
Evaluating real-time image reconstruction in 
diffuse optical tomography using physiologically 

realistic test data 

Sabrina Brigadoi,1,* Samuel Powell,1,2 Robert J. Cooper,1 Laura A. Dempsey,1  
Simon Arridge,2 Nick Everdell,1 Jeremy Hebden,1 and Adam P. Gibson1 

1Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK 
2Department of Computer Science, University College London, London WC1E 6BT, UK 

*sabrina.brigadoi@unipd.it 

Abstract: In diffuse optical tomography (DOT), real-time image 
reconstruction of oxy- and deoxy-haemoglobin changes occurring in the 
brain could give valuable information in clinical care settings. Although 
non-linear reconstruction techniques could provide more accurate results, 
their computational burden makes them unsuitable for real-time 
applications. Linear techniques can be employed under the assumption that 
the expected change in absorption is small. Several approaches exist, 
differing primarily in their handling of regularization and the noise 
statistics. In real experiments, it is impossible to compute the true noise 
statistics, because of the presence of physiological oscillations in the 
measured data. This is even more critical in real-time applications, where no 
off-line filtering and averaging can be performed to reduce the noise level. 
Therefore, many studies substitute the noise covariance matrix with the 
identity matrix. In this paper, we examined two questions: does using the 
noise model with realistic, imperfect data yield an improvement in image 
quality compared to using the identity matrix; and what is the difference in 
quality between online and offline reconstructions. Bespoke test data were 
created using a novel process through which simulated changes in 
absorption were added to real resting-state DOT data. A realistic multi-layer 
head model was used as the geometry for the reconstruction. Results 
validated our assumptions, highlighting the validity of computing the noise 
statistics from the measured data for online image reconstruction, which 
was performed at 2 Hz. Our results can be directly extended to a real 
application where real-time imaging is required. 
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1. Introduction 

In diffuse optical tomography (DOT), cerebral haemodynamics can be monitored non-
invasively using light in the red and near-infrared range [1–3]. Sources placed on the subject’s 
head emit light that travels diffusely through the underlying tissues, with some back-scattered 
to detectors positioned several centimetres from the source. Each tissue (e.g. scalp, skull, grey 
matter (GM), etc.) has a characteristic absorption and scattering coefficient. When functional 
activation or any pathophysiological change in haemodynamics occurs, a change in 
absorption is induced, while scattering is usually assumed to remain constant. The modified 
Beer-Lambert Law links the change in absorption to a change in oxy-(HbO) and deoxy-(HbR) 
haemoglobin concentration, which are the molecules absorbing light at this wavelength range, 
while all other tissues are relatively transparent. These concentration changes can either 
reflect functional brain activity or spontaneous baseline physiological trends or pathological 
changes in brain haemodynamics. An example of the latter is the dramatic changes in oxygen 
saturation and therefore oxy/deoxy-haemoglobin concentration that can occur during epileptic 
seizures [4,5]. Hence, from the difference in measured light intensity it is possible to infer the 
concentration changes of HbO and HbR occurring in the underlying cortical tissue [6–10]. 
Unlike in near-infrared spectroscopy (NIRS), where haemoglobin changes are examined on a 
channel-by-channel basis, DOT aims to recover three-dimensional images of haemoglobin 
variations. For this reason, DOT uses overlapping and multi-distance channels to increase 
spatial resolution and to obtain depth information, since photons detected at larger source-
detector separations will (on average) have travelled to deeper regions of the head [7,11,12]. 

DOT has been applied both in clinical environments [2,4] and in studies of functional 
activation [1,2,13], where the growing number of applications is fuelling the continuous 
development of DOT methodology. Hardware advances have allowed an increasing number 
of sources and detectors to be used during the same acquisition, but this can slightly restrict 
the portability of the technique [2]. Portable, wireless devices are likely to extend the range of 
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DOT applications in the near future [14]. Furthermore, developments in computing power and 
the growing number of DOT reconstruction packages has led to increased opportunities for 
sophisticated image reconstruction [15–17]. 

The ability to provide real-time, 3D images of HbO and HbR concentration changes is an 
essential step in the development of DOT techniques. Images can be interpreted more 
naturally than channel-wise data, since one image can summarise the whole measured data 
set. However, there are a number of obstacles that must be overcome before the technique can 
become commonplace: channel-wise signals must be pre-processed and fed to a 
reconstruction software package able to recover and display images in real-time, which is a 
computationally expensive process. Real-time reconstruction within 1 s has been 
demonstrated in the rat brain measuring data from 24 channels and using Graphic Processing 
Units (GPU) to parallelize the computations [18]. 

