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Abstract. In this proceeding, we present some recent results obtained in [5] on the
essential self-adjointness of sub-Laplacians on non-complete sub-Riemannian manifolds.
A notable application is the proof of the essential self-adjointness of the Popp sub-
Laplacian on the equiregular connected components of a sub-Riemannian manifold, when
the singular region does not contain characteristic points. In their presence, the self-
adjointness properties of (sub-)Laplacians are still unknown. We conclude the paper
discussing the difficulties arising in this case.
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1. A criterion for essential self-adjointness of sub-Laplacians

Let N be a complete sub-Riemannian manifold, with distribution D. Let Z ⊂ N be
a smooth embedded hypersurface with no characteristic points, i.e. D t Z. Let ω be
a measure on N , smooth on M = N \ Z. In the following, we denote with L2(M) the
complex Hilbert space of functions u : M → C, with scalar product

(1) 〈u, v〉 =
∫
M
uv̄ dω, u, v ∈ L2(M),

where the bar denotes complex conjugation. The corresponding norm is ‖u‖2 = 〈u, u〉.
Similarly, given a coordinate neighborhood U ⊆ M and denoting by dx the Lebesgue
measure on it, we denote by L2(U, dx) the complex Hilbert space of square-integrable
functions u : U → C satisfying (1) with dω replaced by dx and M by U .

The sub-Laplacian ∆ω is the operator
(2) ∆ωu := divω(∇u), ∀u ∈ C∞c (M),
where the divergence divω is computed with respect to the measure ω, and ∇ is the sub-
Riemannian gradient. Equivalently, −∆ω can be defined as the non-negative operator
associated with the quadratic form

(3) E(u, v) :=
∫
M
g(∇u,∇v̄) dω, ∀v, w ∈ C∞c (M).
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Figure 1. Tubular neighborhood of the singular region.

When Z = ∅ and the sub-Riemannian structure on N is complete, the sub-Laplacian is
essentially self-adjoint [11]. This problem, which is related with the quantum confinement
phenomenon, is treated in [5]. There, the authors prove the following self-adjointness
criterion.

Theorem 1.1 (Main quantum completeness criterion). Let N be a complete sub-Rie-
mannian manifold endowed with a measure ω. Assume ω to be smooth on N \ Z, where
the singular set Z is a smooth, embedded, compact hypersurface with no characteristic
points. Assume also that, for some ε > 0, there exists a constant κ ≥ 0 such that, letting
δ = d(Z, · ), we have

(4) Veff =
(∆ωδ

2

)2
+
(∆ωδ

2

)′
≥ 3

4δ2 −
κ

δ
, for 0 < δ ≤ ε,

where the prime denotes the derivative in the direction of ∇δ. Then ∆ω with domain
C∞c (M) is essentially self-adjoint in L2(M), where M = N \ Z, or any of its connected
components.

Moreover, if M is relatively compact, the unique self-adjoint extension of ∆ω has com-
pact resolvent. Therefore, its spectrum is discrete and consists of eigenvalues with finite
multiplicity.

Remark 1.1. The compactness of Z in Theorem 1.1 can be replaced by the weaker as-
sumption that the (normal) injectivity radius from Z is strictly positive.

Following the strategy developed in [8, 9], the first part of Theorem 1.1 is proved by a
two-step approach based on Hardy inequality and Agmon-type estimates, see Section 1.1.
This strategy can be successfully implemented thanks to the existence of a normal tubular
neighborhood close the singular region Z, described in the following Proposition 1.2 (see
also Figure 1). The distance from the singular region is δ : N → [0,∞),
(5) δ(p) = inf{d(q, p) | q ∈ Z}, ∀p ∈ N.

Proposition 1.2 (Tubular neighborhood for smooth hypersurfaces without characteristic
points). Let N be a smooth sub-Riemannian manifold and Z ⊂ N be a smooth, embedded,
compact hypersurface with no characteristic points. Then:

i) δ : N → [0,∞) is Lipschitz w.r.t. the sub-Riemannian distance and |∇δ| ≤ 1 a.e.;
ii) there exists ε > 0 such that δ : Mε → [0,∞) is smooth, where Mε = {0 < δ(p) < ε};

iii) letting Xε = {δ(p) = ε}, there exists a smooth diffeomorphism F : (0, ε) ×Xε →
Mε, such that

(6) δ(F (t, q)) = t and F∗∂t = ∇δ, for (t, q) ∈ (0, ε)×Xε.

