph(x)

1

Ph(y)
K(x, y)

is strictly positive definite (see Aronszajn, 1950; De Marchi et al., 2017).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/3/1972/5431586 by guest on 30 O
ctober 2020



1980 M. D. BUHMANN ET AL.

In the next subsections, for the eigen-rational interpolant, we investigate the theoretical behaviour
of Lebesgue functions and we provide generic error bounds from above. The technique for computing
error estimates is then extended to work with the eigen-rational approximant.

2.2 Stability analysis

Lebesgue constants are stability indicators that should be studied for a better comprehension of the error
behaviour. To this aim we need to dispose of the cardinal form for our eigen-rational interpolant.

Theorem 2.5 Suppose K is a conditionally positive definite kernel of order � in R
d and K̄ is the

associated strictly positive definite kernel. Suppose XN = {xi, i = 1, . . . , N} ⊂ Ω is (� − 1)-unisolvent;
then there exist functions ûk, k = 1, . . . , N such that

P̂f (x) =
N∑

j=1
fjûj(x).

Furthermore, if K = K̄ is strictly positive definite, the ûk, k = 1, . . . , N form a partition of unity.

Proof. If K is a conditionally positive definite kernel with respect to Πd
�−1 and if XN = {xi, i =

1, . . . , N} ⊂ Ω is (� − 1)-unisolvent, from Wendland (2005, Theorem 11.1, p. 173), we know that there
exist functions

uk ∈ VK(XN) = Πd
�−1 +

⎧⎨
⎩

N∑
j=1

αjK(·, xj) :
N∑

j=1

αjpj(xj) = 0, p ∈ Πd
�−1

⎫⎬
⎭

such that uk

(
xi

) = δik. If the kernel K̄ is strictly positive definite, the same argument holds for functions
ūk ∈ span{K̄(·, xj), j = 1, . . . , N}. Therefore,

Pg (x) =
N∑

k=1

g
(
xk

)
uk (x) , Ph (x) =

N∑
k=1

h
(
xk

)
ūk (x) , x ∈ Ω .

Thus, the resulting eigen-rational interpolant in cardinal form is given by

P̂f (x) =
∑N

j=1 gjuj(x)∑N
k=1 hkūk(x)

=
∑N

j=1 hjfjuj(x)∑N
k=1 hkūk(x)

=
N∑

j=1
fj

hjuj(x)∑N
k=1 hkūk(x)

=:
N∑

j=1
fjûj(x),

and, furthermore, ûi

(
xi

) = δik, xi ∈ XN . Moreover, if K = K̄ is strictly positive definite, {ûj}N
j=1 form a

partition of unity; indeed for x ∈ Ω ,

N∑
j=1

ûj(x) =
N∑

j=1
hj

ūj(x)∑N
k=1 hkūk(x)

=
∑N

j=1 hjūj(x)∑N
k=1 hkūk(x)

= 1,

as required. �
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ANALYSIS OF A NEW CLASS OF RATIONAL RBF EXPANSIONS 1981

Once we have a cardinal form for the eigen-rational interpolant, we can define the Lebesgue
functions and constants. Indeed,

|P̂f (x)| =
∣∣∣∣∣

N∑
i=1

f (xi)ûi(x)

∣∣∣∣∣ ≤
(

N∑
i=1

|ûi(x)|
)

|| f ||∞ =: λ̂N(x)|| f ||∞ ≤ Λ̂N || f ||∞,

where

Λ̂N = max
x∈Ω

λ̂N(x).

We note that, as in De Marchi et al. (2017), the cardinal functions of the eigen-rational interpolant are
essentially a rescaled form of those of the standard RBF approximant. The same holds for the Lebesgue
functions and so we expect that their behaviour is similar to that of the standard interpolants.

Remark 2.6 Given x ∈ Ω \ XN , we have

N∑
j=1

(ûj(x))2 =
N∑

j=1

(
hjuj(x)∑N

k=1 hkūk(x)

)2

≤ ||h2||∞
P2

h(x)

N∑
j=1

(uj(x))2,

and from Wendland (2005, Theorem 12.1, p. 208), we know that

N∑
j=1

(uj(x))2 ≤ P2
K,XN

(x)

ω
− 1,

where ω is the smallest eigenvalue of the kernel matrix constructed on the node set XN ∪ {x}. Since the
quadratic form (1.2) is positive, we necessarily have ω > 0. This, together with (1.5) and (1.9), shows
an upper bound for the Lebesgue functions ûj.

