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Approximate Bayesian Computation by
Modelling Summary Statistics in
a Quasi-likelihood Framework

Stefano Cabras*, Maria Eugenia Castellanos Nuedal, and Erlis Rulit

Abstract. Approximate Bayesian Computation (ABC) is a useful class of meth-
ods for Bayesian inference when the likelihood function is computationally in-
tractable. In practice, the basic ABC algorithm may be inefficient in the pres-
ence of discrepancy between prior and posterior. Therefore, more elaborate meth-
ods, such as ABC with the Markov chain Monte Carlo algorithm (ABC-MCMC),
should be used. However, the elaboration of a proposal density for MCMC is a
sensitive issue and very difficult in the ABC setting, where the likelihood is in-
tractable. We discuss an automatic proposal distribution useful for ABC-MCMC
algorithms. This proposal is inspired by the theory of quasi-likelihood (QL) func-
tions and is obtained by modelling the distribution of the summary statistics
as a function of the parameters. Essentially, given a real-valued vector of sum-
mary statistics, we reparametrize the model by means of a regression function
of the statistics on parameters, obtained by sampling from the original model
in a pilot-run simulation study. The QL theory is well established for a scalar
parameter, and it is shown that when the conditional variance of the summary
statistic is assumed constant, the QL has a closed-form normal density. This idea
of constructing proposal distributions is extended to non constant variance and
to real-valued parameter vectors. The method is illustrated by several examples
and by an application to a real problem in population genetics.

Keywords: Estimating function, Likelihood-free methods, Markov chain Monte
Carlo, Proposal distribution, Pseudo-likelihood.

1 Introduction

Many statistical applications in diverse fields such as biology, genetics and finance of-
ten involve stochastic models with analytically or computationally intractable likeli-
hood functions. The rapidly growing literature on Approximate Bayesian Computation
(ABC) has led to a set of methods which do not involve direct calculation of the likeli-
hood, leading to Bayesian inference that is approximate in a sense that will be specified
later.

ABC methods are becoming popular in genetics (Siegmund et al., 2008; Foll et al.,
2008), epidemiology (Blum and Tran, 2010; Tanaka et al., 2006) and in population
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biology (Ratmann et al., 2007; Hamilton et al., 2005; Cornuet et al., 2008) among other
areas.

Formally, let y = (y1,...,yn) be a random sample of size n drawn from a statistical
model 7(y | @) indexed by the parameter € © C IRP. The likelihood for 6, correspond-
ing to 7(y | @) is Ly (0), which is not available in closed expression. For a certain prior
(@), the aim is to obtain the posterior distribution x5 (0 | y) «x Lx(0)7w(0), but as
Ly (0) is inaccessible, mx (0 | y) cannot be approximated by directly evaluating Ly ().

This difficulty may be overcome by using ABC methods. Specifically, let s = s(y) €
S C IR? be a vector of observable summary statistics (e.g. mean, variance, quantiles
etc.), which may not be sufficient, let p(s, s.ps) be a metric distance between s and its
observed value s,ps with € > 0 the tolerance parameter. ABC methods approximate
N (0 | y) by

(0 | Sups) = / 7(0,5 | 5ups)ds,
S

where 7¢(0,s | sops) < w(@)7w(s | @), <c, and I, is the indicator function for the
event {s € S| p(Seps,s) < €}. They require a choice of € and for this purpose several
authors (Bortot et al., 2007; Faisal et al., 2013; Ratmann et al., 2014; Barnes et al.,
2012; Aeschbacher et al., 2012) suggest approaches where € is estimated as part of an
extended model with respect to 7(y | 0), while a recent approach based on diagnostic
tools for ABC can be found in Prangle et al. (2013a). In this work another criterion for
choosing e is discussed.

The basic version of the ABC algorithm relies on simulation by the mixture repre-
sentation method consisting in generating, say, T' values of € from 7(6) and using them
to generate the corresponding T values of s from 7 (y | ) at the simulated 8. We accept
all values of @ such that p(s,seps) < €. For € — 0 the ABC method has been proven to
return a consistent estimator of the posterior (0 | syps) and under some assumptions
it is also possible to provide the approximation error as shown in Biau et al. (2012).
Moreover, if s is sufficient and € — 0, then 7¢(0 | Spps) — Tn (0 | y). There is a certain
agreement in that low dimensional, but informative summary statistics improve the
accuracy of the ABC approximation (Blum et al., 2013).

One drawback of the basic ABC algorithm is that it can be extremely inefficient
when the discrepancy between 7(0) and 7y (6 | y) is relevant. Unfortunately, as Ly ()
is intractable, the discrepancy between 7(0) and 7 (0 | y) is difficult to know a priori
and not easy to assess. To deal with this issue, more advanced Monte Carlo methods,
such as ABC-MCMC, originally developed in Marjoram et al. (2003) and further ana-
lyzed in several papers such as Beaumont et al. (2009a); Andrieu and Roberts (2009);
Lee (2012), or Sequential Monte Carlo (SMC) methods (see, e.g., Beaumont et al.,
2009b; Sisson et al., 2007) may be used. All these methods attempt to account for
the observed data at the proposal stage. However, to accomplish this task, a proposal
distribution or a perturbing kernel is required, which in practice is supplied by the
analyst.
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Another aspect of the method, which is of major concern in the ABC literature, is
the choice of s, which should be informative for 8. The same concern applies here, as we
require s not to be ancillary with respect to . Many suggestions can be found in the
current literature. For instance, Fearnhead and Prangle (2012) propose considering the
posterior mean of 0, i.e. Erc(gjs,,.)(0). The latter is estimated by means of a pilot-run
simulation that depends on the specific observed sample. Moreover, Ruli et al. (2013)
suggest choosing s as the score of the composite likelihood function obtained from

m(y | 8).

The present work focuses on the study of a class of proposal distributions for
ABC-MCMC, and a method for building proposal densities, which target the poste-
rior w€(0 | Seps), is illustrated. Such proposal distributions depend on the model at
hand and account for the observed data. These distributions for # are constructed in
a way that leads to adopting a normal kernel on the space of s, and then consider a
reparametrization from s to ¢ by a suitable regression function f(0) = Er,e)(s | 0).
A recent approach, strongly connected with the use of such a regression function, can
be found in Ratmann et al. (2014), where the f(6) is the binding function in indirect
inference (Gourieroux et al., 1993).