Moreover, |∇δ| ≡ 1 on Mε.
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Remark 1.2. Proposition 1.2 can be simplified if Z is two-sided (e.g. when N and Z are
orientable). In this special case, Mε = (−ε, 0) × Z t (0, ε) × Z and there is no need to
introduce Xε. Moreover, the compactness assumption here can be replace by the weaker
assumption that the (normal) injectivity radius from Z is strictly positive.

The main criterion presented in Teorem 1.1 is the sub-Riemannian generalization of
Theorem 1 in [9]. The new aspects of the proof are the exploitation of subellipticity to
obtain regularity properties of weak solutions, and the sub-Riemannian version of the
Rellich-Kondrachov theorem. We present them in the next Lemmas 1.3 and 1.4. We in-
troduce some notations. Given a sub-Riemannian manifold M equipped with a smooth
measure ω, we denote by W 1(M) the Sobolev space of functions in L2(M) with distribu-
tional sub-Riemannian gradient ∇u ∈ L2(D), where the latter is the complex Hilbert space
of sections of the complexified distribution X : M → DC ⊆ TMC, with scalar product

(7) 〈X,Y 〉 =
∫
M
g(X,Y ) dω, X, Y ∈ L2(D).

The Sobolev space W 1(M) is a Hilbert space when endowed with the scalar product

(8) 〈u, v〉W 1 = 〈∇u,∇v〉+ 〈u, v〉.

Similarly, given a coordinate neighborhood U ⊆ M and denoting by dx the Lebesgue
measure on it, we denote by W 1(U, dx) the Sobolev space of functions in L2(U, dx), with
distributional (sub-Riemannian) gradient in L2(D|U , dx), that is the complex Hilbert space
of sections of the of the complexified distribution X : U → DC ⊆ TMC, with the scalar
product defined in (7) where dω is replaced by dx. Moreover, we denote by L2

loc(M) and
W 1

loc(M) the space of functions u : M → C such that, for any relatively compact domain
Ω ⊆M , their restriction to Ω belongs to L2(Ω) and W 1(Ω), respectively.

To adhere to the standard notation in quantum physics, let H = −∆ω, with domain
Dom(H) = C∞c (M). The associated symmetric bilinear form is

(9) E(u, v) =
∫
M
g(∇u,∇v) dω, u, v ∈ C∞c (M).

We use the same symbol to denote the above integral, eventually equal to +∞, for all
functions u, v ∈W 1

loc(M). We also let, for brevity, E(u) = E(u, u).

Lemma 1.3. Let M be a sub-Riemannian manifold equipped with a smooth measure ω.
Then Dom(H∗) ⊆W 1

loc(M).

Lemma 1.3 implies that for any ψ ∈ Dom(H∗), its energy E(ψ) is well defined. This is
crucial in the proof of the Agmon estimate of Proposition 1.6 (see inequality (17)).

Lemma 1.4 (Sub-Riemannian Rellich-Kondrachov theorem). Let M be a sub-Riemannian
manifold equipped with a smooth measure ω. Let Ω ⊆ M be a relatively compact domain
with Lipschitz boundary. Then W 1(Ω) is compactly embedded into L2(Ω).

Lemma 1.4 will be used to prove compactness of the resolvent of ∆ (under the assump-
tion that M is relatively compact), see Section 1.2

1.1. Weak Hardy inequality and Agmon-type estimates. By using the the diffeo-
morphism of Proposition 1.2 to identify Mε ' (0, ε)×Xε, the measure ω reads

(10) dω(t, q) = e2θ(t,q)dt dµ(q), (t, q) ∈Mε,

where dµ is a fixed smooth measure on Xε, and θ is a smooth function. This leads to the
following expression for Veff :

(11) Veff = (∂tθ)2 + ∂2
t θ.
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Hence, condition (4) reads locally

(12) Veff ≥
3

4t2 −
κ

t
for 0 < t ≤ ε.

