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Abstract—One of the most promising solutions to overcome
the capacity limit of current optical fiber links is space-division
multiplexing, which allows the transmission on various cores of
multi-core fibers or modes of few-mode fibers. In order to realize
such systems, suitable optical fiber amplifiers must be designed.
In single mode fibers, Raman amplification has shown significant
advantages over doped fiber amplifiers due to its low-noise and
spectral flexibility. For these reasons, its use in next-generation
space-division multiplexing transmission systems is being studied
extensively. In this work, we propose a deep learning method that
uses automatic differentiation to embed a complete few-mode
Raman amplification model in the training process of a neural
network to identify the optimal pump wavelengths and power
allocation scheme to design both flat and tilted gain profiles.
Compared to other machine learning methods, the proposed
technique allows to train the neural network on ideal gain
profiles, removing the need to compute a dataset that accurately
covers the space of Raman gains we are interested in. The ability
to directly target a selected region of the space of possible gains
allows the method to be easily generalized to any type of Raman
gain profiles, while also being more robust when increasing the
number of pumps, modes, and the amplification bandwidth. This
approach is tested on a 70 km long 4-mode fiber transmitting
over the C+L band with various numbers of Raman pumps in
the counter-propagating scheme, targeting gain profiles with an
average gain in the interval from 5 dB to 15 dB and total tilt in
the interval from −1.425 dB to 1.425 dB. We achieve wavelength-
and mode-dependent gain fluctuations lower than 0.04 dB and
0.02 dB per dB of gain, respectively.

Index Terms—Space-division multiplexing, Raman amplifica-
tion, deep learning.

I. INTRODUCTION

NONLINEAR phenomena arising in optical fibers impose
an intrinsic limit to their information capacity [1], [2].

During the last three decades, the demand in internet traffic
increased exponentially with an annual rate of 40%, while
current technologies are rapidly approaching the nonlinear
Shannon limit (NSL) of single-mode fibers (SMFs) [3]. In
order to avoid bringing the existing optical fiber infrastructure
to a ”capacity crunch” [4], space-division multiplexing (SDM)
has been proposed as the key technology for future lightwave
systems operating beyond the NSL [5].

A promising approach to implement SDM is to exploit
the spatial diversity of modes in few-mode fibers (FMFs)
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to transmit independent data streams, so realizing mode-
division multiplexing (MDM) [6]. In order to benefit from the
added capacity of spatially-multiplexed transmissions, suitable
network devices must be designed fully compatible with
the already well-established techniques such as wavelength-
division multiplexing (WDM). To this end, the role of SDM-
compatible amplifiers is of fundalmental importance, with
several experimental works demonstrating the effectiveness
in MDM scenarios of both erbium-doped fiber amplifiers
(EDFAs) [7], [8] and Raman amplifiers (RAs) [9], [10].

The compensation of link losses with minimal signal-to-
noise ratio (SNR) reduction has always been a crucial aspect
in optical communications, but additional care must be taken
with SDM systems to minimize both mode-dependent gain
(MDG) and wavelength-dependent gain (WDG), as they can be
both detrimental to the multiple-input multiple-output (MIMO)
digital signal processing (DSP) algorithms that mitigate the
effect of mode-crosstalk to correctly recover the transmitted
signals [11].

While the simplicity and power efficiency of EDFAs made
them appealing for commercial communication systems, their
reduced gain bandwidth has made Raman amplification an
attractive solution for wideband WDM schemes [12]. The
spectral flexibility of RAs, together with suitable optmization
techniques, enables the design of flat gain profiles over large
bandwidths by means of multiple wavelength pumps [12]. In
the context of SDM, the additional degrees of freedom can
lead to higher control of WDG and MDG [13]. Additionally,
RAs can offer distributed amplification, resulting in a reduced
noise contribution compared to EDFAs [14].