We show that for scalar parameter problems and f(#) such proposal distributions
arise from the class of quasi-likelihood functions (QL) of § (McCullagh, 1991) denoted
by Lo (6). For multidimensional parameter problems, the QL is not tractable, but the
idea can still be generalized to these contexts using asymptotic arguments. Indeed, for
the vector of parameters 6, we consider a multivariate normal kernel and a multivariate
transformation from s to 6. For both the scalar and the multi parameter cases, these
transformations are typically not available analytically and we estimate them in a pilot-
run simulation. This pilot-run simulation is performed regardless of the specific observed
sample and thus it can serve for routine analysis. This is an appealing feature of the
proposed method as will be shown later by an application to a Genome Wide Association
Study (GWAS).

Despite the fact that under some more elaborate requirements for the proposal
distribution, later discussed, we end up in a proposal which is not the QL for 8, we
think that the connection of ABC and QL is important because Ly (0) is not available
and the estimation theory of the QLs guarantees, asymptotically, that Lg(6) targets
Ln(0).

The structure of the paper is as follows: Section 2 discusses Lg(0), which inspires
the proposal distributions considered throughout the paper. These distributions will be
embedded in the ABC-MCMC algorithm. The proposed ABC algorithm, ABC, for
scalar parameters is formally discussed in Section 3, while the generalization to p > 1 is
presented in Section 4. Section 5 illustrates the proposed method with some examples
from the ABC literature and an important application to GWAS for population genetic
isolates. Conclusions and further remarks are given in Section 6.
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2 The two relevant tools: quasi-likelihood and the ABC-
MCMC algorithm

The theory and use of estimating equations and that of the related quasi- and quasi-
profile likelihood functions have received a good deal of attention in recent years; see,
among others, Liang and Zeger (1995); Barndorff-Nielsen (1995); Desmond (1997);
Heyde (1997); Adimari and Ventura (2002); Severini (2002); Wang and Hanfelt (2003);
Jorgensen and Knudsen (2004); Bellio et al. (2008). In addition, Ventura et al. (2010);
Lin (2006); Greco et al. (2008) discuss the use of QL functions in the Bayesian setting.

Let s = s(y) € IR be a scalar summary statistic generated from 7w (s(y) | ) whose
observed value is s,ps. We assume for convenience that the summary statistic lies on
the real line, which can be easily achieved by suitable transformations (e.g. a log-
transformation of the sample variance).

Moreover, suppose 6 is a scalar parameter, i.e. p = 1 and let ¥(s; ) be an unbiased
estimating function of 6 based on s, i.e. E;(y6){¥(S;0)} = 0.

The QL for 6 based on ¥(s;0) (McCullagh, 1991), is given by

6
Lo(6) :exp{/ A()T(s;t) dt} , (1)

where A(0) = M(0)/2(0), co is an arbitrary constant,

and

Q) = E{U(S;60)? | 6} = Var{¥(S;0) | 6}.

When p = 1, a quasi likelihood for 6 is usually easy to derive, while for p > 1 some
difficulties arise. Moreover, as shown below, for a suitable estimating function and under
Var{¥(S;0) | 0} constant, (1) is a normal kernel.

The ABC-MCMC algorithm, proposed in Marjoram et al. (2003), summarized in
Algorithm 1, evaluates Ly (0) indirectly via the indicator function I,«., and uses the
proposal density ¢(8(*) | 9(¢=1)),

Depending on how the proposal is defined, with Algorithm 1 we may implement the
independent Metropolis Hastings (MH) or the Random Walk (RW) MH. SMC methods
may also be considered as in Toni et al. (2009). Finally, the proposal ¢(-) can also be
viewed as an importance function for the implementation of an Importance Sampling
(IS) simulation algorithm.

The proof that 7€(0 | seps) is the stationary distribution of Algorithm 1 is contained
in Theorem 1 of Marjoram et al. (2003) and the rate of convergence depends on the
choice of ¢(-) and e. However, as Ly (6) is not tractable, it is not possible to further char-
acterize the stochastic behavior of the induced chain. In fact, the theoretical conditions
discussed in Mengersen and Tweedie (1996) and Atchadé and Perron (2007) may be
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Algorithm 1 The ABC-MCMC algorithm
1: Set € > 0, 00 = Oinit € O©;
2: fort=1to T do
3. generate * ~ g(6W|9(—D);
generate s ~ mw(s(y) | 0%);
calculate p = p(Sops, 5);
with probability

. m(0*)q(8" "V | 6%)
mln{l, (60 D)q(0" | e(t_l))]lp«

accept 6* and set () = 0*, otherwise #*) = g(t—1)
7: end for
8: return V... (1)

assessed if Ly (0) is available in a closed form expression. Notice that the approach can
also be viewed as a pseudo marginal MH as we are working with an estimated likelihood
when evaluating the indicator function I,.., and results for convergence of such pseudo
marginal algorithms can also be found in Andrieu and Roberts (2009).

3 The ABC, for a scalar parameter

The main objective of this paper is to construct a proposal density centered on the
bulk of the posterior distribution. In a setting where the likelihood cannot be computed
explicitly, this issue could be cumbersome. For this purpose, we consider a QL derived
from estimating functions based on s.

The following Proposition 1 provides the expression of Lg(¢) for a general statistic
s and assuming Var(,g)(S | ) is constant.

Proposition 1. Suppose p = 1 and let f(0) = Ex(y6)(S | #) be a bounded regression
function under the sampling model 7(y | ) for which the Jacobian | f/(0) |< oo and
that the conditional variance Var,(,jg)(S | 0) = 0% is constant with respect to .

Consider the following estimating function ¥(sups;0) = Sobs — f(6). In this case we

have
OR ’

Lo(®) = ¢ ( (2)

where ¢(-) is the density of the standard normal distribution.
Proof. Note that the estimating function is unbiased because E{¥(s.s;6) | 0} =
E(S|6)— f(0) = 0. From the definition of Ly(6) the following quantities are needed:

m(o) =5 (% 10) = 16)
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Q) = E{¥(s50s:0)* |6}
= Var(S-—f(0)]0)
= Var(S | 0)
2
O'R.