A combination of (12) together with the 1-dimensional Hardy inequality leads to the weak
Hardy inequality (14) presented in the next Proposition 1.5.

Proposition 1.5 (Weak Hardy Inequality). Let N be a complete sub-Riemannian mani-
fold endowed with a measure ω. Assume ω to be smooth on M = N \Z, where the singular
set Z is a smooth, embedded, compact hypersurface with no characteristic points. Assume
also that there exist κ ≥ 0 and ε > 0 such that

Veff ≥
3

4δ2 −
κ

δ
, for δ ≤ ε.(13)

Then, there exist η ≤ 1/κ and c ∈ R such that

(14)
∫
M
|∇u|2 dω ≥

∫
Mη

( 1
δ2 −

κ

δ

)
|u|2 dω + c‖u‖2, ∀u ∈W 1

comp(M),

where Mη = {0 < δ < η}. In particular, the operator H = −∆ω is semibounded on
C∞c (M).

The proof of Proposition 1.5 in the case u ∈ W 1
comp(Mε) follows by (12) and the 1-

dimensional Hardy inequality. To extend it to u ∈ W 1
comp(M) one needs a localization

argument, exploiting the boundlessness of |∇δ| (see Proposition 1.2).
We now state the Agmon-type estimate that, combined with Proposition 1.5, allows to

prove the self-adjointness statement in Theorem 1.1.

Proposition 1.6 (Agmon-type estimate). Let N be a complete sub-Riemannian manifold
endowed with a measure ω. Assume ω to be smooth on M = N \ Z, where the singular
set Z is a smooth embedded hypersurface with no characteristic points. Assume also that
there exist κ ≥ 0, η ≤ 1/κ and c ∈ R such that,

(15)
∫
M
|∇u|2 dω ≥

∫
Mη

( 1
δ2 −

κ

δ

)
|u|2dω + c‖u‖2, ∀u ∈W 1

comp(M).

Then, for all E < c, the only solution of H∗ψ = Eψ is ψ ≡ 0.

Sketch of the proof. The proof follows the ideas of [8, 4] and is divided into two steps:
Step 1: Let ψ be a solution of (H∗ − E)ψ = 0 for some E < c. For any bounded

function f : M → R which is Lipschitz w.r.t. the sub-Riemannian distance and satisfies
supp f ⊆M \Mζ , for some ζ > 0, we have:

(16) (c− E)‖fψ‖2 ≤ 〈ψ, |∇f |2ψ〉 −
∫
Mη

( 1
δ2 −

κ

δ

)
|fψ|2dω.

This is due to the Hardy inequality (15) and to an easy computation that leads to
(17) E(fψ) = E‖fψ‖2 + 〈ψ, |∇f |2ψ〉.

Step 2. A particular f is now plugged into (16), by setting

(18) f(p) :=
{
F (δ(p)) 0 < δ(p) ≤ η,
1 δ(p) > η,

for a Lipschitz function F to be chosen in order to satisfy the assumptions of Step 1. Since
|∇δ| ≤ 1 a.e. on M , we have, on Mη, |∇f | = |F ′(δ)||∇δ| ≤ |F ′(δ)|. Thus, (16) implies

(19) (c− E)‖fψ‖2 ≤
∫
Mη

[
F ′(δ)2 −

( 1
δ2 −

κ

δ

)
F (δ)2

]
|ψ|2dω.
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We continue the proof for the case κ = 0. The following arguments can be adapted also
to the cases κ 6= 0. For 0 < ζ < 2ζ < η, we choose F for τ ∈ [2ζ, η] to be the solution of

(20) F ′(τ) = 1
τ
F (τ), with F (η) = 1,

to be zero on [0, ζ], and linear on [ζ, 2ζ]. Namely:

(21) F (t) =


0 t ∈ [0, ζ],
2
η (t− ζ) t ∈ [ζ, 2ζ],
1
η t t ∈ [2ζ, η),

F ′(t) =


0 t ∈ [0, ζ],
2
η t ∈ [ζ, 2ζ],
1
η t ∈ [2ζ, η).