In SMF systems, different approaches have been followed
to correctly determine the pump parameters required to ob-
tain pre-determined gain profiles. A recent publication [15]
proposed a machine learning (ML) technique to solve this
problem. Specifically, a neural network (NN) can be trained to
learn the inverse relationship y = f−1(G) between the vector
y of pump wavelengths and powers and the corresponding
gain profile G, using a synthetic dataset D = {(yi,Gi)}
of thousands of gain curves generated with random pump
parameters. The learned mapping is then used to compute
the required pump parameters ỹ = f̃−1(Gtarget) to approx-
imate a given target gain profile. This eliminates the need
to solve complex iterative algorithms that require multiple
integrations of the propagation equations for every new target
profile, making Raman amplification suitable for its applica-
tion in next-generation self-adaptive and autonomous optical
networks, where low-latency automatization is fundamental
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[15]. The authors of [15] used two additional techniques to
refine the prediction of the NN. The first is model-averaging,
which consists in training several NNs in parallel, each on a
random permutation of the dataset, and finally averaging their
output. This approach, while providing some improvements, is
significantly heavier in terms of computational time, both for
the training and the inference phase. This aspect, together with
the memory requirements needed to store hundreds of trained
models, could pose a challenge to network controllers, where
computational power may be limited. The second technique
consists in a fine-tuning phase requiring an additional NN
trained to learn the direct mapping G = f(y). The prediction
error on the gain profile obtained with the approximate pump
parameters ỹ is estimated using the learned direct mapping
f̃ and minimized using an iterative gradient-descent algorithm
without integrating the propagation equations. Publication [15]
showed promising results, demonstrating the feasibility of the
method with flat and tilted gain profiles using a counter-
propagating RA over the C and C+L bands, achieving a
maximum prediction error on the considered gain profiles well
below 1 dB for different levels of amplifications.

In the context of MDM, a similar approach to design flat
gain profiles both for 2-mode and 4-mode fibers has been
demostrated in [16]. This work does not use neither model-
averaging nor fine-tuning algorithms; therefore, memory and
time requirements for both the training and the inference
phase are substantially cut. For the 4-mode FMF, [16] showed
encouraging results in terms of MDG and gain flatness;
nevertheless, the analysis is limited to the C band only.

The main drawback of both methods with respect to iterative
optimization algorithms is that while the latter specifically look
at minimizing a cost function C(Gtarget, G̃) between a desired
and predicted gain profile by taking the propagation model
into account, the former is instead optimized to minimize a
cost function C(y, ỹ) between pump parameters. The NNs
are thus unaware of the underlying mathematical and physical
relations between pump parameters and gain profile, which has
to be learned from the available data. In order to approximate
the inverse function y = f−1(G) using a NN and generate
flat gain profiles, the region of space of approximately flat
Raman gains, must be properly sampled. This cannot be easily
achieved since the training dataset is generated by solving
the Raman equations with randomly drawn pump powers and
wavelengths, meaning that only the codomain of f−1(·) is
sampled with full control. As a result, only a minor part of
the generated gains fall inside the region of interest, resulting
in the NNs being trained to learn the inverse function on
a much bigger domain than required, potentially hindering
its performance on flat/tilted gains. This aspect is also more
problematic when increasing the amplification bandwidth or
the number of modes and pumps, as the dimensionality of the
space to explore also increases. The choice of parameters for
the generation of the dataset is also critical for the effectiveness
of the methods presented in [15], [16]. For example, the
powers and wavelengths of the pumps are selected a priori,
which requires preliminary supervision and that can finally
mean that the trained NNs might not able to predict the optimal
pump parameters.

Owing to automatic differentiation (AD) techniques [17],
analytical or numerical models describing dynamical systems
can be embedded in ML architectures [18]. By recording
the series of elementary operations performed on the model
input in a computational graph, AD libraries such as Py-
Torch [19] can compute the exact derivatives of the model
output with respect to any parameter to be optimized [20].
In the context of optical communications, this approach has
been demonstrated to be able to perform end-to-end (E2E)
optimization of a intensity modulation/direct detection system
by jointly optimizing the transmitter and receiver using NNs,
outperforming classical feed-forward equalization [21]. The
effectiveness of this technique has also been demonstrated for
coherent transmissions [22] where probabilistic constellation
shaping and geometric constellation shaping have shown to be
fundamental for achieving record spectral efficiencies in short-
and long-haul experiments [23].

In this work we propose an unsupervised ML method
which employs AD to embed a differentiable FMF Raman
amplification model in the training procedure of a NN to
predict the pump parameters able to generate flat and tilted
gain profiles over a pre-determined range of amplification
levels and gain tilts. The trained NN can then be used to obtain
the required pump parameters for a desired gain profile with
low time-complexity. The presented method has the advantage
to train the NN directly on the searched (e.g. flat and tilted)
gain profiles, thereby directly sampling the selected region of
space of possible gains, instead of building a dataset by solving
the Raman equations using random pump parameters. The
supervised dataset design phase, along with the issues related
to it, is thus completely avoided, with the relationship between
target gain and pump parameters being learned in the training
phase of the NN through the differentiable Raman model. The
ability to directly target an arbitrary region of the space of
Raman gains makes this method easily generalizable to any
type of gain profiles, more robust and scalable with respect
to the changes in number of modes, Raman pumps, and fiber
parameters. For all these reasons this unsupervised method
is expected to be more useful in self-adaptive networks. This
method is validated on different 4-mode fibers using a counter-
propagating scheme with various numbers of Raman pumps,
up to 8, predicting the required pump powers and wavelengths
to generate gain profiles on the C+L band with average gain
and tilt in the interval from 5 dB to 15 dB and from −1.425
dB to 1.425 dB, respectively; results show MDG and gain
flatness comparable to those reported in [16], but on a larger
bandwidth and quantifying the advantage of higher number
of pumps also in terms of the reached root-mean-square error
(RMSE).