Then A(f) = f'(0)/c% and by (1) we have

6 rr
Lg(0) = exp{/ fg)(sobsf(t))dt}

g

L exp (_ (f(6) - Sobs)2> 7

OR 2012%

which is the kernel of the normal distribution centered at s.ps with variance o%. O

Expression (2) suggests that Lg(f) is a normal density when working in the f(6)
parametrization, and thus if one is able to make a change-of-variable from f(6) to 0, it
could be employed as a proposal for MCMC-ABC algorithms, leading to a broad class
of ABC methods denoted ABC,; algorithms.

Note that the constant variance assumption, Var(,g)(S | 0) = 0%, leads to a
closed-form proposal distribution, a normal density. However, as this assumption may
be restrictive, we extend the idea of constructing proposal distributions based on Lg(),
but assuming a non constant variance, o%(6), which can be estimated as well as f(6)
(see Subsection 3.1). The theory of QL assures that also for non constant o%(6) there
exists a corresponding Lq(#) whose form is intractable and for this reason it cannot
be used directly as a proposal density. Instead, our proposal distribution for a Random
Walk Metropolis Hastings (RWMH) is based on a distribution of the form of Lg(f) in
(2) where 0% () is non constant:

— f(et=1)
20100 o (LOTED) o). ®)

Finally, this way of constructing proposals could also be extended to other types of
distributions with heavy tails, such as the ¢-Student distribution.

On the other hand, ABC Importance Sampling (ABC-IS) can be implemented using
q(0) = Lg(0)|f'(0)| as the importance function from which it is possible to simulate.
Assuming og(f) = og, it would be enough to simulate a sample z from a standard
normal and then calculate f~1(20 g+ 80ps) to have a draw of 6. The ABC-IS is completed
by the evaluation of the importance weights by means of ¢(#). Also ABC-SMC can be
used starting with a sample from ¢() and using steps S1-S3 from Toni et al. (2009).
The computational requirements are almost the same as for the ABC-IS. In fact, for
ABC-SMC it is necessary to calculate importance weights to be updated in the MC
sequence.
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Algorithm 2 The ABCy; for p=1

Require: f, f/(6), 0%(6), or their estimates (f, ]/"\’(9), 5%(0)).
1: Set e >0 and 00 = f~(s04);
2: fort=1to T do
3: generate

Fr N(FOUY), ok (017);
set 0 = {0: fH(f*) =0}
generate s ~ mw(s(y) | 0%);
calculate p = p(Sops, 5);
calculate the derivative, f/(0), of f(6), at =1 and 6*;
with probability

S L

: m(6*)g? (0" | 6%)
InlIl{L W(H(t—l))qQ(H* \O(t—l)) p<e

accept 6* and set () = 0*, otherwise ) = g(t—1)
9: end for
10: return 6 ... 9T

3.1 Estimation of f(0), f'(0) and o%(0)

The function f() can be elicited, suggested by the model in Mengersen et al. (2013);
Ratmann et al. (2007) or by theoretical arguments as in Heggland and Frigessi (2004).
For instance, in the genetic model analyzed in Mengersen et al. (2013), where the
constraint of the empirical likelihood plays the same role as U(sups;6), f(6) is built
upon the score function of the pairwise likelihood corresponding to the model. However,
except in few specific situations, f(6), f'(f) and 0%(0) are generally unknown, and we
replace them in Algorithm 2 by estimates that can be obtained in a pilot-run simulation
as stated in Algorithm 3. In the sequel, when referring to the ABC,; algorithms, our
intention is always that f(6), f'(6) and 0%(6) are unknown and replaced by an estimator
with the sole purpose of providing the input as a proposal density for Algorithm 2
(or Algorithm 5). If f(0), f() and 0%(0) were known, the computational effort for
the ABC,; algorithm would be reduced. In any case, the proof of the convergence of
Algorithm 2 (or Algorithm 5) is discussed in the previous Section 2.

The functions f(&) or 5%(f) can be any estimator which provides smoothing re-
gression functions, and f(@) is at least once differentiable. This implies that the main
assumption for f(#) is to be monotone and once differentiable. We find it useful to use
smoothing splines, for which the derivative, ]?'(49), can be obtained analytically from
splines coefficients. Other choices are possible and left to the convenience of the analyst

M
that inspects the scatter diagram of points {§m,9m} and provides a goodness-of-
1

fit argument that justifies the choice. The inverse f_l( f*), at some point f*, can be

~

obtained either analytically, with the bisection method on f(8) = f* or by numerical
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Algorithm 3 Estimation of f(6), f/(6) and 0%(6) for p =1

Require: M, ©
1: consider M values 6 = (0~1, ..., 0xr) taken in a regular spaced grid of a suitable large
subset © C ©;
2: generate § = (81,...,8y) where 5, ~ 7(s(y) | Om);
3: regress § on 6 obtaining f(@) and f’(@);

~ 2 ~
4: regress {log (f(@m) — §m) } on 0 obtaining 5%(6).

m=1,....M

5: return f(6), f’(&) and 5%(6).

minimization of (f(6) — f*)2, e.g., by a Newton-Raphson algorithm.

Some observations are appropriate.

i)

i)

i)

i)

Since we are able to simulate from 7(y | 0), then f(&) and 5% () can be practically
estimated with a precision that depends on the available computational resources.
Also more precision can be achieved by making the regular grid © wider or by
increasing the number of simulations, M. Values of M ranging from 100 to 1000
are enough in the examples discussed later for p = 1, while larger values are needed
for p > 1, due to the curse of dimensionality as the computational effort increases
exponentially with p.

The range of © should always be large enough to include the observed sops in
order to gain precision around the bulk of the target posterior 7¢(0 | Sops)-

The monotonicity assumption is a necessary condition for ABC as it states that
there exists a relation between s and 0 through f, see e.g., Ratmann et al. (2007).
The lack of monotonicity is not a fault of the proposed method, but instead it
is an indication of the fact that s is not informative for 6 in some subset of the
parameter space. This would be automatically recognized by the proposal as it
would be essentially flat in such a region due to a small Jacobian.