The process of recovering absorption or concentration changes in DOT is a non-linear, ill-
posed inverse problem [8,9]. First, a model of how light propagates through the tissues (given 
the location of the optical sources and detectors), is required to relate changes in optical 
properties to changes in the measured signals. This forward problem is typically solved using 
either Finite Element Method (FEM) approaches (e.g. Toast [17] or Nirfast [19]) or with 
Monte Carlo methods (e.g. the mesh-based MMC [20] or the voxel-based MCX [16]). 
Whichever method is used, a geometric representation of the target object is required. Many 
studies have used simple homogeneous slab [21], hemi-spherical [7] or 2D circular [22] 
geometries to model the target object. However, a more accurate representation will allow a 
more accurate image to be reconstructed. Ideally, subject-specific, multi-layered, anatomically 
accurate head models would be used, where sources and detectors can be precisely located 
[12,23,24]. If a subject-specific model is not available, an atlas head model can be registered 
to the subject’s cranial landmarks [25]. Wavelength specific and tissue specific optical 
properties can then be assigned and the forward problem can be solved in a geometry that is 
as close as possible to the real case. 

Image reconstruction requires the inversion of the solution to the forward problem. This 
step is a computationally expensive, under-determined, ill-posed inverse problem. Non-linear 
methods (e.g. Newton methods or gradient methods) can be used, but these are 
computationally unfeasible for real-time applications [8]. Under the hypothesis that the 
measured change in absorption is small, the reconstruction can be linearized [8,9]. In this 
context the inverse problem principally consists of forming and inverting the Jacobian matrix 
of partial derivatives of the measurement with respect to the chromophore concentrations. 
Several linear techniques exist to invert the Jacobian and they mainly differ in the type of 
regularization they apply [26,27]. Regularization is required to improve the conditioning of 
the inverse problem and to cope with noise amplification that can occur in the inversion 
process due to the small singular values of the Jacobian matrix. Perhaps the most commonly 
used inversion technique is the Tikhonov regularized least-square solution [9]. 

The reduced computational burden of linear approaches to the inverse problem render 
them highly suitable for real-time imaging. Furthermore, data are usually noisier in real-time 
processing because offline data processing methods (e.g. averaging of the response to 
repetitions of the same stimulus) cannot be applied. Furthermore, motion artifacts and drifts 
are more difficult to detect and correct in real-time applications, adding to the noise present in 
the data. For this reason, it is extremely important that the best regularization strategy and 
noise statistics are employed for real-time reconstruction. Whilst investigators commonly 
assume the noise level to be constant across different channels [7,28,29], a more reasoned 
approach considers the actual noise statistics present in the data. 

DOT reconstruction algorithms are usually tested in simulation (often in simplified 
geometries and often with homogeneous optical properties) by introducing a focal change in 
absorption coefficient and adding random (Gaussian) noise [22,30]. However, in practice, 
optical measurements are influenced by physiological factors in addition to the cerebral event 
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of interest (e.g. a functional response to stimulation), such as blood volume oscillations due to 
the cardiac and respiratory cycles [31–33]. In the context of image reconstruction, these 
factors can be considered to contribute noise. In offline applications it is possible either to 
record many responses to the same stimulation and average them to characterise the noise 
contamination or to isolate the pathological event of interest and apply targeted filtering; 
however, this is not possible in real-time applications. When testing real-time reconstruction 
algorithms it is, therefore, important to use data that closely mimics real data, and contains 
real physiologic noise. In functional NIRS studies, researchers have generated test data by 
adding simulated haemodynamic responses to real, resting-state data [32]. This results in a 
controlled test data set with realistic noise characteristics. The same idea can be applied to 
imaging [28], but in the imaging domain the process is more complex because it is essential 
that the relative absorption changes between channels is maintained. 

The aim of this paper is to compare three fast reconstruction approaches that differ in the 
matrix used to weight the contribution of the data from different channels. We tested these 
approaches using data that were created by adding a simulated change in absorption to real, 
resting-state DOT data. Three different weighting matrices were used: the identity matrix; the 
covariance matrix with null off-diagonal elements (i.e. the variance matrix); and the full 
covariance matrix. From a theoretical perspective, the use of the full covariance matrix should 
provide the best solution; however, the true covariance matrix cannot be measured in practice 
in real-time due to the presence of dynamic physiological components in the data. A 
secondary aim of this paper is to compare the reconstruction of data after online and offline 
signal filtering. 

2. Material and methods 

2.1 Head model 

For synthetic data generation, a high-resolution adult head model created by segmenting an 
MR atlas into five tissue types (scalp, skull, cerebrospinal fluid (CSF), grey matter (GM) and 
white matter (WM)), was constructed as described in [34,35]. A tetrahedral finite element 
mesh was generated using the iso2mesh toolbox [36] with the maximum element volume set 
to 2 mm3 (Fig. 1). The total number of nodes and elements was 460323 and 2712451, 
respectively. 

For image reconstruction, the same adult head model was re-meshed with the maximum 
element volume set to 3 mm3, which resulted in a mesh with 218165 nodes and 1272212 
elements. 

2.2 Jacobian computation 

A source-detector array with 8 sources and 8 detectors, which is an extension of the array 
geometry used in [37], was simulated and overlaid on the forehead in the head mesh (Fig. 1). 
Data could be acquired from five source-detector distances with this array (18.0 mm, 33.5 
mm, 46.1 mm, 52.2 mm and 71.6 mm) for a total of 51 channels. The optical properties 
assigned to the head model are reported in Table 1 [35,38–41]. 