II. PROPOSED METHOD

A. Multi-mode Raman amplifer equations

In a few-mode RA supporting M modes, Ns signal wave-
lengths and Np pump wavelengths, the power evolution of the
i-th frequency propagating in the m-th mode is described by
the following set of nonlinear ordinary differential equations
[24], [25]:
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ηi
dPmi
dz

=− αiPmi

+ Pmi

Ns+Np∑
j=i+1

M∑
n=1

Im,ngR(|fi − fj |)Pnj

− Pmi
i−1∑
j=1

M∑
n=1

fi
fj
Im,ngR(|fi − fj |)Pnj ,

(1)

where Pmi is the power in the m-th mode and i-th frequency,
where i ∈ {1, . . . , Ns + Np}, m ∈ {1, . . . ,M}, and the
frequencies fi are assumed to be sorted in ascending order; αi
is the attenuation coefficient at the i-th frequency, gR(∆f) is
the Raman gain coefficient for the frequency difference ∆f ,
and Im,n is the overlap integral between mode m and mode
n, defined by

Im,n =

+∞∫∫
−∞

Im(x, y)In(x, y)dxdy

+∞∫∫
−∞

Im(x, y)dxdy

+∞∫∫
−∞

In(x, y)dxdy

, (2)

where Ik(x, y) is the intensity profile of the k-th mode. The
overlap integrals are assumed to be wavelength independent.
Finally, ηi determines the relative propagation direction of the
i-th frequency, so for the counter-propagating pumps ηi = −1,
∀i ∈ {Ns + 1, . . . , Ns +Np}, whereas ηi = 1 for the first Ns
frequencies.

Modes with similar propagation constants, i.e. those within
the same mode group, exhibit high coupling efficiency, result-
ing in the equalization of the amplifier gain for that particular
group. For the purpose of RA they can consequently be treated
as a unique mode [25], [26]. Conversely, linear mode coupling
between different mode groups is weak and will be neglected
here, like in [16], [25], [26].

For a fiber of length L, the Raman on-off gain G = [Gmi ]
of the amplifier is defined by

Gmi =
Pmi (z = L) with pumps turned on
Pmi (z = L) with pumps turned off

, (3)

where i = 1, . . . , Ns and m = 1, . . . ,M .

B. Deep Learning Model Architecture

Many of the E2E learning methods in the literature are based
on a deep learning (DL) architecture called autoencoder (AE)
[27]. An AE is composed of two main blocks: an encoder,

E( · ; θe) : Rp → Rq, (4)

and a decoder,

D( · ; θd) : Rq → Rp, (5)

where θe, θd are learnable parameters and q < p. The role of
the encoder is to learn a lower dimensionality representation
x̂ of its input data x in a way that enables the decoder to
compute an estimate x̃ of the original data from x̂:

x̃ = D(E(x; θe); θd). (6)

Typically, both E and D consist in NNs that are jointly trained
to minimize the average of the cost function CAE between
original and reconstructed samples of a dataset X = {xi}:

θ∗e , θ
∗
d = argmin

θe,θd

1

|X |
∑
x∈X
CAE
(
D(E(x; θe); θd),x

)
. (7)

By replacing the decoder D with a differentiable Raman model
R that maps a vector of pump powers and wavelengths

y = [λ | P] ∈ R(M+1)Np

+ , (8)

to the corresponding on-off gain, we can train the AE using
(7) on a dataset X = {Gi} of gain curves to force the encoder
NN to learn a low-dimensional representation that minimizes
the reconstruction error throughR. That is, the trained encoder
approximates the inverse of the Raman model

E( · ; θ∗e) ≈ R−1( · ), (9)

meaning that the lower dimensionality representation of the
input gain G is the vector y of pump powers and wavelengths
that approximates it.

While the numerical integration of the Raman model R is
still required in the forward-pass of the training process to
compute (7), this computational cost is no longer needed to
determine the pump parameters that approximate a target gain
profile, which are directly obtained by using E( · ; θ∗e).