The function Lg(6) can also be useful to fix €, because under the assumption
that 7 (8 | y) is Ly () dominated and that L (6) was its approximation, then it
would be enough to simulate  from Lg(#) and s from S(y)|f obtaining thus the
distribution for p(s.s, s) and fixing € as its suitable quantile.

The computational cost for approximating 7wy (0 | y) with the proposed approach
should include that for estimating f(ﬁ), approximating the inverse f‘l( f*) and
its Jacobian f', where the latter is mainly important for p > 1, as for p = 1
the derivative is obtained analytically. Such costs in the implemented examples
are actually reduced by another interpolation of the inverse and Jacobian with
splines, or its corresponding equivalent Generalized Additive Model (GAM) for
p > 1 (see the next section). This interpolation speeds up the MCMC because
at each step we do not need to calculate its inverse and Jacobian, but just its
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interpolation. Finally, because the most important cost is model simulations rather
than regression estimation, we note that, in the analyzed examples, the number
of simulated statistics M is no larger than 10% of the number of MCMC steps T
Such computational effort is enough to achieve the desired precision in formulating
a proposal distribution.

4 The ABC, forp >1

Suppose p > 1 and let sy,ps be the vector of the p observed statistics. In this case the
theory for Lo(@) is not well developed for finite samples; however, when p > 1, Lq(0)
exists if and only if the matrix M(0) is symmetric. In the multi parameter case, we
use the regular asymptotic argument for the likelihood (see e.g., Pace and Salvan, 1997,
Ch. 4). That is, for n — oo, the Taylor expansion of the QL around its mode leads to
the following multivariate normal QL:

1

Lo(®) = 3t oxp (= 5(7(6) ~ 50 S (F6) 500 ).

where f(6) = E(S | 0) is a bounded monotone, and possibly non-linear regression
function and Xg is the conditional covariance matrix of S | 6. Following the same
approach as for p = 1, we use Lg(0) as a proposal distribution to be used in a MH
scheme (see Algorithm 5) also considering a non constant covariance matrix (), that
is

¢?(016"7) = N, (61, 2R(0“")) | 1(6) |, (4)

where Np(-,-) denotes the p-variate normal distribution with mean f (0“~) and vari-
ance-covariance matrix (0% V), and J() is the Jacobian of the transformation

/() =E(S0).

In the multi-parameter case we have a system of non-linear equations f(8) = s
whose solution is @ = f~1(s). Such a solution and the calculation of the determinant of
the Jacobian, |J(0)|, can be obtained using numerical methods for solving a non-linear
system of equations and approximating the derivative of f(6) at 0. In the case of non
constant covariance matrix, we use the proposal distribution with covariance

0%,(0) 0 0

0 0 0%,(0)

where 0%, (0),...,0%,(0) are the conditional variance functions for each component, of
s with respect to all p components of 8. Note that in this case we are forced to use a
diagonal covariance matrix in order to guarantee that X (0) is positive definite. The
correlation between the p parameters is then accounted for in the MCMC sampling.
Algorithm 4 illustrates how to obtain estimates of f(0) and Xz(0) along with the

~

calculation of the Jacobian corresponding to f(6) for p > 1.
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Algorithm 4 Estimation of f(6), J(0) and X g(0) for p > 1

1: Consider the set of m = 1,..., MP points 0,, = (élm, ...,0pm), each of p scalar
coordinates over a regular lattice of ©1 x ... X ©, and let 6 be the M? x p matrix
of all points; ~

2: Generate S, ~ 7(S(y) | 60.,) and let § be the MP? x p matrix of all simulated
statistics; N

3: for all j = 1,...,p do Regress column j of §, 5;, on 6, obtaining f;(0) and

regression residuals e;. Calculate .J() using Richardson’s extrapolation (using R
package numDeriv).

: end for

Let e = (e, ...,€ep) be the MP x p matrix of regression residuals,

if ¥z(0) = X i constant then

calculate ’2\33 =M leTe;

: end if

: if ¥ g(0) is non constant then

10:  regress log(e7) on 6., to have 0%;(8) for j =1,...,p and obtain Sr(6).

11: end if R R . R

12: return f(0) = (f1(601),..., [(0p)), J(0) and X(0).

Once we have estimated f(6) and X with f(8) and S g, respectively, we can cal-
culate the proposal ¢2(-) in (4) and apply Algorithm 5. This is just Algorithm 2 in its
multivariate version, where the distance function p : IR”? — IR* must consider the joint
distance of all p coordinates of s with respect to sops. Also here Lg(0) can be used to
fix € in two ways. The first solution, which is the one adopted in this paper, consists of
considering a common ¢ for all p dimensions by characterizing the stochastic norm of
|ls —sobs|| and its quantiles. The second solution would be to consider different tolerance
parameters, one for each of the p dimensions, by deriving the p marginals from the joint
proposal and then, at each iteration ¢, updating each one of the p parameters separately.

Finally, in order to speed up the MCMC algorithm, especially for large p, it is worth
noting that once f(@) is estimated, its inverse and the Jacobian J(8) can be further
interpolated by means of their respective values calculated on the points of 8 used for
the pilot-run. With such interpolation, the inverse and Jacobians are calculated only
on the points of the grid (M? in total), which is much less computationally demanding
than a calculation for all MCMC steps.