Table 1. Optical properties assigned to the head model. 

 
absorption coefficient 

µa (mm−1) 
reduced scattering 

coefficient µ’s (mm−1) 
refractive 

index 
Scalp 0.018 0.69 1.3 
Skull 0.017 0.92 1.3 
CSF 0.003 0.12 1.3 
GM 0.018 0.75 1.3 
WM 0.019 1.10 1.3 
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Fig. 1. Probe placement. Left: sources (red triangles) and detectors (blue circles) overlaid on 
the adult head model. Right: cross section of the head mesh, showing the 5 different tissue 
types. 

The Jacobian was computed with the Toast++ software [17], which solves the diffusion 
light transport model for continuous wave data (CW) using a Finite Element Method (FEM) 
forward solver: 

 ,
mesh i
i j i

a

y
J

μ
∂

=
∂

 (1) 

where i is a particular source-detector pair, j is a given node in the mesh, y are the log 
amplitude CW data, μa is the absorption coefficient and ∂ denotes the partial derivate. Jmesh is 
computed on the volumetric head mesh. 

The forward model solution Jmesh (i.e. the Jacobian) was projected into a regular grid basis 
of 50 × 60 × 50 voxels (hereafter, J) for reconstruction, using a linear transform computed by 
Toast++ . The size of the voxels was ∼3.6 × 3.6 × 3.6 mm. A finer grid basis (of 100 x 120 x 
100 voxels) was used by Toast++ as an intermediate grid to optimize the mapping between 
the mesh and the grid basis. Sources were simulated with Neumann boundary conditions and 
a Gaussian profile with a 2 mm standard deviation. Detectors were also simulated as Gaussian 
profiles with standard deviation of 2 mm. The forward solution was computed with a 
stabilised bilinear conjugate gradient (BiCGSTAB) iterative solver. 

2.3 Synthetic data creation 

2.3.1 Real resting state data 

CW resting state data were acquired in four subjects using the same array configuration 
shown in Fig. 1. The UCL Optical Imaging System [37] was used to acquire the data, at two 
wavelengths (780 nm and 850 nm) with a sampling frequency of 10 Hz. However, since the 
aim of this study is to recover absorption changes, only wavelength 780 nm was employed to 
generate the synthetic data. A custom-made Velcro probe holder was constructed to couple 
the source and detector fibres to the forehead of the subjects. Subjects were asked to remain 
still for the duration of the 10 minute acquisition. 

2.3.2 Simulated change in absorption 

Baseline log amplitude data, yb, were simulated using Toast++ [17] on the higher density head 
model with the same optical properties used to compute the Jacobian. 

A sequence of absorption perturbations was inserted into the model in order to simulate 
brain activation, first centered in the right frontal hemisphere at a depth of 13.5 mm and then 
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in the left frontal hemisphere at a depth of 17.75 mm (Fig. 2). The perturbations in absorption 
were simulated as three-dimensional Gaussian distributions with 5 mm standard deviation and 
an amplitude varying from 101% of the GM absorption coefficient to 136% of GM absorption 
coefficient and back to 101% of GM absorption coefficient in steps of 5%. The change in 
perturbation was forced to be confined to GM nodes. Perturbation log amplitude data, yp, were 
created for each of the added perturbations in absorption with Toast++ [17]. The only 
difference between the left and right hemisphere perturbations was the topological location of 
the centre of the perturbation and hence, its depth, given the asymmetric head model used. 

 

Fig. 2. Simulated absorption changes projected on the GM surface mesh. 

2.3.3 Final synthetic data 

Each 5% step in the simulated perturbation had a duration of 1 s in the simulated data time-
course. The whole perturbation therefore lasted 16 s in each hemisphere. Baseline periods of 
10 s were added before, after, and between the perturbations, providing a total sequence of 62 
s in duration (Fig. 3). The change in intensity due to the perturbation (ΔIpert) can be obtained 
by dividing the simulated intensity data (computed as eyp) by the simulated intensity baseline 
data (computed as eyb). A spline interpolation was then applied to up-sample the simulated 
change in intensity due to perturbation to a 10 Hz sampling frequency. 

 

Fig. 3. Schematic of the synthetic data time line. 

The change in intensity due to physiological noise (ΔIphy) for each subject and channel can 
be obtained by dividing the real resting state data by their mean. Physiological noise is 
considered to be any change in physiology that is not dependent on the task, e.g. heartbeat, 
respiration, vasomotion. Resting state data are usually a good representation of physiological, 
but also measurement, noise, since no task related changes are present in these data. For each 
subject, 62 seconds of resting state data were selected in order to match the length of the 
simulated data. 