In this work, the encoder E is a feed-forward (FF) NN with
Nh hidden, fully connected (FC) layers of Nn neurons and
rectified linear unit (ReLU) activation functions. Input and
ouput layers have size Ns×M and Np×(M+1), respectively.

In order to force a constraint on the predicted pump param-
eter vector y, a sigmoidal function

σ(x) =
1

1 + e−x
(10)

is used to limit the output x of the last FC layer of the NN to
the open interval (0, 1). The resulting normalized pump vector
ŷ can then be linearly mapped to the desired interval of powers
and wavelengths.

The decoder R consists of a fixed-step, fourth-order Runge-
Kutta integrator that solves (1) to compute the on-off gain
using the pump parameters generated by the encoder.

C. Training algorithm

The optimal encoder parameters, θ∗e , are found by solving
(7) with an iterative training algorithm and using the RMSE
between target and approximated gain as a cost function:

CAE(G, G̃) =
1

M

M∑
m=1

RMSE
i

(
Gmi , G̃

m
i

)
, (11)

for i = 1, . . . , Ns. In the k-th iteration of the training
algorithm, the AE reconstruction of each curve in the dataset
X is computed as

G̃ = E(R(G); θe(k)) ∀G ∈ X , (12)
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where θe(k) are the encoder parameters at the current iteration.
The total cost function for the iteration is then evaluated by
averaging (11) over X

C(k) =
1

|X |
∑
G∈C

CAE(G, G̃). (13)

Finally, the encoder parameters are updated with a gradient
descent algorithm

θe(k + 1) = θe(k)− ε∇θe(k)C(k), (14)

where ε > 0 is the learning rate (LR) of the algorithm. The
exact computation of the gradients is performed by means
of AD and backpropagation [27]. Advanced optimization
algorithms such as the adaptive moment estimation (Adam)
algorithm [28] are typically employed for the update step (14)
as they offer robust convergence properties and adaptive LR
schemes for each parameter.

During training, the relationship between input target gains
and their respective pump powers and wavelengths are learned
through the differentiable Raman solverR, meaning the vector
of pump parameters yi associated to each gain profile Gi

of the dataset is not needed. This fact can be exploited by
completely bypassing the dataset generation phase and training
the encoder on the targeted family of desired ideal gain
profiles.

In this paper we focus on flat and tilted gains, so in each
training iteration k we generate a batch Bk = {Gi}Bi=1 of
B ideal gain profiles with average gain level lG and tilt tG
(gain variation per unit wavelength) randomly sampled from
a uniform distribution

lG ∼ U
(
lmin
G , lmax

G

)
, (15)

tG ∼ U
(
tmin
G , tmax

G

)
, (16)

It is important to notice that this approach is completely
generalizable and not limited to flat and tilted gains only, but it
could be extended to other families of gain profiles by properly
including them in the training data.

As detailed in section I, in supervised learning techniques
such as those presented in [15] and [16], the underlying
physical model is only described by and learned from the
provided data, meaning that it is essential to use datasets
that are representative of the problem. In the context of RA,
this means that the dataset must properly sample the region
of possible Raman gains containing approximately flat gain
profiles in order for the NN to properly learn the inverse
Raman model. This cannot be done efficiently or easily, as
there is actually no direct control on which gain profiles are
sampled, but rather on the power and wavelength of each
pump. Instead, the presented approach avoids this issue by
directly sampling the selected space of Raman gains. Conse-
quently, the problem of overfitting is completely avoided, and
regularization techniques are not required.

D. Initial conditions

When training the AE using the algorithm described above
we face the problem of local minima, which is common
when dealing with the optimization of many parameters with

complex cost functions. An important aspect to consider when
dealing with local minima is the initial conditions of the
algorithm, which can significantly affect the outcome of the
optimization problem.