Many of the remarks outlined in 7)-v) hold in the multivariate case as well. In order
to guarantee enough flexibility, and because we are mainly interested in predicting s,
we consider f(6) and 6%,(0),... ,6]2%1)(0)7 to belong to the class of generalized additive
regression models (Stone, 1985) in which each component of € enters into the linear
predictor by means of a smoothing spline as discussed, for instance, in Section 12.2 of
Faraway (2006). The Jacobian of the non linear system, J(6) which relates p summary
statistics to the p parameters, is calculated using Richardson’s extrapolation (imple-
mented in the R package numDeriv). Finally, the inverse of the non linear system of
equations at some point s is obtained by Newton steps as detailed in Dennis and Schn-
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Algorithm 5 The ABC,; forp > 1

Require: f, J(f) and X g(0), or their estimates (]?, J(0) and Sr(0)).
1: Set € >0, 6y = fﬁl(sobs);
2: fort=1to T do
3: generate

F*~N, (f(e(t—l))7ZR(0(t—1))) ,

4 set0°={0:f1(f*) =0},
5: generate s ~ 7(s(y) | 0%);
6: calculate p = p(Sops, S);
7: calculate the determinant of the Jacobian matrices J(8*~) and J(8%);
8: with probability
mind 1, 020V 60
7_[_(0(1571))qQ(0>|< ‘ G(tfl)) P
accept 0" and set 8 = 6*, otherwise 69 = (—1)
9: end for
10: return 0(1), . ,O(T)

abel (1996) (implemented in the R package nleqslv).

We acknowledge that the approach proposed here limits the number of observed
statistics to be equal to the number of unknown parameters. This is in line with the
general recommendation to keep the number of statistics, i.e. the number of estimating
functions, equal to the number of parameters, as also discussed in Mengersen et al.
(2013) and Ruli et al. (2013).

5 Examples

In this section we illustrate the proposed approach with four examples. The first is a
coalescent model (Tavaré et al., 1997) with a scalar parameter of interest. The second
example is a gamma model with two unknown parameters, and the third is the g-and-k
distribution (see, e.g., McVinish, 2012) with four unknown parameters. The last example
is an application to a real dataset concerning GWAS, with three unknown parameters.
In the first example we apply Algorithms 2 and 3, whereas for the other examples we
apply Algorithms 4 and 5.

The coalescent model and four-parameter g-and-k distribution are considered as
benchmark examples. The example of the gamma model is useful in order to validate
the procedure against a known Ly (0). Finally, the example of GWAS is relevant for
analyzing population genetic isolates for which the genealogy tree is known. Although
these kinds of data are rare, they are exceedingly more powerful for detecting genes
related to some phenotypes than the usual and more costly GWAS applied to larger



422 Quasi-ABC

samples of open populations. In all the examples we have used RW-ABC-MCMC, al-
though in Examples 1 to 3 we have used also the independent MH ABC algorithm,
obtaining similar results. This is because the proposal distribution, constructed under
the framework of QL functions, is located around the bulk of the posterior distribution,
7€(0 | sobs). Finally, the use of proper priors, in some examples, has the sole purpose
of allowing comparison with existing methods. All examples, except the GWAS, have
been implemented assuming that 5%(0) and Y z(0) are non constant. In the sequel
ABCy; denotes the types of algorithms where the proposal for the MCMC has been
approximated as explained above.

5.1 Coalescent model

In the following we consider an example from population genetics, namely the coalescent
model analyzed in Tavaré et al. (1997) and Blum and Francois (2010), among others.
Given a set of n DNA sequences, the aim is to estimate the effective mutation rate,
6" > 0, under the infinitely-many-sites model. In this model, mutations occur at rate
0" at DNA sites that have not been hit by mutation before. If a site is affected by a
mutation, then it is said to be segregating in the sample. In this example, the summary
statistic s’ = y is the number of segregating sites. The generating mechanism for s’ is
the following:

1 Generate T),, the length of the genealogical tree of the n sequences, where T,, =
Z?:z JW;, where W; are independent Exponential random variables with mean

2/4(j — 1) such that T,, has mean urp, =2 Z?;ll 1/j and variance
1.,
U%ﬂ = 42?:1 1/5%;

2 Generate (S" | 0',T,,) ~ Poisson(6'T, /2).

Hence, the likelihood Ly (6’) is given by the marginal density of (S’ | 6') with respect
to Ty, which has a closed form only for n = 2 as To ~ Eap(1/2). For large n, we
approximate the inner integral in T}, by simulating 10° W; for j = 1,...,n and then
obtaining the marginal density of (S’ | §’) by averaging over these 10° simulated values
of T,,. This parametric approximation is denoted by mq, (0" | s/,,) and relies on the
partial knowledge of the likelihood as the marginal density is obtained using the Poisson
likelihood.

In order to employ ABC,;, we consider 6§ = log(#') and s = log(s’ + 1) instead of
6" and s, respectively. As an example, we consider n = 100 and an observed value of
Sobs = 2, which is a value likely to be obtained under # = 0 (and hence 6’ = 1). Figure
1 reports the result of the pilot-run study (top-left) with M = 1000 with 7, 5%(0)
(top-right), the calculated Jacobian with the splines coefficients (bottom-left) and the
approximated posterior (bottom-right) with e being the 10% quantile of the distribution
of p(s, seps) simulated from S|6, where 6 ~ Lg(6).

From Figure 1 we can see that the chosen summary statistic is not informative for
small values of 6 because observing no segregating sites with n = 100 samples may
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Figure 1: Example: coalescent model. (Top-left) Realizations of s for the pilot-run study
along with the estimated f and s, = 2 (green). (Top-right) The estimated conditional
variance of 5|0, 5%(6). (Bottom-left) The Jacobian of f(6) in the grid of the pilot-run.
(Bottom-right) The approximated posterior m(0|syps) with 95% credible interval and
posterior mean (green).

occur for almost every mutation rate lower than e~°. This is, of course, not a fault of
the method, but of the chosen summary statistic and it may also occur in the standard
original ABC approaches. Moreover, this is reflected by the proposed method as the
estimated Jacobian is near 0 for values of § < e~°. It can also be seen that for larger
values, the approximated Jacobian is nearly constant, suggesting that there exists a
linear relation between s and 6.

For m(0) = Exp(1) and n = 100 we calculated, for each dataset simulated at different
values of 6 € (2,3,...,10), the relative difference of quantiles of each posterior with
respect to those obtained with the parametric approximation, as in Blum and Francois
(2010). The relative difference is defined as (Q, — Qg) / Qg where @, and Qg are the p-th
quantiles of the ABC posterior and that of the parametric approximation, respectively.
Figure 2 shows the relative differences. We can clearly see that these differences are
more robust with respect to 6 for the ABCgy; rather than for the ABC, and this is due
to the impact of the prior in the standard ABC algorithm. In fact, for & — oo the
discrepancy between prior and posterior becomes important.