Simply adding the simulated change in intensity to the change in intensity due to 
physiological noise would be incorrect, since these changes are almost certain to be of 
different scales. Therefore, the change in intensity due to physiological noise was scaled by a 
factor β, to make it comparable to the change in intensity due to perturbation: 

 ( )syn pert phyI I Iβ βΔ = Δ + ∗ Δ −  (2) 
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with 

 
1 pert

phy

I

I

A

A
β

α
Δ

Δ
= ∗  (3) 

where AΔIpert and AΔIphy are the peak-to-peak amplitude in ΔIpert and ΔIphy respectively and α is 
a tuning parameter (here set to vary between 0.1 and 1 in steps of 0.05) that can be employed 
by the user to increase or decrease the Signal to Noise Ratio (SNR) in the final synthetic data 
ΔIsyn. The peak-to-peak values were computed as the difference between the maximum and 
minimum values of the change in intensity at the shorter separation channels (18 mm 
separation). This was performed in order to optimize the SNR of the data in these channels, 
which should have the best measured physiological signal. The same scaling factor β was then 
applied to all channels at all source-detector distances in the same subject so that all channels 
maintained their relative amplitudes. Note that the perturbation was not scaled here, so that 
the recovered perturbation can directly be compared with the original simulated image, whilst 
the scaling of the physiological noise allows the SNR to vary. Another way to modify the 
SNR of the synthetic data would have been to keep the physiological noise data constant and 
run the forward modelling many times to create the perturbation data with different 
percentage increases in the GM absorption coefficient. However, not only would this be less 
computationally efficient, but it would cause the SNR of the final synthetic data to be 
dependent on the array arrangement and position of the simulated absorption change. The 
approach proposed in this study is therefore more controlled, and the SNR of the synthetic 
data can be varied by changing only the scale of the added physiological noise. These final 
synthetic data can be freely download at [41]. 

Since image reconstruction is usually performed on the difference between activation data 
and baseline data, it was necessary to select 30 seconds of real resting state data as a baseline 
for each subject. The intensity values were converted to changes in intensity by dividing by 
their mean. The same scaling factor β was applied to these baseline data in order to match the 
amplitudes of the synthetic data. The synthetic data and baseline data were finally converted 
into log changes (hereafter called optical density), and difference data Δy were computed by 
subtracting, in each channel, the mean of the baseline optical density from each time point of 
the synthetic optical density data. 

2.4 Image reconstruction 

Image reconstruction was performed by solving the linear problem Δy = J*Δx, where Δx is the 
change in absorption coefficient to be estimated. Reconstruction was performed on the head 
model with three different techniques used to invert the matrix J and with two different 
approaches to filter the data Δy, as described in the following sections. 

2.4.1 Inverse problem 

The Tikhonov regularized least-square solution was used to invert the matrix J [8,9]: 

 * 1( )T T
u u vJ J J J λ −= Σ ∗ ∗ ∗Σ ∗ + Σ ∗  (4) 

where u was set to the identity matrix and λ = λ1 * trace(J*u*JT)/trace(v). In this study, λ1 
was set to 0.1. The regularization parameter was chosen by inspection of the reconstructed 
images for each subject and then λ1 was fixed for all reconstructions. The matrix v was 
selected to be one of the three following matrices: 1) the noise covariance matrix, computed 
as the covariance of the 30 s of baseline optical density, 2) a matrix with the variance of the 
30 seconds of baseline optical density on the diagonal and zeros in all off-diagonal elements, 
or 3) the identity matrix. The inversion process was implemented in Matlab without the use of 
GPUs and was performed offline once, since it is not dependent on the acquired data. 
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2.4.2 Data filtering 

Synthetic data were filtered in two different ways to test both offline and online image 
reconstruction scenarios. For the ‘online’ approach, synthetic data were filtered with a moving 
average approach with a 4 s window applied only to samples immediately before the sample 
to be imaged. Offline synthetic and baseline data were filtered with a 3rd order Butterworth 
low-pass filter with 0.2 Hz as cut-off frequency. Baseline data were carefully chosen for each 
subject in the offline approach, while the first 30 seconds of acquired data were selected for 
the online approach. 

2.4.3 Reconstruction 

Image reconstruction was performed every 0.5 s on the head model, multiplying the matrix 
J*, which is defined on the regular voxel grid, with the difference data Δy. The resulting 
images were therefore defined on the same regular grid of voxels as the matrix J. To visualize 
the reconstructed absorption changes in the mesh, the voxel-based image was mapped back 
onto the irregular volumetric head mesh. 

A further step is needed to visualize images on the GM surface mesh. The volumetric head 
mesh-based image was projected to the GM surface mesh by assigning a value to each node 
on the GM boundary surface that is equal to the mean value of all the volumetric mesh node 
values within a 3 mm radius [34]. 

2.5 Metrics 

A set of metrics was defined to compare images reconstructed with the different approaches 
and to thoroughly assess image quality. Four metrics were computed on the GM surface mesh 
image, while one was computed on the volumetric mesh. These metrics were designed to 
quantify image SNR, image resolution on the surface, image resolution in the volume, and 
accuracy in peak localization and recovered value. 