2.3 Error analysis

To formulate error bounds, we need to think of g and h as function values obtained by sampling two
functions g = fh and h belonging to NK(Ω) and NK̄(Ω), respectively. We will show that the error for
the eigen-rational interpolant can be bounded in terms of both power function and fill-distance.

The following proposition bounds the error from above for the eigen-rational interpolant in terms of
the power function.

Proposition 2.7 Let Ω ⊆ R
d be open. Suppose K ∈ C(Ω × Ω) is a conditionally positive definite

kernel of order � and K̄ the associated strictly positive definite kernel. Assume that XN = {xi, i =
1, . . . , N} ⊂ Ω is an (� − 1)-unisolvent set. Then, for x ∈ Ω , the error between f and its eigen-rational
interpolant can be bounded by

| f (x) − P̂f (x) | ≤ 1

|Ph(x)|
(
PK̄,XN

(x)|h|NK̄(Ω)| f (x)| + PK,XN
(x)|g|NK(Ω)

)
.
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1982 M. D. BUHMANN ET AL.

Proof. Let us consider x ∈ Ω; then we have

| f (x) − P̂f (x)| =
∣∣∣∣Ph(x)f (x) − Pg(x)

Ph(x)

∣∣∣∣
=

∣∣∣∣ (Ph(x)f (x) − h(x)f (x)) + (g(x) − Pg(x))

Ph(x)

∣∣∣∣ .

Then by applying Theorem 1.5 we have

| f (x) − P̂f (x)| ≤ 1

|Ph(x)|
(
PK̄,XN

(x)|h|NK̄(Ω)| f (x)| + PK,XN
(x)|g|NK(Ω)

)
,

as claimed. �
The statement of Proposition 2.7 enables us to bound the error in terms of the power functions

defined on XN associated to K and K̄. However, for testing the convergence of the method, we need to
investigate how the errors depend on the fill-distance.

Proposition 2.8 Suppose Ω ⊆ R
d is open, bounded and satisfies an interior cone condition. Further,

let K ∈ C2k (Ω × Ω) be symmetric and conditionally positive definite of order � and K̄ be the associated
strictly positive definite kernel. Assume that XN = {xi, i = 1, . . . , N} ⊂ Ω is an (� − 1)-unisolvent set.
Then there exist positive constants h0 and C̃ such that

| f (x) − P̂f (x)| ≤
C̃hk

XN

√
C̃K∗(x)

|Ph(x)|
(|h|NK̄(Ω)| f (x)| + |g|NK(Ω)

)

provided hXN
≤ h0 and g, h ∈ NK(Ω) and NK̄(Ω), respectively, where

C̃K∗(x) = max
(
CK(x), CK̄(x)

)
,

and CK(x) and CK̄(x) are computed as in (1.8).

Proof. The proof is straightforward. Indeed, by using the same argument used for Proposition 2.7 and
Theorem 1.5, for certain constants C̃1 and C̃2, we have

| f (x) − P̂f (x)| ≤ hk
XN

|Ph(x)|
(

C̃1

√
CK(x)|h|NK̄(Ω)| f (x)| + C̃2

√
CK̄(x)|g|NK(Ω)

)
.

Therefore, by defining C̃ = max(C̃1, C̃2) the assertion follows. �
Proposition 2.7 simplifies as soon as we consider strictly positive definite kernels for constructing

Pg. Indeed, we then interpolate with the same kernel, which in particular implies that PK,XN
(x) =

PK̄,XN
(x). Furthermore, we will empirically verify the bound given by Proposition 2.8. Theoretically,

the eigen-rational interpolant and the standard one show similar convergence rates.
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Moreover, we point out that the error depends on the shape parameter of the basis function. Indeed,
even if its dependence is not explicitly indicated, the kernel matrices are constructed by means of this
scaling parameter. Usually, its value is selected via a priori error estimates. Thus, in what follows we
propose a method to determine an optimal value for the shape parameter of an eigen-rational interpolant.
We use the term optimal with abuse of notation. Indeed, error estimates only provide an approximation
of the (true) optimal value, i.e. the one that can be found via trial and error for which the solution is
supposed to be known.