The parameters of the encoder’s FC layers are initialized by
sampling a uniform distribution on the interval [−√n,√n],
where n is the inverse of the number of incoming connections
to that layer [19]. This approach has been demostrated to be
effective to mitigate the problem of vanishing gradients when
training multi-layer NNs [29]. While this random initialization
strategy is beneficial in classic supervised learning models,
it affects the initial condition of our AE, as it imposes a
random value to the initial normalized pump parameter vector
ŷ0. We analyzed the statistical distribution of the output of
the last FC layer, x0, during the first training iteration for
different number of hidden layers and neurons. We found that
its elements follow a Gaussian-like distribution with zero mean
and a variance that decreases as the number of layers and
neurons increases. In Fig. 1 (a) and (b) we show the mean and
variance, respectively, of x0 for the case of a 4-mode fiber with
50 wavelength channels and 8 pumps, resulting into an input
layer of 200 neurons and an output layer of 40 neurons. For a
sufficiently high number of hidden layers and neurons (which
is easily met in practice) we can then use the approximation
x0 ≈ 0, meaning that by (10) in the first training iteration
ŷ0 ≈ σ(0) = 0.5, so fixing the initial pump powers and
wavelengths to the middle point of the interval of allowed
values. By introducing a centering vector α and subtracting it
to the input of the sigmoids, we have:

ŷ = σ(x−α), (17)

which enables us to relate the initial pump parameters to α
as follows

ŷ0 = σ(x0 −α) ≈ σ(−α) =
1

1 + eα
. (18)

We can use this result to force a more desirable initial con-
dition on the pump parameters by computing the appropriate
value of α by inverting (18).

E. Counter-propagating pumps

For the case of counter-propagating pumps it is customary
to implement a differential equation solver based on a shooting
algorithm to determine the correct initial pumps powers to be
injected at z = L. This however would require significantly
more computational resources, as the propagation equation
should be solved several times for each training sample and,
more importantly, could introduce convergence problems [30].

However, the method proposed here presents a particularly
advantageous feature on this regard: in fact, the encoder E
can direcly predict the pumps powers at z = 0, P̃mi (z = 0),
eliminating the need to employ shooting algorithms. By solv-
ing (1) with initial (z = 0) conditions for pumps and signals,
we obtain the predicted gain G̃ along with pumps powers at
the end of the link, P̃mi (z = L), which are the values of
interest. We therefore trade a significant computation cost in
the training phase for a single integration of (1) in the inference
phase. The resulting AE-based system is represented in the
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Algorithm 1 AE training algorithm
Compute centering vector α
Initialize encoder parameters: θe(0)
for k = 0 to Niter − 1 do

Compute the mask Hk

Generate batch Bk = {Gi}Bi=1 of gain profiles
Propagate batch to obtain the pump parameters from NN:
Ŷk = {ŷik} = {σ(x̂ik�Hk−α)}, x̂ik = NN(Gi; θe(k))
Map the normalized parameters to the selected range:
Yk = {yik} = Scale(Ŷk)
Integrate (1) to compute the predicted gain profiles:
B̃k = {G̃k

i } = {R(yik)}
Compute the cost function C(k) using (13)
Compute gradients with backpropagation: ∇θe(k)C(k)
Update the parameters θe(k + 1) using (14)

end for

diagram of Fig. 2, highlighting the various components of the
architecture and its input-output relations. Green boxes and
arrows are related to the training phase of the AE, during
which the encoder parameters θe are optimized. In order to
compensate the significantly higher sensitivity of the predicted
gain to the optimization parameters and avoid further problems
with local minima, we introduce a modification to the training
algorithm by multiplying the output of the last FC layer x
by a mask Hk, where the subscript k indicates the k-th
training iteration. The normalized pump parameters for the
k-th training iteration are then determined by:

ŷk = σ(xk �Hk −α), (19)

where � indicates the Hadamard (element-by-element) prod-
uct. Hk can be suitably designed to ”steer” the NN by
weighting the computed gradients of the cost function with
respect to the pump parameters during backpropagation. In
our case, we set:

Hk = [Hi
k] =


0 1 ≤ i ≤ Np , k < K

1 Np + 1 ≤ i ≤ (M + 1)Np , k < K

1 1 ≤ i ≤ (M + 1)Np , k ≥ K ,
(20)

where the superscript i indicates the i-th element of the
vector. Using this definition, the pump wavelengths are fixed
to their initial conditions for the first K iterations, allowing
the encoder to learn just the relationship between predicted
pump power and generated gain profile, which is more critical
during the first training iterations. The training algorithm is
summarized in Algorithm 1 and is completely implemented
using the PyTorch DL library [19], which enables us to
leverage AD and graphics processing unit (GPU) acceleration.

III. RESULTS AND VALIDATION

We test the presented method using counter-propagating
pumps and a L = 70 km long 4-mode step-index fiber
(SIF) whose overlap integrals are calculated in [25] and
reported in Table I. Hereinafter, we refer to this fiber as
FMF1. The Raman gain spectrum is computed using the

TABLE I
OVERLAP INTEGRALS OF THE FMFS USED FOR SIMULATION, IN UNITS OF

1 × 109 m−2.