A good reconstructed image should present an increase in absorption around the position 
where the actual change in absorption occurred and will display a small amount of 
background noise, i.e. a good reconstructed image should achieve a high SNR. To identify the 
region where the reconstructed change in absorption took place, the peak value in the images 
reconstructed when the highest absorption change was added in each hemisphere (i.e. t = 18 s 
and t = 44 s for right and left hemispheres respectively) was identified (Fig. 3). Regions of 
interest (ROIActive), were then defined as the regions where the values of the reconstructed 
image were greater than half of their peak value. This can be interpreted as an area which is 
analogous to the full width at half-maximum, i.e. AreaFWHM. Two further ROIs (ROIBackground) 
were identified on the same two images as the regions where the values within the 
reconstructed image were smaller than one tenth of the peak value. To confine ROIBackground to 
cover only cortical areas sensitive to the measurement array, only nodes having a sensitivity 
value higher than 0.1% of the maximum of sum over rows of J were kept in ROIBackground. To 
test the quality of the reconstructed images, the SNRimage metric was then defined for each 
image as: 
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where i
aμΔ  is the mean of the recovered absorption changes in the ith image computed in the 

region defined by ROIactive, 
a

i
μσ Δ is the standard deviation of the recovered absorption changes 

in the ith image computed in the region defined by ROIBackground, and n is the total number of 
reconstructed images, one for each time step (every 0.5 s; n can be considered the number of 
samples at a 2 Hz sampling frequency). Note that the SNRimage metric for each of the 
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simulated absorption changes is computed on the same area for all images. The ROIActive and 
ROIBackground computed on the image recovered at t = 18s were used for all images 
corresponding to activation of the right frontal cortex, while the ROIActive and ROIBackground 
computed on the image recovered at t = 44s were used for all images corresponding to 
activation of the left frontal cortex (Fig. 3). A higher SNRimage should indicate a higher quality 
reconstructed image. 

Image resolution on the surface was tested by identifying a ROIActive area on each 
reconstructed image, computing the AreaFWHM metric and comparing it with the true area. The 
latter was computed as the area covered by the simulated absorption change projected to the 
GM surface mesh with values between 50% and 100% of the true peak value. 

The accuracy in peak localization and recovered value was tested for each reconstructed 
image computing the maximum value in ROIactive (peakFWHM) and comparing it to the true 
peak value. The latter was computed by projecting the simulated change in absorption on the 
GM surface mesh with the same procedure used to project the volumetric reconstructed 
images to the GM surface mesh. For each image, the error in peak localization was defined as 
the Euclidean distance between the true location of the simulated absorption change and the 
coordinates of peakFWHM. 

The image resolution in the volume was defined on the volumetric reconstructed images 
before their projection to the GM surface mesh. GM nodes were selected and the maximum 
recovered absorption change was found. A 3D ROIactive area, constrained to the GM, was 
defined as the region exhibiting a recovered absorption change with values greater than half 
of the maximum absorption change. The volume of 3D ROIactive for each image was found 
(VolFWHM) and compared to the true volume of the simulated absorption change. 

AreaFWHM, peakFWHM, the error in peak localization and VolFWHM metrics were calculated 
only when a change in absorption had been added (from 10 to 26 s and from 36 to 52 s) and 
not during the baseline periods. 

3. Results 

Figure 4 shows examples of synthetic data at two different values of the tuning parameter α. 
In the first column, the original physiological data are shown. For small values of α, the 
synthetic data are very similar to the original physiological data and no clear activation can be 
observed. As α is increased, the SNR of the synthetic data increases, and a clear activation can 
be seen in the data at short separations from 10 to 26 s and 36-52 s. Note, however, that the 
background physiological noise maintains the same characteristic pattern. The amplitude of 
the synthetic optical density data Δy decreases as α increases because physiological noise 
amplitude is reduced, while the added activation remains constant, increasing the SNR of the 
simulated data. 

In Fig. 5 examples of reconstructed images using the head model and the data from Fig. 4 
are displayed. Three time points were reconstructed: one during baseline (at t = 9s), just 
before the start of the first simulated absorption change; one half way between the start of the 
simulated absorption change in the right hemisphere and its peak (t = 14s, half-peak time); 
and one at the peak change (t = 18s) (Fig. 3). At low SNR values (i.e. small α), the 
reconstructed images appear noisier, and exhibit bilateral changes in absorption during both 
baseline and at the half-peak time. At the peak time, a clear but broad change in absorption is 
correctly recovered in the right hemisphere, but a lot of background noise is still apparent. At 
higher signal SNR values (larger α), background noise is reduced, with no visible changes in 
absorption during baseline, a localized change in absorption in the right hemisphere at half-
peak time and a clear and focal change in absorption in the right hemisphere at peak time. 
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Fig. 4. Original physiological optical density data in one of the subject (first column) and 
examples of synthetic optical density data at two different α values (in the last two columns). 
Signals have been divided according to source-detector separation for visualization purposes 
and only the first 3 distance ranges are shown. For each source-detector separation, 4 channels 
(each with a different colour) showing activation either in the left or right hemisphere have 
been selected and displayed. Grey lines indicate when perturbation changes were added in the 
synthetic data and are shown for visualization purposes only in the first row. 