2.4 Error estimates

Techniques allowing us to select a predicted optimal shape parameter via error estimates have already
been designed. Here we focus on the well-known cross-validation algorithm. It was introduced in Allen
(1964) and further developed in Golub & Von Matt (1997). An efficient variant of such a method for
strictly positive definite functions, known in literature as leave one out cross validation (LOOCV),
is detailed in Rippa (1999) and adapted to the eigen-rational interpolant in what follows. In fact, the
polynomial term does not play a crucial role in the accuracy of the interpolant and therefore, only for
computing error estimates, we omit the polynomial part. For completeness, we have to mention that
there exist methods that are able to handle the polynomial term for computing error estimates (see e.g.
Scheuerer, 2011; Biazar & Hosami, 2017). Further extensions of LOOCV for huge data sets are also
available in the literature (Cavoretto et al., 2018).

To adapt LOOCV to our setting, let us first define for a classical RBF interpolant the following cost
for a node xk (Rippa, 1999):

Ef
k = fk − Pk

f (xk), (2.3)

where Pk
f is computed leaving out the kth node. From Rippa (1999) we know that, if the kernel is strictly

positive definite, (2.3) consists of calculating

Ef
k = αk

(ΦK)−1
kk

. (2.4)

Note that this is the key step for having an efficient method. More specifically, this simplification implies
that we compute the inverse of the interpolation matrix only once, while using (2.3) it would have to be
computed N times, i.e. for each node left out. Therefore, even if (2.3) applies to the more general case
of conditionally positive definite kernels, we prefer to simplify the problem and efficiently compute a
measure of the error via (2.4).

Then for a classical interpolant we define the error estimate as in Rippa (1999) to be

E = ∣∣∣∣(Ef
1, . . . , Ef

N

)∣∣∣∣
ν
,

where at this point we fix ν = ∞.
For the eigen-rational interpolant we have

Êf
k = fk − P̂k

f (xk) = fk − Pk
g(xk)

Pk
h(xk)

.
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1984 M. D. BUHMANN ET AL.

Table 2 Lebesgue constants ΛN and Λ̂N for classical and eigen-rational interpolants, respectively.
They are computed on N = 10 equally spaced points on Ω = [−1, 1]. We remark that the Buhmann
function is independent of ε

K ΛN (ε = 0.5) ΛN (ε = 3) Λ̂N (ε = 0.5) Λ̂N (ε = 3)

GM 4.98 8.69 5.14 9.13
GA 9.81 2.58 12.6 3.59
M6 10.6 2.20 11.1 2.60
W6 2.10 9.58 2.73 7.90
B2 30.6 – 29.1 –

Using (2.3), we obtain (
hk − Eh

k

)
Êf

k = Eg
k − fkEh

k ,

and therefore

Ê f
k = αk/(ΦK)−1

kk − fkβk/(ΦK̄)−1
kk

hk − βk/(ΦK̄)−1
kk

.

Then the error estimate for the eigen-rational interpolant is defined as

Ê = ∣∣∣∣(Ê f
1 , . . . , Ê f

N

)∣∣∣∣∞.

Since Ê depends on the shape parameter, i.e. Ê = Ê(ε), the criterion enables us to also select an a priori
optimal value for it. To evaluate the proposed algorithm we need to compare the estimated optimal shape
parameter, namely ε∗, with the true one ε∗

T .

3. Numerical experiments

In this section we carry out numerical experiments for testing the behaviour of the eigen-rational
interpolant. It is compared with the standard one. We analyse the behaviour of the Lebesgue functions
and of the convergence rates. Moreover, we test the method for error estimates.

We use the RBFs reported in Table 1. It should be clear that if we use the GM kernel, then the eigen-
rational interpolant is computed by means of the IM at the denominator. We take different kinds of data
sets: grid (G), Halton (H), random (R) and Chebyshev (C) points.