FMF1 FMF2

LP01 LP11 LP02 LP21 LP01 LP11 LP02 LP21

LP01 6.24 4.12 4.62 2.85 5.47 3.6 3.87 2.45
LP11 4.12 4.36 2.33 3.81 3.6 5.7 1.95 3.28
LP02 4.62 2.33 6.15 2.12 3.87 1.95 4.94 1.76
LP21 2.85 3.81 2.12 3.88 2.45 3.28 1.76 4.95

multi-vibrational-mode model of the Raman response func-
tion for silica fibers [31], whereas the peak value for the
Raman gain coefficient gR = 7× 10−14 W−1 m was used [14].
The spectral attenuation coefficient of the fiber is obtained
from a parabolic fit of attenuation data of a commercially
available SMF, α(λ) = α0 + α1λ + α2λ

2, with coefficients
α0 = 5.788 dB km−1, α1 = −7.1246× 10−3 dB km−1 nm−1,
α2 =2.268× 10−6 dB km−1 nm−2. This approximation is valid
for the wavelengths interval from 1385 nm to 1625 nm. As in
[24], [25] we assume the absence of mode-dependent losses
(MDL).

We consider the transmission on Ns = 50 wavelengths on
the C+L band, for a total number of spatial and wavelength
channels equal to Nch = M × Ns = 200. The input power
for each channel is set to Pch = −10 dBm.

The encoder NN is composed of Nh = 5 hidden layers of
Nn = 1000 neurons each, and its parameters are optimized
using the Adam algorithm with a LR ε = 1× 10−4. The AE
is trained for Niter = 1000 iterations with batches of B = 1024
gain curves, which are sufficient to fill the GPU random access
memory (RAM) and ensure 100% GPU clock utilization.
Each batch is generated according to the strategy described in
section II, with average gain level and tilt uniformly sampled
from the intervals of 5 dB to 15 dB and −0.015 dB nm−1 to
0.015 dB nm−1, respectively.

We map the output of the sigmoids to limit the predicted
power at z = 0 and wavelength of each pump into the
intervals IP (z=0) = [−60, 20] dBm and Iλ = [1410, 1520]
nm, respectively.

Using (18) we set the initial power on each pump to
P0(z = 0) = 3 dBm, whereas the wavelengths are uniformly
distributed over Iλ. Additionally, we use (20) to fix the pumps
wavelengths to their initial value for the first K = 100
iterations.

Once the AE is trained, the encoder is used determine pump
wavelengths and powers at z = 0 to approximate a given target
gain profile:

ỹ = [λ̃ | P̃(z = 0)] = E(G ; θ∗e), (21)

and the corresponding predicted gain G̃ and pumps powers at
z = L are obtained with a single integration of the Raman
equations (1):

[G̃ | P̃(z = L)] = R(ỹ). (22)

The total training time for the employed NNs is approxi-
mately 45 minutes using an NVIDIA Quadro M4000 GPU.
The computational time to perform a prediction for a single
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target gain profile on an Intel consumer laptop CPU is ap-
proximately 11 ms, of which 1 ms is required for computing
the output of the encoder NN, and the remaining 10 ms are
needed for integrating (1).

A. Flat gain profiles

First, we asses the performance of the presented method
using FMF1 for the case of flat target gain profiles in terms
of RMSE, gain flatness and MDG, for different levels of
amplification and varying the number of Raman pumps. Given
that the number of pumps determines the size of the input and
output layers of the encoder NN, the training algorithm must
be run for every value that this parameter assumes. For each
target curve, we obtain the corresponding AE prediction using
(21), (22) and compute the RMSE for each mode m as:

RMSEm(G, G̃) =

√√√√ 1

Ns

Ns∑
i=1

(
Gmi − G̃mi

)2
. (23)

In Figure 3 we report the RMSE in terms of percentage of
the target gain level, as a function of the amplification level
and using 4, 5, 6, and 8 Raman pumps. Solid lines and
shaded regions represent the average RMSE and maximum to
minimum RMSE variation over the modes, respectively. For
gain levels inside the target interval of [5, 15] dB, the RMSE
curves are almost constant, independently of the number of
pumps used. Conversely, the RMSE rapidly grows outside the
training interval, as the encoder NN is not able to extrapolate
the correct pump parameters. By increasing the number of
Raman pumps from 4 to 8 we improve the RMSE, going from
3% to about 1% of the target gain.

