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ABSTRACT

Self-testing and semi-device independent protocols are becoming the preferred choice for quantum technologies, being able to certify their
quantum nature with few assumptions and simple experimental implementations. In particular, for quantum random number generators,
the possibility of monitoring, in real time, the entropy of the source only by measuring the input/output statistics is a characteristic that no
other classical system could provide. The cost of this possibility is not necessarily increased complexity and reduced performance. Indeed,
here we show that with a simple optical setup consisting of commercially available components, a high bit generation rate can be achieved.
We manage to certify 145.5MHz of quantum random bit generation rate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011479

Quantum random number generators have been a developing
topic in the past two decades. The interest of these devices resides in
the fact that the randomness of the output string can be proven thanks
to the intrinsic nature of quantum mechanics and does not need a
stochastic model in order to evaluate the amount of entropy the exper-
iment can produce.

However, while there exist many examples of quantum random
number generators (QRNGs) that exploit many different quantum phe-
nomena,1–6 the challenge resides into proving that the randomness pro-
duced has, actually, a quantum origin. To do so, the device must be
completely characterized in order to separate all possible sources of clas-
sical noise that could be foreseen by a malicious party. This first class of
QRNGs is often referred to as device dependent (DD) QRNGs since
their behavior is strongly related to the characterization of the device.

A different approach is instead given by the device independent
(DI) approach.7–9 In this case, it is possible to certify the randomness
of the output in the most paranoid scenario in which the device itself
is built by an adversary. While this approach is interesting and gives
the highest level of security for a QRNG device, it has itself some draw-
backs. First of all, the experiment relies still on some assumptions that
must be verified, such as the space-like separation of the two measure-
ment sites, but the greatest roadblock toward applications is the com-
plexity of the devices and their low throughput rate, which is orders of
magnitude lower than for standard DD-QRNGs.

For this reason, recently another approach has been investigated,
the semi-device independent or self-testing QRNG.10–22 The idea is,
with few assumptions on the device, to implement a QRNG as simple
as the existing commercial devices with a higher degree of security.
Different experiments based on either uncharacterized sources11,14,15

or uncharacterized measurement13,16 devices have been presented.
Finally, another approach combining a completely uncharacterized
measurement with a partially characterized source has been developed.
These protocols rely on assumptions on the dimension10,12 of the
produced quantum states, on their overlap,18 or on their energy.22

In this work, we develop a semi-device independent QRNG
featuring a simple and practical self-testing implementation with a
performance of hundreds of certified Mbits/s. The only simple and
easily verifiable assumption on the source is that the emitted states are
limited in energy. The measurement device, based on a homodyne
measurement, can remain completely uncharacterized. Note that a
similar approach based on a heterodyne measurement has been dem-
onstrated independently.23

As in a previous experiment,22 the security framework is based
on recent theoretical work.21,24 The device can be modeled as a pre-
pare and measure scenario. The source prepares one of two quantum
states in an optical signal depending on a binary input x and sends
them to a measurement device that outputs a binary value b. The pre-
pared state and the measurement may depend on a correlated random
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variable k. The probability of each output conditioned on the input
value can be then written as

pðbjxÞ ¼
X

k

pðkÞTr qk
xM

k
b

h i
; (1)

where qk
x is the quantum state prepared by the source and Mk

b is the
positive-operator valued measure (POVM) element corresponding to
the output b with x; b 2 f0; 1g. In order to certify the quantum ran-
domness in output b and separate it from classical noise represented by
the classical variable k, we make use of the analysis presented in Ref. 24.

Without any constraint on the prepared state and without
any additional assumptions, the measured input output probabilities
(correlated classically by an unknown classical hidden variable) could
be easily described by a deterministic model. In our case, the two states
can be arbitrarily chosen, but their energy must be limited. This
assumption is referred to as “average energy” assumption since the
quantity to be bounded is the following:X

k;x

pðkÞTr qk
xN

h i
� x; (2)

which represents the upper bound on the average energy (normalized
with respect to the lowest photon energy of the optical signal) trans-
mitted between the source and the measurement; in this formula, N
represents the photon number operator and x the bound chosen. The
normalized energy is in this way given by the average number of pho-
tons transmitted in each signal.

Van Himbeeck et al.21 showed that for a fixed value x, the set of
all possible quantum correlations is larger than the set of deterministic
correlations. Furthermore, in the following work,24 it was proven that
if an input/output distribution belongs to the former set but not to the
latter, then genuine randomness can be certified. In order to quantify
the entropy produced by the input/output statistics of the experiment,
the authors developed a semi-definite program (SDP) that returns a
lower bound on the conditional Shannon Entropy HðBjX;KÞ.
This bound can be used as witness to certify the amount of genuine
quantum randomness. This witness corresponds to a linear function
c½p� � f½x� that depends only on the input/output probabilities p and
the average energy bound x. The witness defined before can be then
used for a semi-device independent protocol where an entropy thresh-
old h is fixed beforehand, and the previously defined witness is tailored
over the expected behavior of the device. After running the experiment
n times, we check that the linear witness is greater than the threshold h,

c f½ � � f x½ � � h; (3)

where the witness is evaluated with the experimental input/output fre-
quencies fmeasured from the experiment input/output results.