The eigen-rational interpolants are evaluated on v = 40d equally spaced points Xv = {x̄i, i =
1, . . . , v}. To point out the accuracy we refer to the root mean square error (R̂) and the maximum absolute
error (Â),

R̂ =
√√√√1

v

v∑
i=1

| f (x̄i) − P̂f (x̄i)|2,

Â = max
i=1,...,v

| f (x̄i) − P̂f (x̄i)|.
Similarly, E and A denote the errors for the standard interpolant.
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ANALYSIS OF A NEW CLASS OF RATIONAL RBF EXPANSIONS 1985

Fig. 1. Lebesgue functions λN and λ̂N for standard and eigen-rational RBF interpolants, respectively. They are computed for
different kinds of data sets on Ω = [−1, 1] and N = 10. Top: on Halton points computed via the GM kernel with ε = 0.5 (left)
and ε = 3 (right). Centre: on Chebyshev points computed via the GA kernel with ε = 0.5 (left) and ε = 3 (right). Bottom: on
random points computed via the M6 kernel with ε = 0.5 (left) and ε = 3 (right).
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1986 M. D. BUHMANN ET AL.

Fig. 2. Lebesgue functions λN and λ̂N for standard and eigen-rational RBF interpolants, respectively. They are computed for
N = 25 grid points on Ω = [−1, 1]2. Top: W6 kernel with ε = 0.5 for standard (left) and eigen-rational (right) interpolants.
Bottom: B2 kernel for standard (left) and eigen-rational (right) interpolants.

Experiments for Lebesgue functions and constants

In these tests we compare the Lebesgue constants ΛN and functions λN of the standard RBF interpolant
with the corresponding ones of the eigen-rational approximant, i.e. Λ̂N and λ̂N . The direct computation
of the cardinal functions is an unstable operation and thus we take simple examples to avoid the possible
effect of the ill-conditioning.

The first experiment consists in computing the Lebesgue constants for different kernels on N = 10
equally spaced points on Ω = [−1, 1]. The shape parameter, unless we consider the case of the
Buhmann functions, affects the calculation: that is why we repeat the experiment for two values of ε.
The results are reported in Table 2. We can note that, as expected from the stability analysis carried out
in Section 2.2, the Lebesgue constants for the eigen-rational and standard interpolants are comparable.

To have a better understanding of the phenomenon, we calculate the Lebesgue functions also for
different kinds of nodes (Halton, random and Chebyshev); refer to Fig. 1. Since the cardinal form of the
eigen-rational interpolant is essentially a rescaled form of the standard one, as expected, we obtain

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/3/1972/5431586 by guest on 30 O
ctober 2020



ANALYSIS OF A NEW CLASS OF RATIONAL RBF EXPANSIONS 1987

Fig. 3. Error estimates via LOOCV Ê and E and maximum absolute errors Â and A for eigen-rational and classical interpolants,
respectively. Results are computed with f1 and 81 Chebyshev points on Ω = [−1, 1] via GM (left) and GA (right) kernels.

Lebesgue functions for the eigen-rational interpolant that behave similarly to those of the standard
method. Similar behaviour can be observed in the two-dimensional framework. In Fig. 2 we show a
comparison of the Lebesgue functions for the W6 and B2 kernels. Therefore, from this study it comes
out that the behaviour of the Lebesgue functions and constants are comparable.

3.1 Experiments for convergence and error estimates

In this section we compare the errors obtained via the classical RBF interpolation and the eigen-rational
one. It will be evident that the eigen-rational interpolation gives more accurate results, especially for
RBF characterized by fast decay. In particular, the aim on the one hand consists in comparing the error
estimates described in Section 2.4 and on the other hand in checking the convergence rates reported in
Section 2.2. Therefore, in the first part of this comparison, since we are interested in analysing how the
error varies with respect to the shape parameter, we keep N fixed and let ε vary—whereas to test the
convergence rates we essentially reverse this setting.

In our first examples we consider N = 81 Chebyshev and random points on Ω = [−1, 1] and the
following test functions:

f1(x1) = sinc(x1) and f2(x1) = x8
1

tan
(
1 + x2

1

) + 0.5
.

In Figs 3 and 4 we plot the maximum absolute error A and Â for standard and eigen-rational
interpolation, respectively, by varying ε in the range Ξ = [10−2, 102]. In general, the eigen-rational
one is more stable in the region close to the optimal shape parameter. Furthermore, especially for the
GA function, it turns out to be really accurate. In other words, we numerically show that it enables us
to partially overcome the trade-off between accuracy and stability, i.e. a conflict between theoretically
achievable accuracy and numerical stability.