From (19), this leads to

(22) (c− E)‖fψ‖2 ≤
∫
M2ζ\Mζ

[
F ′(δ)2 − 1

δ2F (δ)2
]
|ψ|2dω ≤ K2

∫
M2ζ\Mζ

|ψ|2dω

for a constant K > 0. If we let ζ → 0, then f tends to an almost everywhere strictly
positive function. Recalling that E < c, and taking the limit, (22) implies ψ ≡ 0. �

Remark 1.3. If (15) is replaced with the weaker assumption

(23)
∫
M
|∇u|2 dω ≥ a

∫
Mη

( 1
δ2 −

κ

δ

)
|u|2dω + c‖u‖2, ∀u ∈W 1

comp(M)

for 3
4 < a < 1, then the arguments in the previous proof cannot be applied. In fact,

defining F as in (20) it is impossible to find a constant K > 0 such that (22) is satisfied.

1.2. Sketch of the proof of Theorem 1.1. To prove that ∆ω with domain C∞c (M)
is essentially self-adjoint in L2(M) we apply the classical criterion of [10, Thm. X.I and
Corollary]: since H is semibounded (by Proposition 1.5), H is essentially self-adjoint if
and only if there exists E < 0 such that the only solution of H∗ψ = Eψ is ψ ≡ 0. This is
guaranteed by the Agmon-type estimate of Proposition 1.6, whose hypotheses are satisfied
again by the conclusion of Proposition 1.5.

To prov compactness of the resolvent it is sufficient to show existence of a value z < c
such that the resolvent (H∗ − z)−1 is compact on L2(M). To this purpose one must
prove that for any bounded sequence ψn ∈ L2(M), say ‖ψn‖ ≤ (c − z), the image un =
(H∗ − z)−1ψn ∈ Dom(H∗) has a subsequence converging in L2(M). To prove it we
decompose un = un,1 + un,2 where un,1 is supported in a neighborhood of Z and un,2
is compactly supported in a neighborhood of M \ Z. By using the the sub-Riemannian
Rellich-Kondrachov theorem of Lemma 1.4 it is possible to show that un,2 converges up
to subsequences in L2(M). Moreover, by the weak Hardy inequality (14), it is possible to
show that for all k ∈ N, there is a subsequence n 7→ γk(n) such that uγk(n) =

∑2
i=1 uγk(n),i

with ‖uγk(n),1‖ ≤ C/k and uγk(n),2 is convergent in L2(M). Exploiting these facts, a
Cauchy subsequence of un can be extracted, yielding the compactness of (H∗ − z)−1, and
concluding the proof. �

2. Applications to the Popp sub-Laplacian

Theorem 1.1 can be applied to study essential self-adjointness of the sub-Laplacian
∆ = ∆P , where P is the intrinsic Popp’s measure.

2.1. Popp’s measure. Popp’s measure was introduced in [7]. It was used in [1] to define
an intrinsic sub-Laplacian in the sub-Riemannian setting. In the following, we will use
the explicit formula for Popp’s measure given in [2] in terms of adapted frames, in order
to define Popp’s measure. For an intrinsic definition, we refer to [7, 2].

Let r(q) = dim(Dq) be the rank of the distribution at q ∈ N . Moreover, for k ∈ N, let

(24) Dkq := span{[X1, . . . , [Xj−1, Xj ]]q : Xi ∈ Γ(D), j ≤ k}.
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We call the step of the sub-Riemannian structure at q the minimal integer s = s(q) ∈ N
such that Dsq = TqN .

Definition 2.1. Let A ⊆ N . We say that a sub-Riemannian structure on N is equiregular
on A if dim(Dkq ) is constant for q ∈ A and for any k ∈ N.

Remark 2.1. Already r(q) = dim(D1
q) can be non-constant. For instance, this is the

case of almost-Riemannian manifolds, where there exists a closed set Z ⊂ N such that
dim(D1

q) = dimN for every q ∈ N \ Z.