 

Fig. 5. Examples of reconstructed absorption changes images on the GM surface mesh for the 
data displayed in Fig. 4 (α = 0.15 in the first row and α = 0.55 in the second) for one of the 
subject. These images were recovered using the variance as weighting matrix in the inversion 
of the Jacobian. Three time points of the signal were reconstructed: t = 9s (first column) where 
no absorption change was added, t = 14s (second column), which is half way between resting 
state and time of peak and t = 18s, which is the time of peak of the absorption change added in 
the right hemisphere. 
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Fig. 6. Examples of computed SNRimage values for the reconstructed images on the GM surface 
mesh. Images were reconstructed from data scaled with two different values of α (α = 0.15 in 
blue crosses and α = 0.55 in red circles) at each time step. The crosses/circles give the mean 
between subjects while the error bars present the standard deviation. Absorption changes were 
added between 10 and 26 s in the right hemisphere and between 36 and 52 s in the left one, as 
in indicated by the grey bars. 

As is expected, when α increases, the computed SNRimage metric also increases (Fig. 6). 
During baseline periods, SNRimage has a very small value, oscillating around zero with little 
variability among subjects and no variability between data sets with different values of α (as 
each channel is scaled by the same factor, the relative changes and therefore SNRimage remain 
the same). From 10 seconds for the right hemisphere and from 36 seconds for the left (Fig. 3), 
the SNRimage metric starts to increase in all subjects for both values of α, reaching a peak at the 
time point when the maximum change in absorption was simulated. For the higher value of α, 
the SNRimage metric appears to respond faster, as can be seen also from the reconstructed 
images of Fig. 5. 

Both the computed AreaFWHM and VolFWHM from the reconstructed images are highly 
overestimated. The AreaFWHM computed on the GM surface mesh for the true added activation 
was 133.1 mm2 and 75.3 mm2 for the right and left simulated absorption change, while the 
VolFWHM was 570.2 mm3 and 762.1 mm3, respectively. Figure 7(a), 7(b) shows AreaFWHM and 
VolFWHM for the periods of simulated activation. For both metrics, as α increases, the metric 
decreases in value and reaches a plateau approximately at α = 0.5. The standard deviation 
between subjects also decreases as α increases. The variability between subjects and the 
estimated values of these two metrics are higher for the images reconstructed at the starting 
time of the simulated absorption changes. 

While the area and volume of the reconstructed absorption changes are highly 
overestimated, the actual peak value of the reconstructed absorption change (peakFWHM) is 
underestimated. The true simulated peak changes in absorption measured on the GM surface 
mesh during the activation periods were between 1.2 × 10−4 and 5.7 × 10−3 mm−1. As α 
increases, the estimated peak decreases, but the variability between subjects also decreases 
leading to a more reliable estimate (Fig. 7(c)). In Fig. 7(d), the Euclidean distance between the 
true and recovered peak positions of the change in absorption are displayed, showing that as 
the signal SNR increases, the position of the maximum change is recovered more precisely 
and the variability between subjects decreases. The biggest error in the recovery of the peak 
position is achieved at the starting points of the simulated absorption change. 
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Fig. 7. Examples of metric values for two synthetic data series (α = 0.15 in blue crosses and α 
= 0.55 in red circles). Images were recovered for each time step in the head model using the 
variance matrix to weight the inversion of J. a) AreaFWHM, b) VolFWHM, c) PeakFWHM and d) 
Euclidean distance between the position of the true peak in absorption change and that 
recovered from the image. The black arrow indicates whether the true value was lower or 
larger than the estimated one. 

3.1 Variance vs. covariance vs. identity matrix reconstruction 

In Fig. 8 the mean SNRimage values, averaged across subjects, obtained using the three 
different weighting matrices are displayed as a function of α. The values refer to images 
reconstructed at the time of peak of the simulated change in absorption in the right and left 
hemispheres. The variance and covariance matrix approaches recover higher quality images 
than the identity matrix approach. 

 

Fig. 8. Mean SNRimage across subjects as a function of α obtained reconstructing images with 
the variance approach (black squares), the covariance approach (magenta triangles) and the 
identity matrix approach (blue circles). The values obtained at the time of peak of the added 
absorption change in the left and right hemisphere are displayed. The shaded areas represent 
the standard deviation among subjects. 
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In Fig. 9 the mean AreaFWHM, the mean VolFWHM, the mean peakFWHM and the mean 
Euclidean distance between the true peak of change in absorption and the recovered one 
across subjects are displayed as a function of α for the three weighting matrices approaches. 
Again, values refer to images corresponding to the peak in simulated absorption. All methods 
overestimate the area and volume of the recovered absorption change. However, the variance 
and covariance approaches demonstrate improved spatial resolution compared to the identity 
matrix approach. All approaches underestimate the value of the recovered absorption change, 
with the covariance matrix approach displaying a slightly higher recovered value than the 
other methods. The error in the recovery of the position of the maximum absorption change 
varies between hemispheres, due to the asymmetric brain template (Fig. 9(d)). Here, variance 
and covariance approaches perform similarly in both hemispheres, but have a better 
performance than the identity matrix approach in the right hemisphere and a worse 
performance in the left hemisphere. At small α values, however, the performance of the 
variance and covariance approaches exceeds that of the identity matrix approach in both 
hemispheres. The step changes in Euclidean distance values in Fig. 9(d) are likely to be 
caused by the low resolution of the GM surface mesh. 