Furthermore, in Figs 3 and 4 we also always report the estimated error via LOOCV E and Ê for
standard and eigen-rational approximation, as computed in Section 2.4. If we think of E and Ê as error

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/3/1972/5431586 by guest on 30 O
ctober 2020



1988 M. D. BUHMANN ET AL.

Fig. 4. Error estimates via LOOCV Ê and E and maximum absolute errors Â and A for eigen-rational and classical interpolants,
respectively. Results are computed with f2 and 81 random points on Ω = [−1, 1] via W6 (left) and M6 (right) kernels.

Table 3 Error estimates and maximum absolute errors with the approximated optimal and true
optimal shape parameter (ε∗ and ε∗

T , respectively) for the standard interpolant. They are compared
with those obtained via eigen-rational approximation (ε̂∗ and ε̂∗

T). Results are computed in the same
framework as Figs 3 and 4

K ε∗ ε∗
T E(ε∗) A(ε∗

T) ε̂∗ ε̂∗
T Ê(ε̂∗) Â(ε̂∗

T)

GM 0.51 1.32 6.21E–08 2.11E–09 1.59 1.59 1.11E–08 7.76E–09
GA 1.32 7.19 2.61E–09 5.51E–10 4.09 4.09 1.72E–14 9.76E–15
W6 0.16 0.29 1.81E–05 5.83E–06 0.51 0.62 2.17E–05 5.16E–06
M6 2.22 2.22 2.68E–05 6.42E–06 2.32 2.32 2.73E–05 6.67E–06

functions depending on the value of ε, i.e. E = E(ε) and Ê = Ê(ε), we are able to define a priori
optimal values for the shape parameter as follows:

ε∗ = min
ε∈Ξ

E(ε) and ε̂∗ = min
ε∈Ξ

Ê(ε).

The estimated values of the optimal shape parameters ε∗ and ε̂∗ for standard and eigen-rational RBF
interpolants, are compared with the true ones ε∗

T and ε̂∗
T , respectively. The latter are found via trial and

error by minimizing the maximum absolute errors. In other words, we think of A and Â similarly, as
error functions depending on ε, A = A(ε) and Â = Â(ε); refer to Table 3. For both eigen-rational and
classical interpolants, the LOOCV provides suitable approximation of the optimal values. However, we
might note that in correspondence with the optimal shape parameter we usually register higher absolute
errors for the standard interpolant. This is particularly evident for the GA function.
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Table 4 Root mean square errors R, R̂, convergence rates Γ and Γ̂ for standard and eigen-rational
interpolants, respectively, computed with f3 on five sets of grid data on Ω = [0, 1]2

GA (ε = 3) B3
N R Γ R̂ Γ̂ R Γ R̂ Γ̂

25 1.76E–02 – 1.69E–03 – 1.04E–02 – 2.04E–03 –
49 3.29E–03 3.64 2.15E–04 4.48 3.62E–03 2.29 4.50E–04 3.29
81 4.95E–04 8.10 1.41E–05 11.6 1.61E–03 3.45 1.73E–04 4.09

289 1.12E–07 12.1 1.19E–11 20.1 2.01E–04 2.99 1.91E–05 3.17
1089 2.73E–08 2.03 3.70E–15 11.5 1.33E–04 3.91 1.17E–06 4.02

Table 5 Root mean square errors R, R̂, convergence rates Γ and Γ̂ for standard and eigen-rational
interpolants, respectively, computed with f4 on five sets of Halton data on Ω = [0, 1]2

GM (ε = 2) M6 (ε = 4)
N R Γ R̂ Γ̂ R Γ R̂ Γ̂

25 1.03E–04 – 2.34E–04 – 9.19E–03 – 1.56E–03 –
49 5.82E–05 1.36 8.57E–06 7.89 4.93E–03 1.48 2.23E–04 4.63
81 9.30E–07 12.8 1.19E–06 6.14 1.18E–03 4.43 1.07E–04 2.27

289 3.26E–07 1.96 2.21E–07 3.15 8.09E–05 5.04 9.95E–06 4.47
1089 5.67E–07 –0.86 5.99E–08 2.04 5.24E–06 4.28 6.95E–07 4.16

For comparing the convergence rates of eigen-rational and standard interpolants, we need to study
the error by varying the number of nodes N and evaluate the empirical convergence rates

Γ̂k = log
(
R̂k−1/R̂k

)
log

(
hXNk−1

/hXNk

) , k = 2, 3, . . . ,

where R̂k is the root mean square error for the eigen-rational interpolant on the kth numerical experiment,
and hXNk

is the fill-distance of the kth computational mesh. Similarly, we define the convergence rates
Γk for the standard interpolant. Tests are carried out by considering several nested sets of Halton and
grid points on Ω = [0, 1]2 and the following test functions:

f3(x1, x2) = sinc(x1)sinc(x2) and f4(x1, x2) = log
(

2
√

(x1 + 1)2 + (x2 + 1)2
)

.