Let O ⊆ N be an equiregular neighborhood of an n-dimensional sub-Riemannian man-
ifold N . A local frame X1, . . . , Xn on O is said to be adapted to the sub-Riemannian
structure if X1, . . . , Xki is a local frame for Di, where ki = dim(Di) is constant on O. In
particular r(q) ≡ r is constant on O. Notice that, the equiregularity assumption means
that, on O, Di are “true” distributions, and hence that there always exists a local adapted
frame. Define the smooth functions b`i1...ij ∈ C

∞(N) as

(25) [Xi1 , [Xi2 , . . . , [Xij−1 , Xj ]]] =
kj∑

`=kj−1+1
b`i1i2...ijX` mod Dj−1,

where 1 ≤ i1, . . . , ij ≤ m = dim(D1). Consider the kj − kj−1 dimensional square matrices

(26) (Bj)h` =
r∑

i1,...,ij=1
bhi1,...,ijb

`
i1,...,ij , ∀j = 1, . . . , s,

where s is the step of the structure. Then, denoting by ν1, . . . , νn the dual frame to
X1, . . . , Xn, the Popp’s measure reads

(27) P = 1√∏s
j=1 detBj

|ν1 ∧ · · · ∧ νn|.

One can check that the measure defined by (27) does not depend on the choice of the
local adapted frame, and can be taken as the definition of Popp’s measure. It is not
hard to see, using the very definition, that if q ∈ Ō is a non-equiregular point, then
lim

√∏
detBj = 0 hence the Radon-Nikodym derivative of Popp’s measure computed

with respect to any globally smooth measure on N diverges to +∞ on the singular region
Z. Uniform estimates of this divergence can be found in [6].

2.2. Popp-regular structures. The study of condition (4) is a difficult task, because
it requires the explicit knowledge of the distance from the singular set. In the following
we define a class of sub-Riemannian structures, to which Theorem 1.1 applies, without
knowing an explicit expression for δ. Let $ be a reference measure, smooth and positive
on the whole N and let P denote Popp’s measure, smooth on M = N \ Z. We define the
function ρ : N → R by setting

(28) ρ(p) =


(
dP
d$

)−1
(p) if p ∈ N \ Z,

0 if p ∈ Z.

This is the unique continuous extension to Z of the reciprocal of the Radon-Nikodym
derivative of P with respect to $. Notice that ρ is smooth on N \ Z.

Definition 2.2. We say that a sub-Riemannian manifold N is Popp-regular if it is equireg-
ular outside a smooth embedded hypersurface Z containing no characteristic points, and
there exists k ∈ N such that, for all q ∈ Z there exists a neighborhood O of q and a smooth
submersion ψ : O → R such that the function ρ defined in (28) satisfies ρ|O = ψk.
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Definition 2.2 generalizes the notion of regular almost-Riemannian structure given in [9,
Def. 7.10]. Notice that the sub-Riemannian structure in Example 2.1 is Popp-regular.

Proposition 2.3. Let N be a complete and Popp-regular sub-Riemannian manifold, with
compact singular set Z. Then, the sub-Laplacian ∆P with domain C∞c (M) is essentially
self-adjoint in L2(M), where M = N \ Z or one of its connected components. Moreover,
if M is relatively compact, the unique self-adjoint extension of ∆P has compact resolvent.

This settles, at least in the Popp-regular case, the conjecture proposed in [3] on the
essential self-adjointness of the intrinsic sub-Laplacian.

2.3. Examples. We start by considering a family of structures generalizing the Martinet
structure. These are complete sub-Riemannian structures on R3, equiregular outside a
hypersurface Z ⊂ R3, on which the distance from Z is explicit. Using Theorem 1.1 we
deduce essential self-adjointness of ∆ = ∆P defined on C∞c (N \ Z).

Example 2.1 (k-Martinet distribution). Let k ∈ N. We consider the sub-Riemannian
structure on R3 defined by the following global generating family of vector fields:
(29) X1 = ∂x, X2 = ∂y + x2k∂z.