If the measured data passes the test in Eq. (3), the randomness
contained by the output sequence is certified to be24

H�0

minðBjX;KÞ � n h� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log �=2ð Þ

n

r
� d

log �=2ð Þ
n

 !
; (4)

where H�0
minðBjX;KÞ is the worst-case conditional smooth min-

entropy and can be interpreted as the amount of bits that a strong
extractor can output from the raw bit sequence generated by the
experiment (see Refs. 22 and 24 for more details).

For the implementation, we use the Binary Phase Shift-Keying
(BPSK) scheme where the source prepares two coherent states with
the same average photon number and a p phase difference, i.e., jai
and j�ai. By choosing either state with probability 1/2, the average
energy bound x must be greater than jaj2. This choice is motivated by
the fact that implementing such a source is easy and can allow for high
repetition rates. Considering all possible measurement strategies, we
need to determine the one that can discriminate the two produced
state in the best way. Figure 1 shows the comparison of different strat-
egies. The best strategy is given by the min-error discrimination mea-
surement that allows to achieve the Helstrom limit. However, a perfect
homodyne measurement, in which the two states are distinguished
with respect to the sign of their quadrature, does not fall far behind,
not even when noise is taken into consideration. This gives a practical
solution even for the measurement itself.

This scheme is implemented as shown in Fig. 2. We generate the
two desired states of light by modulating a coherent state with a phase
modulator, and we implement a homodyne measurement in order to
project the states into the chosen quadrature. The setup is fiber-based
and is composed of a continuous-wave (CW) laser at a telecommuni-
cation wavelength (1550 nm), which injects light into a balanced
Mach–Zehnder interferometer (MZI). The input port of the MZI con-
sists of an optical system of polarization controller (PC) and fiber
polarization beam splitter (PBS) to adjust the power going into each
arm of the MZI. As it is shown in Fig. 2, the lower arm of the interfer-
ometer corresponds to the local oscillator of the homodyne measure-
ment and the upper MZI arm to the preparation stage of the
experiment. In this part, the states are modulated by the phase modu-
lator, which is controlled by a binary input sent by a Field
Programmable Gate Array (FPGA, Xilinx Virtex 6) at a repetition rate
of 1.25 Gbits/s. The input signal is generated by a pseudo-random
number generator with periodicity longer than the acquisition block
size. (This is to avoid possible correlations with the measurement.
True randomness is not needed since it is assumed that this sequence
is known by the adversary.24) With the laser being continuous, the
phase modulation window of 800 ps defines the input states. The states

FIG. 1. Extractable randomness per bit with respect to the average photon number
of the input state, using the BPSK encoding scheme. The continuous line (blue)
corresponds to a measurement strategy that reaches the Helstrom limit, the
dashed-dotted line (red) to a perfect homodyne detection scheme, and the dashed
line (yellow) to an homodyne detection with added white noise [pnoise¼ 0.39 see
Eq. (6)].
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are then attenuated to the energy value required by the energy
assumption taken in the protocol. A set of calibrated 50/50 beam split-
ter, linear photo-diode, and attenuator allows us to monitor, in real
time, the power after the attenuator. In order to find the upper bound
on the mean photon number of our signal (�l), the following formula
is used:

�l ¼ Pin � att � Dt
h�min

; (5)

where Pin is the power measured with the photo-diode, att is the cali-
brated attenuation, Dt is the modulation duration, h is the Planck con-
stant, and �min is the lower bound on the frequency of the laser. We
would like to stress that these three components (beam splitter, attenu-
ator, and linear detector) are the only part of the experiment that must
be trusted and characterized. Indeed, the main assumption of the
scheme can be defined as the energy of the states (mean photon num-
ber) going out of the preparation stage.

The prepared states are then recombined with the LO by a set of
two PBSs and PC (that serve the purpose of a variable beam splitter)
in order to balance the power transmitted to the balanced photo-diode
(Thorlabs PDB480C-AC). The analog signal coming from the homo-
dyne detector is discriminated between positive and negatives values,
which corresponds to the discrimination between positive and nega-
tive quadrature values. The binary output b, generated in this way, is
then collected by the FPGA. Electrical delay lines are used in order to
synchronize the input (x) and output (b). Moreover the discrimination
is triggered by a clock signal sent by the FPGA and controlled in such
a way that the discrimination window is optimized to obtain the best
discrimination. To stabilize the phase on the interferometer, a digital

optimization is set up over the correlation measured. A feedback signal
is sent to a piezo-electric cylinder over which 2 m of fiber is wrapped.
The stability of the interferometer is then achieved without the need of
an additional source of light. The passive stability of the setup could be
achieved by shortening the arms of the interferometer (currently of 6
m each) or by integrating the scheme in a photonic circuit.

