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Abstract

Background: Second-generation long-acting insulin glargine 300 U/mL (Gla-300) and degludec 100 U/mL
(Deg-100) provide novel basal insulin therapies for the treatment of type 1 diabetes (T1D). Both offer a flatter
pharmacokinetic (PK) profile than the previous generation of long-acting insulins, thus improving glycemic
control while reducing hypoglycemic events. This work describes an in silico head-to-head comparison of the
two basal insulins on 24-h glucose profiles and was used to guide the design of a clinical trial.

Materials and Methods: The Universities of Virginia (UVA)/Padova T1D simulator describes the intra-/
interday variability of glucose-insulin dynamics and thus provides a robust bench-test for assessing glucose
control for basal insulin therapies. A PK model describing subcutaneous absorption of Deg-100, in addition to
the one already available for Gla-300, has been developed based on T1D clinical data and incorporated into the
simulator. One hundred in silico T1D subjects received a basal insulin dose (Gla-300 or Deg-100) for 12 weeks
(8 weeks uptitration, 4 weeks stable dosing) by morning or evening administration in a basal/bolus regimen.
The virtual patients were uptitrated to their individual doses with two different titration rules.

Results: The last 2-week simulated continuous glucose monitoring data were used to calculate various outcome metrics
for both basal insulin treatments, with primary outcome being the percent time in glucose target (70—140 mg/dL). The
simulations show no statistically significant difference for Gla-300 versus Deg-100 in the main endpoints.
Conclusions: This work suggests comparable glucose control using either Gla-300 or Deg-100 and was used to
guide the design of a clinical trial intended to compare second-generation long-acting insulin analogues.

Keywords: Basal insulin, Mathematical modeling, Pharmacokinetics, Pharmacodynamics, Virtual trial.

secretion of healthy subjects. In particular, second-generation
long-acting (basal) insulin analogues exhibit flatter pharma-
cokinetic (PK) and pharmacodynamic (PD) profiles, with an
insulin dosing frequency not inferior than once daily, thus
targeting an action duration exceeding 24 h."

Introduction

S UBCUTANEOUS (SC) BASAL and prandial insulin adminis-
tration is a key component of multiple daily injection
(MDI) therapy in patients with type 1 diabetes (T1D) and with

insulin-dependent type 2 diabetes (T2D). In the last decades,
advances have been made in developing new basal and pran-
dial insulin analogues aiming to mimic endogenous insulin

Insulin glargine 300 U/mL (Gla-300) and degludec
100 U/mL (Deg-100) represent the second generation of
long-acting insulin analogues, with respect to insulin glargine
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100 U/mL (Gla-100) and insulin detemir 100 U/mL (Det-100),
respectively, showing a more prolonged and stable insulin
profile over 24 h.

This is achieved through different mechanisms of protrac-
tion.>* Insulin Gla-300, similarly to Gla-100, rapidly precip-
itates at the injection site, due to a low solubility at
physiological pH, then, it is absorbed into plasma with a slower
rate than Gla-100 thanks to its higher concentrated formula-
tion.” Insulin Deg-100, thanks to the acylation of a long-chain
fatty acid to the insulin molecule, forms a soluble multi-
hexamer depot at the injection site, with a higher molecular
weight than Det-100, and then reversibly binds to albumin. As
a consequence of the high affinity to albumin, it is immediately
and almost completely (98%—99%) bound to circulating al-
bumin, so that the free active insulin concentration, which is
the one available to the insulin receptor, is kept very low.®’

In euglycemic clamp studies, with respect to insulin Gla-
100, both Gla-300 and Deg-100 showed prolonged and more
stable PK and PD proﬁles.g_' °TIn addition, for both the second-
generation long-acting insulins, less hypoglycemic events and
noninferiority in terms of HbA lc reduction were shown.'"'?
However, only a few studies compared Gla-300 versus Deg-
100 providing controversial results: a lower day-to-day and
within-day variability in PD (evaluated from a glucose infu-
sion rate in a euglycemic clamp study) of Deg-100 compared
to Gla-300 was reported in Heise et ad.,13 while a lower within-
day variability in PD and a more evenly distributed PK profile
was shown for Gla-300 compared to Deg-100 in Bailey et al.'*
However, the features of the two protocols may explain, at
least in part, these somewhat different results.®