5.2 Gamma model with unknown shape and scale parameters

Let y ~ Gamma(6;,02) with mean exp(#; —f5) and variance exp (6, —26;), where 6; and
1/605 are the log of shape and scale, respectively. We have p =2,0 € © = O x Oy = R?
and consider the following two statistics s = (s1, s2), where s; and s9 are the logarithms
of the sample mean and the standard deviation, respectively. For 8 = (0, 0) we consider a
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Figure 2: Example: coalescent model. Comparison of ABC and ABC, with the para-
metric approximation in terms of relative differences between quantiles of the parametric
approximation and those of ABC and ABCy;.

sample of size n = 10 with s,ps = (—0.12, —0.26) and estimate the posterior distribution
under two independent standard normal priors, 7(0) = m(61) x7(62) = N(0,1)xN(0,1).

We consider the estimation of f(0) with M = 100, p = 2 over a regular lattice of
M? = 10* points in (—2,2) x (—2,2) € ©; x Os.

Figure 3 shows the conditional regression functions of each statistic against the
parameters, which appear quite linear. Figure 4 illustrates the log of squared residuals
and the estimation of the conditional variances 6%, (0) and 6%,(8) with respect to 6.
Figures 5 and 6 illustrate the MCMC output. From the former we can deduce that the
chain mixes well, and that marginal posteriors 7€(0; | Sops) and 7€ (63 | sops) are centered
around the true values. From the latter, we see that the bivariate density 7¢(0 | Sops)
obtained by the ABCy;, and the true underlying posterior 7 (0 | y) are similar in terms
of contour levels.

We notice that the output of the MCMC in Figure 6 is similar to that obtained
using Y. constant (not reported here). This is presumably because, in this example,
the use of logarithms on the scale of the summary statistics stabilizes their conditional
variance with respect to 8. Another reason is because the chain moves in a radius of
Sobs < € where the variance functions 6%, (0), 6%,(6) are almost constant and do not
differ significantly from the estimated diagonal of ¥ when it is assumed constant.

5.3 Four-parameter g-and-k distribution

Distributions based on quantiles are of great interest because of their flexibility. However,
although a stochastic representation is available, their density and hence the likelihood
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Figure 3: Example: gamma model. Conditional regression functions of each statistic
against the two parameters. The green point is the observed value.

6%, (0), log(e?)

-25-20-15-10 -5 0 5

5%5(0), log(ed)

-15-10 5 0 5
o

Figure 4: Example: gamma model. Conditional variance functions of each statistic
against the two parameters.

Ly (0) are not available in closed form and, in general, they are difficult to evaluate.

We focus on the four-parameter (p = 4), g-and-k distribution, which has the follow-
ing stochastic representation

z ~ N(0,1)

1 — exp(—b32) oy exp (04)—1/2
01,05,05,60 = 0 0 1+408———= | (1 .
(y | 2,01,02,03,04) 1+ exp ( 2)( + 1+ exp(—0s2) ( JFZ)
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Figure 5: Example: gamma model. Marginal output of Algorithm 5, for #; and 6, along
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dotted lines are the true values of #; and 05 that are used to generate sgps.
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Figure 6: Example: gamma model. Contours for m€(0 | syps) (dashed) along with wn (0 |
y) (continuous). The posterior modes of #; and 05 are represented by the cross point of
the dashed lines, where the true value is 8 = (0, 0).
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Figure 7: Example: g-and-k distribution. Conditional distribution of s;|6;, for i =
1,...,4. Each boxplot represents the marginal distribution of the statistic at the speci-
fied value of 6; in the horizontal axis.

The unknown parameters 61, exp (62),603 and exp (4) — 1/2 represent location, scale,
skewness and kurtosis, respectively (Haynes et al., 1997).

Such distributions have also been used for testing several ABC approaches as in
Marjoram et al. (2003); McVinish (2012).

We consider the following four statistics all based on empirical quantiles ¢ of y,:

Yo.75 + Y0.25 — 2Y0.5
Yo.75 — Yo.25

s = (yO.Sa log(vo.75 — Yo.25), ,log (yo0.975 — yo.025)) e RY,

with the following meaning: s; is the median, s is the log of the interquartile range and
s3 is the skewness index described in Bowley (1937), a special case of the Hinkley (1975)
index. Finally s, is the log transformation of the kurtosis index described in Crow and
Siddiqui (1967).

From the pilot-run simulation shown in Figure 7, it is possible to notice that the
relationship between statistics and parameters is not linear. In this example, we con-
sider a sample simulated under the scenario discussed in Fearnhead and Prangle (2012)
in which n = 10* observations are generated with § = (3,0,2, —log(2)) and the uni-
form prior on [0,10] x [—1log(10),log(10)] x [0, 10] x [—log(10),log(10)] is considered.
Figure 8 reports the conditional distributions of the logarithm of squared residuals, in-
dicating that the variance may be non constant. Therefore, for this model, we estimated
with GAMSs the conditional variance functions 612?4-(0), for j =1,...,4 as explained in
Algorithm 4.

Figure 9 shows the output of the ABCy with the RW-ABC-MCMC algorithm for
the four marginal posterior densities, for a given sample. We can see that the marginal
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Figure 8: Example: g-and-k distribution. Logarithms of squared residuals in the pilot-
run. Each boxplot is the conditional distribution of log(e?)wj, j=1,2,3,4. Such values
indicate that X z(0) is not constant with respect to 8.

posterior distributions include, in their high posterior density interval, the true value of
6 and the chains have good mixing.

Finally, the performance of the proposed method is assessed by a simulation study of
50 simulated datasets. As in Fearnhead and Prangle (2012), the 50 datasets are simu-
lated from 50 different parameter values sampled from the prior. The expected quadratic
errors for each marginal ABC,; posterior are reported in Figure 10, where also the Mean
Squared Error (MSE) of the Semi-Automatic ABC, taken from Fearnhead and Prangle
(2012), is shown for comparison of the order of magnitudes.

From Figure 10, we can see that the expected quadratic error under ABCy is
compatible with that reported for the Semi-Automatic ABC. Notice that our method
uses a set of four observable summary statistics that differ from those ones used in
Fearnhead and Prangle (2012).