Input and output are collected by the FPGA and forwarded to an
off-line computer that evaluates the conditional probabilities pðbjxÞ
and that calculates the extraction rate certified by the semi-device
independent protocol.

First, we measure the dependence of the maximum extractable
randomness with respect to the chosen energy bound (expressed in
the mean photon number of the prepared states). As shown in Fig. 3,
the amount of extractable randomness has a maximum around 10�3

to 10�2 photon per states. This value is the result of a trade-off
between a small enough energy in order to obtain a uniform probabil-
ity distribution but high enough energy in order to be able to distin-
guish between the two input values without being dominated by
electrical noise.

In order to estimate the amount of unwanted “classical” or not
trusted noise in the experiment, a simple model is used to approximate
the experimentally measured data points. The conditional probabilities
are modeled as follows:

pðbjxÞ ¼ ð1� pnoiseÞpidðbjxÞ þ pnoise
1
2
; (6)

where pidðbjxÞ corresponds to the ideal homodyne measurement with
no added noise and perfect state preparation given by the following
formulas:

pidðbjx ¼ bÞ ¼ 1
2

1þ erf
ffiffiffi
2
p
jaj

� �� �
;

pidðbjx 6¼ bÞ ¼ 1
2

1� erf
ffiffiffi
2
p
jaj

� �� �
:

(7)

This model corresponds to a system that works as expected in an ideal
way with probability ð1� pnoiseÞ, and with probability pnoise, it will

FIG. 2. The experimental setup corresponds to a CW laser at 1550 nm, which
injects light into a MZI. The input port is a PBS in order to modulate the amount of
energy going into each arm of the interferometer. The top arm, going into the pre-
pare stage, corresponds to the state preparation where the light is modulated by a
phase modulator and the average energy is measured by a system of BS, attenua-
tor, and linear detector. The bottom arm corresponds to the local oscillator of the
homodyne measurement, and the fiber is wrapped around a piezo in order to stabi-
lize the interferometer phase. The measurement is carried out with two balanced
linear detectors.

FIG. 3. Amount of entropy per bits per generated state vs the average mean pho-
ton number. The average energy bound is chosen equal to the mean photon num-
ber to obtain the maximum achievable entropy. The dots correspond to the
experimental measured values, and the dashed line corresponds to the theoretical
model used to simulate the device behavior.
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output a values completely uncorrelated with the input. This probabil-
ity represents all possible imperfection of the experiment, like state
preparation flaws, electrical noise in the detection scheme, etc. The
main source of noise is given by the electrical intrinsic Gaussian noise
of the homodyne detection scheme, which deteriorates the distinguish-
ability of states with a low mean photon number (this is the main rea-
son why in Fig. 1, the entropy decreases dramatically for mean photon
numbers close to zero). All these contributions add up to an estimated
value of pnoise¼ 0.39. However, the only purpose of this value for our
protocol is to be a figure of merit for the experiment since it never
appears as a parameter in the security proof. This illustrates the advan-
tage of the self-testing approach that with the sole analysis of the input
and output statistics plus few reasonable assumptions, it is possible to
certify the amount of entropy generated without the complete charac-
terization of the device. In a completely device dependent scenario,
the probability pnoise should be perfectly characterized and calculated a
priory and then monitored during the experiment in order to certify
the genuine randomness of the output.

Once the optimal energy bound has been estimated, we carry out
a longer measurement of 1 h in order to test the stability and resilience
of the experiment. Following our semi-DI protocol, a threshold h is
chosen, which corresponds to the asymptotic, extractable entropy.
Each second, the input/output frequencies are estimated, and the
assumption is verified. This leads to a post-processing block size of
1:25� 109 needed to optimize the finite-size effects of Eq. (4).
Unfortunately, the large block size and the high repetition rate do not
allow for real time extraction with our FPGA. As it can be seen from
Fig. 4, the measured power was never higher than the fixed threshold.
The operating mean photon number chosen is around 5� 10�3 by
optimizing the entropy per bit and by verifying that the correlation
generated was sufficient for the feedback stabilization loop to work.
Figure 5 shows the entropy as a function of the time. For each point, it
is verified that the entropy generated is higher than the previously
fixed threshold. If this condition is fulfilled, the extraction ratio is given
by Eq. (4); otherwise, the block is rejected. The choice of the threshold
value comes with a trade-off between the amount of extractable bits
per state generated and the amount of succeeded rounds in the

experiment. In order to maximize the average rate of certified random
bits throughout the whole experiment, a threshold value of h¼ 0.12
has been chosen, which has led to a probability of succeeded rounds of
97%. These two values allow the experiment to certify a repetition rate
of genuine quantum bits of 145.5MHz.

The QRNG presented in this work is a simple yet performant
implementation of the semi-DI protocol based on energy bounds. We
achieved a random bit rate of 145.5MHz for a measurement during 1
h. The advantage of the system relies not only on its high speed but
also on the straightforward implementation, which is highly compati-
ble with a possible integrated optics implementation.

See the supplementary material for the correlations and noise
analysis of the system.
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