An example of reconstructed images with the three reconstruction approaches is displayed 
in Fig. 10. 

 

Fig. 9. a) Mean AreaFWHM across subjects, b) mean VolFWHM across subjects, c) mean peakFWHM 
across subjects and d) mean Euclidean distance across subjects between the true peak change 
in absorption and that recovered from the images. The variance approach results are shown in 
black squares, the covariance in magenta triangles and the identity matrix in blue circles. The 
shaded areas represent the standard deviation among subjects. The black arrow indicates 
whether the true value was lower or larger than the estimated one. 

3.2 Online vs offline reconstruction 

In Fig. 11 the mean SNRimage across subjects computed on the images recovered using data 
filtered with the online and offline approaches is displayed as a function of α. The displayed 
values refer to the images reconstructed at the time of peak of the added change in absorption 
in the right and left hemisphere using the variance matrix approach. The performances of the 
online and offline approaches are very similar. 
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Fig. 10. Examples of reconstructed images on the GM surface mesh with α = 0.15 at t = 18s 
(time of peak of the simulated absorption change in the right hemisphere). From left to right, 
the images recovered using the variance matrix approach, the covariance matrix approach and 
the identity matrix approach. 

In Fig. 12 the mean AreaFWHM, the mean VolFWHM, the mean peakFWHM and the mean 
Euclidean distance between the true location of the peak change in absorption and the 
recovered location across subjects are displayed as a function of α for both the online and 
offline reconstructions. The performances of both filtering methods are very similar for all 
metrics. 

 

Fig. 11. Mean SNRimage across subjects for the online (in black squares) and offline (in green 
triangles) reconstruction. The values obtained at the time of peak of the added absorption 
change in the left and right hemisphere are displayed. The shaded areas represent the standard 
deviation among subjects. 
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Fig. 12. a) mean AreaFWHM across subjects, b) mean VolFWHM across subjects, c) mean 
peakFWHM across subjects and d) mean Euclidean distance between true and recovered location 
of maximum change in absorption for the online (black squares) and the offline (green 
triangles) reconstruction. The values obtained at the time of peak of the added absorption 
change in the left and right hemisphere are displayed. The shaded areas represent the standard 
deviation among subjects. 

4. Discussion 

Achieving real-time image reconstruction is essential if DOT is to fulfil its potential for 
clinical monitoring. Images that display cerebral haemodynamics in real-time could provide 
physicians with valuable insight into the functional state of the patient’s brain and alert them 
to pathological events including desaturations [42], seizures [4] and strokes [43]. 

In this study, we compared three different approaches to handling noise that are all 
suitable for online reconstruction. Both the covariance matrix approach and the variance 
matrix approach outperform the identity matrix approach in all metrics. These two approaches 
are able to better recover the simulated absorption change, and they also reduce the 
background noise, which is important to reduce the risk of false-positives. This is particularly 
important in real-time applications, where interpreting spurious absorption changes as true 
could compromise clinical care. The covariance and variance matrix approaches perform 
similarly, with the variance approach performing slightly better than the covariance approach 
in the SNRimage metric, whereas the opposite is true in the AreaFWHM and VolFWHM metrics. 
This suggests that it is important to use information coming from the measured data when 
inverting the Jacobian, but that the most valuable information is the variance of the measured 
channels. The information stored in the covariance between channels does not noticeably 
improve the reconstructed image but it does not deteriorate it. This is likely to be because the 
variance (which is also the diagonal of the covariance matrix) is at least 2 orders of magnitude 
larger than the covariance between channels, which are the off-diagonal elements of the 
covariance matrix (Fig. 13). Whether the off-diagonal elements are zero or just very small 
does not heavily influence the reconstruction. 
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Fig. 13. Example of two rows of the covariance matrix in one of the subject. The blue line 
refers to channel 25, which is a 33 mm channel, while the red line to channel 4, which is a 46 
mm channel. In both cases, the peak of the plot corresponds to the channel number itself, 
showing that the covariance of the channel with itself (hence the variance of that channel) is 
larger than the covariance of the selected channel with all other channels. Furthermore, the 
amplitude of the variance increases with source-detector distance. 