5.4 GWAS for isolated populations with known genealogy

In this application, we address the problem of estimating DNA markers related to
a certain phenotype such as, for instance, the presence of a certain disease. In this
problem genotype is represented by a large set of DNA sequences known as Single-
Nucleotide Polymorphisms or SNPs in the sequel. Such SNPs are usually observed in
millions per individuals and thus fast and reliable statistical methods are needed in order
to answer the scientific question as to which SNPs are mainly related to the disease.
A dataset for a case/control study is usually collected on an open population where the
degree of inbreeding, that is the mating of pairs who are closely related genetically, is
unknown as it is usually negligible in open populations. Nonetheless, there exists certain
evidence in the genetic literature that very valuable indications regarding SNPs/Disease
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Figure 10: Example: g-and-k distribution. The marginal distributions of the Log of
MSE for each of the four parameters, in 50 replications of the considered simulation
scenario, along with the Log of MSE of the Semi-Automatic ABC procedure reported
in Fearnhead and Prangle (2012) (stars).

relationships may come from the study of isolate genetics, i.e. human samples for which
inbreeding is also relevant and known. Such types of collected samples are very rare
because there are very few genetic isolates in the world, and so the statistical methods
to analyze them are not very well developed. One example of a genetic isolate for which
data are also available is the Sardinian genetic isolate of the Ogliastra region, which is
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situated in the center of the island of Sardinia (Cabras et al., 2011).

An example of such data may come from Figure 11 in which we have a population
composed of 4 families, 18 individuals and 2 SNPs labeled as SNP1 and SNP2. From
Figure 11 we have that ancestors have not been observed because have died (white);
while offsprings are labelled as healthy (green) or affected (red) along with their SNP
configurations.

Data in Figure 11 may be formally represented as follows: for individual i let
Y; € {0, 1} represent the indicator of the phenotype, i.e. ¥; = 1 if affected and ¥; = 0
otherwise; assume X; € {{aA, Aa}, aa, AA} represents the genotype, e.g. the SNP con-
figuration with three levels. For a genealogy composed of N individuals we have to model
the corresponding pairs (Y7, X1), ..., (Y, Xn), where only n < N have been observed.
At the phenotype level we assume the usual logit model (Y;|X;, 8) ~ Bernoulli(p;), with
p; being the probability that individual 7 is affected.

If one considers the data in Figure 11 as n = 10 independent observations and
estimates, for instance, a logistic regression model of Y against X, or just considers the
Fisher exact test among Y and X, one would end up finding no association. In particular,
the Fisher exact test between Y and the first SNP has a p-value of 0.21 while with SNP2
it is exactly 1. While the latter p-value is reasonable as there is apparently no association
between SNP2 and Y, the former is not, because all aa individuals are affected and all
AA individuals are healthy and therefore there should be certain evidence of association
between the first SNP and affection status. The shortcoming of this analysis is that it
treats all individuals as independent and identically distributed, while it is clear that
they are not.

On the other hand, the situation of highly dependent observations complicates the
statistical model. In fact, the probabilistic model for the sample must take into ac-
count the genealogy that underlies the genetic variant transmission and also the model
which relates the phenotype to the genotype. As the genotype is observed for the very
last generations only, the configurations of the SNPs for the previous generations then
constitute an enormous number of random latent variables. This makes it almost im-
possible to write the likelihood for the parameter relating the SNPs configuration with
the phenotype, that is, the coefficients of a logistic regression between Y and X.

In this application we illustrate the ABCy method for the data in Figure 11 and
we also consider a sample from the village of Talana (Ogliastra, Sardinia - Italy) that
is affected by a reduced Mean Cell Volume (i.e. a MCV<72) disease for which it is
known that there exists a genetic variant inside the Beta-Globin gene which determines
it. The data, provided by the Centro Nazionale Ricerche of Italy, consists of N =
1997 individuals, all in one tree, originating from two common ancestors. Only n = 49
individuals of the later generations are observed, among whom only 5 are affected.
Moreover, the proportion of affected, similar to the prevalence of the disease, is around
13%. There are 91 SNPs with three levels and we know that only one is inside the
Beta-Globin gene.

In this analysis, we treat each SNP separately and set up a stochastic model for
a single SNP. The overall analysis for all SNPs is made by the sequence of separated
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Figure 11: Example of a genealogy tree with 4 families, 18 individuals and 2 SNPs
(SNP1,SNP2). Ancestors have not been observed (white); while the offspring are labelled
as healthy (green) or affected (red).

analyses over all SNPs. In the linear predictor of the logistic regression, we consider as
covariates the genotype for individual i:

logit(p;) = 011x,—1aa,4a} + 02l x,—aa} + 03lx,— a4}

The vector of coefficients @ are usually interpreted as the log of the odds ratio for
the probabilities of being affected given a SNP configuration. In order to account for
the fact that the sample (y1,21),..., (Yn,Zn) is not i.i.d. we include the transmission
model for the genetic variants. Specifically, let X;, and X;, be the SNP configuration
for the ancestors of individual ¢. Then the probabilistic model for the transmission of a
genotype variant is assumed to be regulated by the usual Mendelian inheritance model
of transmission, where the ancestor individuals are assumed to be known, according
to the genealogical tree. This law is also known as the law of independent assortment,
segregation or dominance, see for instance Levitan (1988). Therefore, if individual ¢ is
a descendent in the tree

(X:|Xiy, Xiy) ~ Mendel’s law,

while if ¢ is a founder or her/his ancestors are not in the tree, then we assume the
following prior distribution for configuration of ancestors:

X; ~ Trinomial(1/3,1/3,1/3).

The summary statistics, calculated only for the n observations, are the observed
log-odds of the proportion of affected among all individuals that have a certain config-
uration. Specifically, let #{w} count the number of occurrences of type w,

(L #Y =X =k
Sk = 10g 2+#{X:k} )
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Figure 12: Pilot-run for the genealogy tree in Figure 11 with M = 303 points. Each
boxplot is the conditional distribution of s |0y, k = 1,2, 3.

where k = 1,2, 3 corresponds to X = aa, X = {aA, Aa} and X = AA, respectively. Note
that we add one individual in the numerator and two in the denominator in order to
guarantee that s1, so and s3 are always defined. This, of course, constitutes a limitation
for very small samples from which, however, it would be difficult to estimate very strong
signals for a SNP that is a risk or protection factor.