The results of these experiments are reported in Tables 4 and 5. Of course, to evaluate the
convergence, we need to keep ε fixed for all the data sets. We note that, as expected, the convergence
rates of eigen-rational and standard interpolants are comparable. In particular, we recover spectral
convergence rates for C∞ RBFs, while for functions with finite regularities the convergence rates
are limited by the order of smoothness of the kernel. Furthermore, note that despite such rates being
comparable, the eigen-rational interpolant is revealed to be more accurate, especially for the GA
function. For such a particular RBF it is also possible to see faster convergence rates.
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Fig. 5. The image considered in the example. Landmarks are plotted with squares on the source image (left) and with dots on the
target image (left).

Fig. 6. The registered image via eigen-rational interpolants computed with the W2 (left) and M2 (right) kernels and shape
parameter ε = 0.1.

4. Test with real data: application to image registration

Besides the experiments shown in the previous section, we test the method on real data. We consider
the application to image registration. The purpose of image registration is to find a transformation so
that the transformed form of the source image is similar to the target one. In what follows we focus on
landmark-based image registration; see e.g. Cavoretto et al. (2015), Cavoretto & De Rossi (2018) and
(MIPAV) for further details.

Let S = {si ∈ R
2, i = 1, . . . , N} be a given set of landmarks belonging to the source image and

T = {ti ∈ R
2, i = 1, . . . , N} the corresponding landmarks in the target image; an example taken by

Cavoretto & De Rossi (2018) is shown in Fig. 6, where we take 21 landmarks. The problem consists in
finding a transformation F : R2 −→ R

2 such that F(si) = ti, i = 1, . . . , N. In particular, if the problem
is solved separately for each component of F, the computational issue reduces to the one presented in
Section 1.
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Fig. 7. Mean error M by varying the shape parameter for the standard interpolant compared with those obtained with the eigen-
rational interpolant M̂. Results are computed in the same framework as of Figs 6–7.

The results of the image registration for the eigen-rational interpolant via W2 and M2 are plotted in
Fig. 5 and Fig. 6 . Since it is difficult to carry out a comparison only with the displayed images, we omit
the results obtained by means of standard interpolation. However, we make a comparison by evaluating
the mean error (M) of the standard interpolant,

M =
(∑

s∈S ||s − F(s)||22
#S

)1/2

.

As usually done, we denote by M̂ the mean error calculated with eigen-rational interpolants. A
comparison of the mean errors vs. different values of the shape parameters belonging to Ξ = [10−3, 2]
is plotted in Fig. 7. Once more, we note that the eigen-rational interpolants perform better than the
classical ones. However, we point out that we did not investigated any topology preservation properties
for which the classical RBF approach might take advantage; see e.g. (Cavoretto & De Rossi, 2018).
It holds for the classical interpolant for several RBFs and in those cases the standard one might take
advantage of this.

5. Conclusions and work in progress

We proposed a new numerical method, the eigen-rational interpolant. For such an approximant we
provided a cardinal form and we defined the Lebesgue functions and constants. They are the standard
ones rescaled by a factor depending on the largest eigenvalue of the kernel matrix. Moreover, its
convergence was studied and numerically we observed that the eigen-rational interpolant provides more
accurate approximations.

Nevertheless, further investigations from the scientific community in reconstructing functions with
steep gradients and discontinuities are needed. Generally, in these cases the scheme proposed in Sarra
& Bay (2018) turns out to be more robust than the eigen-rational approach. Such results call for further
studies and comparisons with the method based on discontinuous kernels outlined in De Marchi et al.
(2018).
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Future work will also consist of investigating the behaviour of the eigen-rational interpolant
for spherical interpolation, replacing Euclidean norms by geodetic distances and shifts by rotations.
Moreover, the collocation via the eigen-rational interpolation might be useful and of interest.
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