More similarities than differences have also been observed
in insulin-naive T2D patients comparing both the second-
generation long-acting insulins in a randomized head-to-head
clinical trial with respect to efficacy on HbA1c reduction and
hypoglycemic events.'® So far, no head-to-head clinical trial
has been conducted in patients with T1D in daily life con-
ditions comparing the effect of Deg-100 versus Gla-300 on
glycemic control and glucose variability using continuous
glucose monitoring (CGM). Furthermore, a clinical head-to-
head evaluation of the benefits and risks of different titration
rules and/or insulin dosing schedules is currently still miss-
ing. Such a study would be very useful to assess Deg-100
versus Gla-300 performance in daily life conditions and/or to
optimize their dosing. However, this would require an ex-
tensive, and consequently, a costly and time-consuming,
clinical trial to make any possible differences visible for
different insulins/dosing schedules/titration rules.

Computer simulations can be extremely helpful to test in silico
different treatments under several experimental conditions in a
time- and cost-effective way and are increasingly used by
pharmaceutical companies to support decision-making. We re-
cently equipped the Universities of Virginia (UVA) and Padova
T1D simulator (T1DS)"’ with a model of sc absorption of long-
acting insulin glargine'® (Gla-100 and Gla-300) allowing to
perform in silico testing of MDI therapies.'® In this work, we first
developed a PK model of insulin Deg-100, based on individual
patient-level clinical data, and incorporated it into the UVA/-
Padova TlDSlg; then, we used the UVA/Padova simulator to
perform an in silico (virtual) trial evaluating the benefits/risks of
insulin Gla-300 and Deg-100 administration in patient with T1D
to support the design of a head-to-head clinical trial comparing
the two insulin analogues (NCT04075513).

SCHIAVON ET AL.

Research Design and Methods
The UVA/Padova T1DS

The UVA/Padova TIDS'”? is a tool accepted by the U.S.
Food and Drug Administration as a substitute for preclinical
trials of certain insulin treatments, such as artificial pzmcreas,21
insulin analogues,?® and glucose sensors.” It consists of a
model of glucose—insulin—glucagon dynamics and a popula-
tion of in silico T1D subjects (100 adults, 100 adolescents, and
100 children). The latest version of the simulator'” has been
updated with a series of novelties, among which a recently
developed model of diurnal glucose variability,** which ex-
tends its domain of validity from single— to multiple-meal
scenarios,25 and the sc insulin de:livery,2 now allowing also to
describe commercially available fast-acting insulin analogues.

In addition, a model of sc absorption of long-acting insulin
glargine (Gla-100 and Gla-300) has been recently devel-
oped'® and incorporated into the T1DS,'® allowing to simu-
late MDI therapies. In the following sections, a model of
insulin degludec PK is presented and incorporated into the
simulator thus extending the simulator MDI module to this
recently developed long-acting insulin analogue. To do so, a
database of T1D subjects receiving multiple doses of Deg-
100 is used."*

Development of insulin Deg-100 PK model

Database. The data used for model development come
from a randomized, double-blind, two-treatment, two-period,
two-sequence crossover trial comparing multiple-dose ad-
ministration of insulin glargine (Gla-300) versus degludec
(Deg-100) (EudraCT no. 2015-004843-38)."* Briefly, 48
T1D subjects, grouped in two cohorts (cohort 1 [n=24]: 22
males, age=441 10 years; BMI=25.4+2.5 kg/mz; cohort 2
[n=24]: 24 males, age=41£12 years; BMI=26.0£2.1
kg/m?), received once-daily sc administrations of either 0.4
(cohort 1) or 0.6 U/kg (cohort 2) Gla-300 for 8 days in one
treatment period and Deg-100 for 8 days in the other. A 30-h
euglycemic clamp procedure was performed after each 8-day
period with blood samples collected at 0, 1, 2, 4, 6, 8, 10, 12,
14, 16, 20, 24, 28, and 30 h after dosing on day 8. A validated
radioimmunoassay was used for measurement of total insulin
concentration, accounting for both bound and unbound in-
sulins to albumin, with a lower limit of quantification of
12 pU/mL. For more information about the protocol, we refer
to Bailey et al.'*