The topological location of the centre of perturbation and their different depths inevitably 
influences the reconstruction results, with differences in the computed metrics and their 
standard deviation between hemispheres. The worse performance in the left hemisphere is 
likely to be attributed to the deeper location of the simulated absorption change. However, the 
general performance of the techniques (i.e. variance and covariance approaches 
outperforming the identity matrix approach) is stable irrespective of topological location of 
the perturbation, indicating that these results might be extended to other brain regions. 

One of the most important result of this study is that the performances of online and 
offline reconstruction are similar, with no dramatic differences in the computed metrics. In 
this study, both online and offline reconstructions are performed on a single trial. Although 
this will always be the case for online applications, for the majority of offline applications it is 
possible to collect multiple responses to the same stimulus type, average them and reconstruct 
the mean response to the stimulus. This is clearly true in the study of functional activation, but 
is also the case in the study of certain pathology, for example inter-ictal epileptic events [44]. 
The averaging procedure will inevitably reduce the background noise and therefore it is 
highly likely that the recovered image will be more accurate. However, some situations may 
require single trial responses with offline reconstructions, such as oxygenation changes after a 
seizure, or in brain-computer-interface applications. Here, we decided to compare the 
performance of offline and online reconstructions for single trial responses. It is worth noting 
that recovering small single trial functional changes is also very challenging for an offline 
approach. Instead, a single large pathological change is easier to recover for both online and 
offline approaches. Therefore, it is not surprising that the performance of online and offline 
approaches for single trials estimation is very similar. The largest difference between online 
and offline reconstruction performance was found in the metrics computed in the first and last 
seconds of the period of simulated activation. In the online case the computed metrics do not 
show a symmetric behaviour (Fig. 7), and reveal larger error at the start of the period of 
simulated activation. In the offline case the metrics show a symmetric pattern, with an 
increased error at both the start and end of the activation period. The moving average applied 
to the online data is the likely cause of this behaviour. These online approaches therefore 
experience more difficulties in recovering accurate images at the starting point of the 
stimulation. More complex online techniques able to cope with this problem should be 
developed. Nevertheless, it is likely that our main results will not be affected by using a 
different online algorithm to filter the data. 

While online image reconstruction is limited in its choice of filtering method compared to 
offline reconstruction, there is a similar restriction in the availability of baseline data. Such 
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data for offline reconstruction can be carefully chosen by examining the entire data series, 
which is not possible when online reconstruction is performed. To simulate this difference, 
baseline data were carefully chosen for each subject in the offline reconstruction approach, 
while three different baseline data were compared in the online reconstruction approach: a) 
the first 30 s of measured data, b) 30 s of measured data before the data chosen for the 
reconstruction and c) the same reference data chosen for the offline reconstruction. The 
results presented above are for online reconstruction employing the first 30 s of measured data 
as baseline (choice a). The results of online reconstruction using the three approaches were 
indistinguishable (results not shown). Furthermore, it is difficult to predict the SNR that a 
pathological event would produce. Therefore, for signals with low SNR, more complex 
offline processing than that presented here might be required to adequately isolate the 
haemodynamics of the pathological event. It should be noted that the real resting-state data we 
acquired did not contain major motion artifacts. Clearly the performance of offline and online 
reconstruction approaches will differ when motion artifacts are present. New techniques are 
needed for online filtering that should be able to detect and correct motion artifacts, remove 
noisy channels and reduce physiological contamination. When developing these new 
techniques one should consider not only the difficulties of working in real-time and in many 
channels in parallel, but also their computational burden. 

In this study, reconstruction techniques were tested on realistic synthetic data, where 
simulated absorption changes were added to real physiological noise. Reconstruction 
algorithms should be tested on data that can replicate a real experiment as closely as possible, 
while also providing a known target image that is controlled and quantifiable [28]. The 
proposed method to create synthetic data does not modify the simulated absorption change 
and therefore the recovered absorption change image can be directly compared to the true 
change. Furthermore, changing the scaling of the real physiological noise allows data sets 
with different SNRs to be created. Usually, simulated data are created by adding a known 
change in absorption coefficient to Gaussian random noise; the mean and the standard 
deviation of the Gaussian distribution are varied to create simulated data with different SNR 
to test the algorithm in several scenarios. Here, we used this same procedure, scaling the real 
physiological noise, without modifying its pattern. The approach proposed in this study is 
straightforward and easy to replicate, and the SNR of the final data can be easily controlled. 

5. Conclusion 

In this study, a new approach to creating synthetic data with real physiological noise and 
varying SNR is demonstrated. This approach can be readily applied by others to create 
realistic data to test image reconstruction algorithms. Real-time reconstruction with online 
filtering of the data has been validated and more accurate images were reconstructed when 
using the variance or covariance matrix approaches as compared to the identity matrix. Our 
results also imply that using the covariance matrix has little impact compared to using the 
variance only. These results are important since any practical experiment will be limited to 
using real data to compute the noise statistics. We suggest that head-model based 
reconstruction should be used with the variance matrix for the inversion of the Jacobian for 
real-time diffuse optical tomography. 
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