In order to run ABCy;, we performed a pilot-run simulation with M = 30% points on
a regular grid of log odds ratios between -10 and 10. This pilot-run study depends only
on the genealogy tree and not on the observed genotypes or phenotypes. In the case of
GWAS analysis, this provides a saving in computational efforts, as in general there are
many genes to be analysed.

The results for the pilot-run study are summarized in Figure 12 where we can see that
the chosen statistics are quite informative around the null hypothesis of no association.
For very large signals, e.g. |0;| > 3, the summary statistics are very weakly informative.
This is not the fault of the summary statistics, but it is due to the small observed
sample, as is typical in genetic isolates.

Figure 13 illustrates the conditional distributions of the logarithm of squared resid-
uals with respect to 01, 8 and 03, which could be used to estimate the variance function
Y r(0). However, in this case we find it reasonable to assume that Y (@) is constant
and we estimate it with S as explained in Algorithm 4.

We complete the algorithm by using the Euclidean distance p(s, Sops), between s and
its observed value s,ps further weighted by a term that takes into account the simulated
configurations for the SNP. This term makes the distance tend to 0 when there are
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Figure 13: Logarithms of squared residuals in the pilot-run for the genealogy tree in

Figure 11. Each boxplot is the conditional distribution of log(e?)|0x, k = 1,2,3. Such
values indicate that X z(8) is constant with respect to 6.

many matches between simulated and observed configurations,

#{xobs = xsim} )

n

1-—

The tolerance parameter € has been fixed in order to obtain an acceptance probability
in the RW-ABC-MCMC algorithm around 30%. The output of the chain for data in
Figure 11 is represented in Figure 14.

From Figure 14 we can see that SNP1, which has the largest signal, exhibits val-
ues of 6 with the largest posterior mean and the largest uncertainty. Moreover, the
approximated marginal posteriors for #; and 65 for SNP1 are very skewed. For SNP2
where there is no signal, posterior distributions are centered around 0. These results
are also reflected by the logarithm of the Bayes Factors (BFs) for (6 > 0| sops) against
(0 < 0] Sops), Pr(6 > 0| spps)/ Pr(0 < 0] spps) which is defined as long as the posterior
of 0 | seps exists. In fact, there is substantial evidence for the configurations of SNP1 to
be risk or protective factors, but not for SNP2.

We repeated the above analysis for the Talana data and found that the SNP inside
the Beta-Globin (rs11036238) is among the first three SNPs, out of 91, with the highest
posterior mean (in absolute value) as shown in Figure 15. Those SNPs also have the
largest Bayes Factors. However, the greater uncertainty for the first three SNPs in
Figure 15 is due to the fact that with only n = 49 observed individuals we cannot be
very precise in estimating very large signals as discussed above.
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Figure 14: Output of the analysis for data in Figure 11. Chain output for RW-ABC-
MCMC for the two SNPs (a,b) and corresponding density estimation (c) with posterior
means represented by dots. Logarithm of Bayes Factor for (0 > 0 | sups) against (6 <
0 | sops) along with the reference lines at +1.6 (d).
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Figure 15: For data from the village of Talana we report, for 40 different SNPs, 95%
credible intervals for those fs with the largest posterior mean (in absolute) value (dot).
The posterior is approximated with the RW-ABC-MCMC.

6 Conclusions

Recently, the idea of using simulation from the model to approximate the distribution
of summary statistics seems to be proliferating in the ABC literature (see, e.g. Prangle
et al. (2013b); Wood (2010); Ratmann et al. (2014)). In this paper we also used this type
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of approach. In particular, we simulate from the model varying the parameters in a grid
to approximate the distribution of summary statistics as a function of the parameters
in order to build a suitable proposal for ABC-MCMC. Such a proposal distribution can
be implemented in a RW fashion or can be used as an independence kernel, although
we focused mainly on RW type MCMC algorithms.

In scalar parameter problems with conditional constant variance of summary statis-
tics with respect to the parameters, we showed by using the definition of quasi-likelihood
(McCullagh, 1991) that this proposal is a normal kernel in the auxiliary space, f(0).
In multiparameter problems or when the variance of the regression function cannot be
assumed to be constant, the theory of quasi-likelihoods only suggests a form for the
proposal. In fact, analogously to the scalar parameter case with constant variance, we
propose using a multivariate normal kernel in the auxiliary space.

A key point for the success of our method is that the summary statistics must vary
when changing the parameter values. Moreover, there must be a one-to-one relation
between them and again, the choice of s is critical, as an ancillary statistic is useless for
gathering information about 6. Such a non ancillarity assumption is usually required
over the whole parameter space © and it may happen that there could be parts of the
parameter space where s is locally ancillary. This happens, for instance, in the coalescent
model for low mutation rates and also in the application to GWAS. Such ancillarity,
however, is properly accounted for in the discussed proposal density for ABC-MCMC.
Another problem with our approach may lie in the asymptotic argument for p > 1 which
may not hold in some applications when Lg(8) is irregular.

The proposed ABCy; seems to perform quite well in the above examples compared to
other available methods; it is straightforward to apply and its implementation does not
require more than just basic notions of regression analysis. We discussed two possible
ABC-MCMC algorithms, the RW-MH with or without constant regression variance.
Although we focus mainly on the non constant variance assumption, we found that
the original independent MH with constant regression variance leads to satisfactory
results for the discussed examples. This is because we are only implementing a proposal
distribution for the ABC-MCMC and also because the estimation theory of QL functions
allows for a good approximation of Ly (6) which is reflected in the proposal.

Furthermore, when simulation from 7 (y | €) is costly another alternative to ABC
could be using the Ly (0) as a surrogate of Ly (0) as in Cabras et al. (2014). For other
surrogate pseudo-likelihoods used in the ABC context, see also Mengersen et al. (2013);
Pauli et al. (2011) among others.
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