Mathematical model. As reported in the literature,S*7
insulin degludec in plasma is present in two rapidly equili-
brating forms: an albumin-bound nonactive and a free active
form, with a ratio between the two of 0.98-0.99.° Here, we
assumed that the two forms are in dynamic equilibrium in
plasma, and thus, the ratio between the two may be assumed
constant. We calculated an estimate for this ratio from the
data reported in Bailey et al.'* In particular, for both insulins,
we normalized their clinical efficacy, as measured in a eu-
glycemic clamp study by the area under the curve of the 24-h
glucose infusion rate (GIR-AUC(_,4p), to the respective 24-h
insulin exposure (Ins-AUCq_541). Then, the efficacy ratio
between Deg-100 versus Gla-300 can be determined by
comparing the PK-normalized clinical efficacy of Deg-100 to
Gla-300 as follows:
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Efficacy ratiopeg-100 vs. Gla-300 =

GIR-AUCo-24n.G1a-300 / Ins-AUC)_241, Gla-300

)

An average efficacy ratio of 0.0285 was found in this
population, suggesting a free and active fraction of insulin
Deg-100 of 2.85% and an albumin bound fraction of 97.15%.
This factor allows us to rescale the plasma concentration of
insulin Deg-100 from total to free active and handle it as we
did for the other insulin analogues. We acknowledge that this
approach for calculating the free and active concentration of
Deg-100 may also intrinsically account for any possible
difference in the intrinsic activity between the insulins.
However, any uncertainity in this scaling factor would only
have an effect on the predicted optimal dose for Deg-100 but
does not affect the simulated CGM.

The model of sc absorption of free active insulin Deg-100
is three-compartment (Eq. 2):

L) = = ka1 - 1) +F - D 1,1(0)=0
Lp() = —kar - 1) + ka1 - 1 (1) 12(0) =0
I3(t)= —ks - 13(t) + ko - 1p(t)  1;300)=0
Ra (1) = kg - 1 5(1)

(@)

where D (mU/kg/min) is the insulin dose administered into the
subcutis, F (dimensionless) is the bioavailability, k,; and k>
(minfl) are the rate constants of molecular complex conver-
sion, k, (min~") is the rate constant of insulin absorption to
plasma, and Raq; is the insulin rate of appearance in plasma.

Model identification. As done in Visentin et al.,19 the
model described in Eq. (2) was coupled with the two-
compartment insulin kinetic model of the TIDS'” to predict
insulin concentration in plasma (Eq. 3):

Ity = — (my +m3) - 1)+ ma - 1 (1) 1(0) =1
Ip(0)= — (my +ma) - L) +my - (@) + Rar(@0)  1,(0) =1y
10 =1,()/Vi

3)

where 1, and ; (mU/kg) are the mass of free insulin Deg-100
in plasma and liver, respectively, I (©U/mL) plasma insulin
concentration, suffix b denotes basal state, m;, m,, mz, my
(min_l) rate parameters, and V; (L/kg) the insulin distribution
volume.

The model of Eqgs. (2-3) is a priori nonidentifiable.” Thus,
additional assumptions were needed to make the model un-
iquely identifiable. In particular, we first assumed V; fixed to
population values (V;=0.048 L/kg) and, then, we reparame-
trized the model so that m,, m;z, m, become function of m;, the
plasma insulin clearance (CL, L/min), and V}, according to
what was done in Visentin et al.'” and Dalla Man et al.”® In
addition, due to the experimental setting, during the identifi-
cation process, the two rate constants k;; and k,» were virtually
identical in all subjects. Therefore, to improve numerical
identifiability, we constrained them to be equal (k;=k,; =k;2).
Therefore, five parameters (F, k4, k,, m;, CL) were estimated
from the data using a maximum a posteriori Bayesian esti-

mator, implemented in MATLAB® R2016b.° A priori in-
formation on parameters m; and CL (m ;=0.18 min!,
CL=1.11L/min) was taken from Dalla Man et al.>® Mea-
surement error on free insulin Deg-100 data was assumed in-

dependent, Gaussian, with zero mean and known variance.>®

Incorporation of insulin Deg-100 in the T1DS

The model of Eq. (2) was finally incorporated in the
T1DS' by equipping each in silico subject with a set of five
parameters describing the sc absorption of insulin Deg-100.
These were randomly extracted from the joint parameter
distribution obtained from model identification in the Deg-
100 insulin data reported in Bailey et al.'*