The singular region is Z = {x = 0} and the distance from Z is δ(x, y, z) = |x|. Using
formula (27), the associated Popp’s measure turns out to be

(30) P = 1
2
√

2k|x|2k−1 dx ∧ dy ∧ dz.

The case k = 1 is the standard Martinet structure considered in the introduction. Notice
that the injectivity radius from Z is infinite, hence even if Z is not compact we can apply
Theorem 1.1. We compute the effective potential Veff using (11). Indeed we have

(31) θ = θ(x) = 1
2 log 1

2
√

2kx2k−1 ,

and thus, using (11), we have

(32) Veff(x) = 4k2 − 1
4x2 ≥ 3

4x2 , ∀k ≥ 1.

Hence (4) is satisfied, and ∆P with domain C∞c (R3 \ Z) is essentially self-adjoint.

We generalize Example 7.2 in [9], showing an example of non-Popp-regular sub-Rie-
mannian structure to which Theorem 1.1 does not apply.

Example 2.2 (non-Popp-regular sub-Riemannian structure). Consider the sub-Riemannian
structure on R4 given by the following generating family of vector fields:
(33) X1 = ∂1 + x3∂4, X2 = x1(x2`

1 + x2
2)∂2, X3 = ∂3.

The singular region is Z = {x1 = 0}. The following set of vector fields is an adapted frame
on R4 \ Z.
(34) X1, X2, X3︸ ︷︷ ︸

D1

, X4 = [X3, X1] = ∂4︸ ︷︷ ︸
D2/D1

.

Using formula (27), we have the following expression for Popp’s measure

(35) P = 1√
2x1(x2`

1 + x2
2)
dx1 ∧ dx2 ∧ dx3 ∧ dx4,

or, equivalently, P = x
a(x)
1 e2ϕ(x)dx1 ∧ dx2 ∧ dx3 ∧ dx4, where

(36) a(x) =
{
−(2`+ 1) x2 = 0,
−1 x2 6= 0,

ϕ(x) =

−
1
2 log

√
2 x2 = 0,

−1
2 log

(√
2(x2`

1 + x2
2)
)

x2 6= 0.
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Noticing that δ(x1, x2, x3, x4) = x1, the effective potential reads

(37) Veff = a(x)(a(x)− 2)
4x2

1
+R(x), with R(x) = a(x)

x1
∂1ϕ(x) + (∂1ϕ(x))2 + ∂2

1ϕ(x).

We have

(38) R(x) =

0 x2 = 0,
`t2`−2

(t2`+x
2
2 )2

[
(`+ 2)t2` + (2− 2`)x2

2

]
x2 6= 0.

Combining (36)-(38) we deduce that Veff = 3/(4x2
1) + R(x) if x2 6= 0, and it is easy to

see that the behavior of R(x) depends on the choice of the parameter `. In particular, if
` = 1, R(x) ≥ 0 and we deduce essential self-adjointness of ∆ = ∆P by Theorem 1.1. On
the other hand, if ` > 1, along any sequence xi = (1/i, 1/i, 0, 0), we have xi1R(xi)→ −∞.
Hence, we cannot apply Theorem 1.1.

3. Characteristic points

In this section, we discuss the case in which the singular region has characteristic points.
This is a subtle and difficult technical issue, so we consider the easiest case which appears
already in the setting of almost-Riemannian geometry. In this case, the metric structure
in the regular region is actually Riemannian, and the Popp sub-Laplacian is simply the
Laplace-Beltrami operator in the regular region. See [9, Section 7] for a self-contained and
concise introduction to almost-Riemannian geometry.

Consider the almost-Riemannian structure on R2 defined by the global vector fields:

(39) X1 = ∂x, X2 = (y − x2)∂y.

The singular region is the parabola Z = {y = x2} and the origin is a characteristic
(or tangency) point for Z. We stress that the essential self-adjointness properties of the
Laplace-Beltrami operator in the regular region remain unknown even in this simple case.