A clear picture on the improvements brought by an in-
creased number of pumps is given by the gain flatness or
WDG, defined for each mode m as

Fm(G) = max
i
Gmi −min

i
Gmi , (24)

for i = 1, . . . , Ns and m = 1, . . . ,M . We report gain flatness
in terms of percentage of target gain level in Fig. 4, where the
shaded areas represent the flatness variation over the modes.
The most significant improvement is obtained from 4 to 5
pumps, reducing the flatness from 15% to about 6%. For
example, this means that for a 10 dB target gain, the total
flatness would be decreased to just 0.6 dB from 1.5 dB; this
value is further decreased to 0.35 dB using 8 pumps. Moreover,
we can observe that flatness is practically constant among
the modes, with fluctuations always lower than 0.5% of the
target gain in the interval from 5 dB to 15 dB. We can see
an example of the achieved gain profiles for the case of 8
pumps in Fig. 5, where we plot the flat target profiles and the
predicted gain curves for different amplification levels inside
the training interval. The gain profile for each mode is in fact
the same up to a residual MDG, which increases with the gain
level.

For a given gain profile G, we quantify its MDG as

MDG(G) = max
i

(
max
m

Gmi −min
m

Gmi

)
, (25)

with i = 1, . . . , Ns and m = 1, . . . ,M . In Fig. 6 we report
the MDG as percentage of the total gain using 4, 5, 6, and 8
Raman pumps. Differently from the case of gain flatness, the
number of pumps does not influence the total MDG, which is
practically constant inside the interval of gain levels on which
the AE was trained, settling at about 2% of the target gain.
This residual MDG is caused mainly by the fact that LP01 and
LP11 modes are systematically over-amplified with respect to
the others. By inspecting the values of overlap integrals of
FMF1 in Table I, we can observe that the sum of the off-
diagonal entries in the columns/rows associated with LP01 and
LP11 are the first and second largest, respectively, meaning that
power is more efficiently coupled by the nonlinear Raman
interaction in these two modes. In Fig. 7 we plot the total
pump power in z = L on each mode of the FMF, as predicted
by the AE, as a function of the target gain level; the cases
of 4, 5, 6, and 8 pumps are considered, with solid lines
representing the average power and shaded areas depicting
the power variation by employing different numbers of pumps.
Independently of the amplification level, no power is launched
in the LP01 and LP11 modes, with 70% of the total power
assigned to LP21, and the remaining 30% to LP02, confirming
the results of [24] and [25]. Even though no power is injected
in LP01 and LP11, these two modes are those that experience
the highest amplification, predominantly contributing to the
residual MDG of the system. In order to confirm the role of
the overlap integrals in determining the MDG we test two
additional 4-mode fibers. The first, which we label ”FMF2”,
is a SIF with a core diameter of 18 µm, core refractive index
of 1.466, and a relative refractive index difference between
core and cladding ∆ = 0.4%, supporting the propagation
of the LP01, LP11, LP02 and LP21 modes over the entire
simulation bandwidth. Its overlap integrals are reported in
Table I. The second fiber, which we refer to as ”FMF3”,
is instead an ideal 4-mode fiber whose overlap integrals are
equal to 5.47× 10−9 m−2, i.e the overlap integral for the LP01-
LP01 mode pair of FMF2. All the other simulation parameters,
including the attenuation spectrum and Raman gain coefficient
of the fiber, remain unchanged. Training the AE under the
same conditions, we can observe the effect of the fiber design
on the performance of the system in terms of residual MDG.
For the case of 8 Raman pumps, we report the MDG for the
three considered fibers as a function of the gain level in Fig. 8:
FMF2 exhibits the highest MDG among the fibers, reaching a
value of approximately 4% of the target gain inside the training
interval of 5 dB to 15 dB, while for FMF3 the AE correctly
predicts the power distribution among the modes that results
in no MDG, launching power only in the LP01 mode.

B. Tilted gain profiles

In order to account for tilted gain profiles, the AE is
trained using ideal gain profiles with average gain and tilt
uniformly sampled from the two-dimensional training region
T = [5, 15] dB × [−0.015, 0.015] dB nm−1, resulting in a
maximum total tilt on the C+L band equal to Tmax =
0.015 dB nm−1 × 95 nm = 1.425 dB. In Fig. 9 we report the
target gain profiles and corresponding AE predictions using
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FMF1 and 8 pumps, for a total tilt equal to Tmax and for
different average gain levels inside the training region. Results
show good agreement between targets and predictions, with
approximately the same gain profile on each mode, up to the
residual MDG.