In presence of characteristic points, the distance from the singular region is not smooth,
and in particular the normal tubular neighborhood of Proposition 1.2 does not exist.
Therefore, the arguments of [9, 5] cannot be applied. To see that δ is non-smooth arbi-
trarily close to a characteristic point, notice that X1, X2 are invariant under the reflection
(x, y) ∈ R2 7→ (−x, y). Therefore, for any p ∈ {(x, y) ∈ R2 | x = 0, y 6= 0} there exist
at least two distinct minimizing geodesics joining p with the characteristic point. In this
case, it is well known that the distance is not differentiable at p. (See Figure 2).

Let M be either connected component of R2 \ Z. The Riemannian measure is

(40) dP = 1
|y−x2|dxdy,

and the Laplace-Beltrami operator H = −∆ is

(41) H = −∂2
x − (y − x2)2∂2

y −
2x

y − x2∂x − (y − x2)∂y, Dom(H) = C∞c (M).

Consider the unitary transformation T : L2(R2, dxdy)→ L2(R2,P) given by

(42) Tu(x, y) =
√
|y − x2|u(x, y).

The operator H is unitary equivalent to H̃ = T−1 ◦ H ◦ T , with domain C∞c (M). A
straightforward computation yields

(43) H̃ = −∂2
x − (y − x2)2∂2

y − 2(y − x2)∂y +
(

1
(y − x2) + 3x2

(y − x2)2 −
1
4

)
,
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Figure 2. Some metric properties of the almost-Riemannian structure
(39). Left: geodesics satisfying the necessary condition for minimality from
Z (red parabola) and starting at points of Z with x > 0. Numerical
evidence suggests that they are minimizing until they cross the vertical
axis. Right: Level sets of the distance from Z.

The above operator is of the form H̃ = −∆̃ + V , where ∆̃ is the Laplace operator of the
non-complete Riemannian metric defined on M by (39), but associated with the Lebesgue
measure, and

(44) V (x, y) = 1
(y − x2) + 3x2

(y − x2)2 −
1
4 .

This class of Schrödinger-type operators has been studied in [9]. There, at least when the
almost-Riemannian distance from Z is smooth, it was proved that a sufficient condition
for essential-self adjointness is

(45) V (x, y) ≥ 3
4

1
δ(x, y)2 −

κ

δ(x, y) ,

for some κ ≥ 0. As we remarked, the almost-Riemannian distance from Z is not smooth,
but condition (45) still make sense. One could hope that, at least in this case, (45) is still
sufficient for essential self-adjointess.

Although in principle it is possible to compute δ explicitly, and hence verify (45), such
a computation seems to be very hard to obtain due to the apparent non-integrability of
the associated Hamilton equations. In order to obtain some insights on the validity of
(45) we approximate δ by assuming that the minimizing geodesic from (x, y) to Z to be
given by the integral curves of ±X1, that is
(46) δ(x, y) ' |√y − |x||.
Numerical experiments suggest that this approximation is reasonable at least for (x, y)
sufficiently near the singularity (i.e. |y−x2| small). Unfortunately, a simple computation
shows that, assuming the validity of this approximation, (45) is not satisfied near the
origin on either side of the singularity.

This suggests that a direct extension of the techniques of [9, 5], with some technical
workaround to deal with the non-smoothness of δ, is not the right approach.

We stress that Proposition 1.2 is merely a technical tool to prove the Agmon-type
estimate 1.6. The latter is the fundamental result which prevents weak solutions of H∗ψ =
Eψ to be supported arbitrarily close to Z. We observe that for any ε > 0, the set
Z ∩ {|x| > ε} possess no characteristic points, and thus an Hardy-type inequality as (14)
can be deduced outside a small ball Bε centered in 0 (with constants that are not uniform,
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and actually explode, for ε→ 0). Therefore, our current line of investigation aims to pair
the aforementioned inequality with a second one, valid on Bε, and where δ is replaced by
the almost-Riemannian distance from the origin.

The obstacle to this line of proof is the helplessness of the current state-of-the-art
techniques to derive Hardy-type inequalities close to the characteristic point. This requires
a precise and deep investigation of the properties of geodesics, which we are not able to
carry out. However, we remark that numerical experiments suggest that such an Hardy
inequality should hold.
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