An analysis similar to that of flat gain profiles is carried
out for the case of tilted profiles, evaluating the metrics of
interest for FMF1 and varying the number of employed Raman
pumps, keeping the other simulation parameters unchanged.
We compute RMSE, flatness, and MDG of the predicted gain
profiles and visualize them in Fig. 10, representing the metrics
as a function of the target gain level and total tilt on the C+L
band. Each metric is reported in terms of percentage of the
target gain level; for RMSE and flatness we consider the worst-
case scenario among the modes, i.e. their maximum value.
Fig. 10 is organized such that columns 1 through 4 of the
grid correspond to the case of 4, 5, 6, and 8 pumps, whereas
row 1, 2, and 3 correspond to RMSE, flatness and MDG,
respectively. The color scale for each metric is saturated to
different levels in order to improve the contrast of the color
maps. In Fig. 10 (a)–(d) we can appreciate the improvements
in terms of RMSE by using more pumps: the color map is
increasingly darker inside and in the vicinity of the training
region T , whose bounds are represented by a dashed rectangle.
Additionally, by using 5 or more pumps, the level curves show
that a RMSE lower than 3% of the target gain level is achieved
for (practically) all the gain level-tilt combinations in T .

Similar observations can be made for the flatness from Fig.
10 (e)–(h), where a value of about 17% is reached for the
points inside the training region using 4 pumps; increasing the
number of pumps leads to progressively lower flatness values,
down to 5% inside T with 8 pumps.

Similarly, for the MDG, Fig. 10, (i)–(l) show that a higher
number of pumps brings no significant changes, as the mini-
mum achievable MDG is determined by overlap integrals of
the fiber. Its value stays infact approximately constant inside
the training region regardless of the pump count, with the level
curve showing that MDG values lower than 4% are achieved
for a region considerably wider than T .

IV. CONCLUSIONS

We have demonstrated an unsupervised machine learning
method based on autoencoders to predict the required pump
parameters to generate flat and tilted gain profiles using
Raman amplification in few-mode fibers. Thanks to automatic
differentiation, a numerical Raman model is embedded in the
autoencoder, allowing to train it directly on ideal gain profiles
(e.g. flat or tilted) and obtaining a robust unsupervised learning
method that does not rely on a pre-computed dataset to learn
the inverse model. In fact, the relationship between input target
gain and the pump parameters that best approximate it are
learned in the training phase from the embedded numerical
model, allowing to accurately sample the targeted region of the
space of possible gain profiles. As a result, this method scales
well with respect to the number of fiber modes, the number
of Raman pumps, and the amplification bandwidth. On this
regard, the low root-mean-square error (quantified for various

number of pump wavelenghts) demonstrated the achievement
of the target profile. Another key advantage of this scheme
is that it does not require supervision in selecting simulation
parameters (like power and wavelength ranges) that might also
affect the quality of the results.

This approach is tested on a 4-mode fiber using the counter-
pumping scheme, various numbers of pumps, up to 8, and for
the C+L band. The training process is further simplified by the
fact that the autoencoder can directly predict the pump powers
at z = 0, eliminating the need to employ costly shooting
algorithms that are typically needed for counter-propagating
Raman amplification models. The pump power to be injected
in the fiber are in fact computed with a single integration
of the propagation equations. We achieved very good results
regarding flatness and mode-dependent gain over the entire
C+L band and the considered interval of gain levels and tilts,
reaching a gain flatness of 3% of the total gain using 8 pumps,
and a residual mode-dependent gain of 2% of the total gain,
independently of the number of Raman pumps. This method
can be extended to the case of co-propagating pumps and even
to a mixture of co- and counter-propagating pumps. Finally,
if the numerical model is substituted by an experiment (with
automatic data aquisition), the encoder neural network could,
in principle, be trained by the experiments. This will also
require the definition of a proper algorithm to update the neural
network parameters, to replace automatic differentiation.
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Fig. 1. Mean (a) and variance (b) of the output of the NN during the first training iteration, as a function of the number of hidden layers and for different
values of neurons per layer.
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AE.
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Fig. 5. Target and predicted flat gain profiles for a 4-mode fiber over the C+L–band, using 8 pumps.
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of pumps.
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Fig. 9. Target and predicted gain profiles for the tilted case, using 8 pumps and with a total tilt of 1.425 dB, i.e. the maximum considered tilt during training.
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Fig. 10. Calculated metrics for the tilted gain case, varying the number of Raman pumps: RMSE (a)–(d), flatness (e)–(h), and MDG (i)–(l) as a function of
the target gain level and target tilt. For RMSE and flatness their maximum value among the modes is reported. Columns 1 through 4 refer to the case of 4,
5, 6, and 8 pumps, respectively.