The validity of the generated PK intersubject variability
was assessed by simulating an 8-day repeated administration
of both Gla-300 and Deg-100 at 0.4 and 0.6 U/kg, respec-
tively, and by comparing the simulated plasma insulin against
their respective clinical counterparts in terms of maximum
insulin concentration (Cy,,x) and its timing (7 pax)-

In silico trial

An in silico head-to-head trial was performed to compare
glucose control in the 100 virtual subjects receiving Gla-300
versus Deg-100. Like in Visentin et al.,'® the average starting
basal insulin dose (by) and the fasting plasma glucose (FPG)
values of the virtual population were matched to baseline
values reported in Bergenstal et al.*! for Gla-300 (b, =0.3 U/kg
and FPG=172.9mg/dL). For Deg-100, the starting basal
insulin dose was properly adjusted to achieve the same
baseline FPG levels obtained with Gla-300.

During the trial, virtual subjects were uptitrated to their
optimal insulin dose during an 8-week period followed by 4
weeks of stable dosing. For both Gla-300 and Deg-100 treat-
ment arms, both morning (immediately before breakfast until
lunch) and evening (immediately before the evening meal until
bedtime) insulin dose administrations were simulated. In ad-
dition, two different titration rules were tested for both injec-
tion schedules and insulin formulations, as detailed below.

As done in Visentin et al.,'” during each 8-week period,
virtual subjects received three meals per day, each accom-
panied by its optimal prandial insulin bolus. Meal attri-
butes, that is, timing and amount, were generated mimicking
the habits occurring in real life, as described in Vettoretti
et al.*> and Visentin et al.>> Optimal prandial insulin bolus
(B [U]) was determined from subject’s preprandial glycemia
(G [mg/dL]), carbohydrate content of the meal (CHO [g]),
insulin on board (IOB [U]), and subject-specific insulin
therapy parameters, such as CR [g/U], CF [mg/dL/U], and
Guarget [mg/dL]. In particular, G,reer Was fixed to 160 mg/dL
as in Bergenstal et al.,31 IOB was modeled as in Hu and Li,34
and a percentage error on carbohydrate counting was added
as described in Vettoretti et al.>

Basal insulin dose was titrated every 7 days to achieve the
target prebreakfast blood glucose (BG). For both insulin
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formulations and injection schedules, two different basal
insulin titration rules were implemented, with titration rules
A and B derived from Home et al.'' and Heller et al.,35 re-
spectively. In particular, virtual patients were titrated to their
optimal individual dose until they reached the glucose target,
which is 80-130 mg/dL for titration rule A and 70-89 mg/dL
for titration rule B (more details about titration rules are reported
in Supplementary Table S1). In addition, a hypoglycemia-
related stop condition has been introduced for the uptitration
of each individual patient. Based on the results reported in
Bergenstal et al.,31 we chose to tolerate 7.5% of the time spent
below 70 mg/dL at maximum.

Finally, an interoccasion variability in Gla-300 and Deg-
100 bioavailability was generated by randomly modulating
the subject-specific nominal value with a Gaussian noise with
zero mean and coefficient of variation equal to 17% for Gla-
300°° and 8.5% for Deg-100."

Outcome metrics and statistical analysis

Efficacy of glucose control was assessed by calculating the
standard outcome metrics proposed in Danne et al.>” from the
last 2 weeks of CGM data. In particular, the primary out-
come was the mean percentage of time within 70-140 mg/dL
(Tt70-140), while secondary outcomes include mean and
standard deviation (SD) of glucose excursion, percentage of
time within glucose ranges <54 (Ty54), 70-180 (T 70-180),
>180 (T,180)> >250 (T 250) mg/dL, low blood glucose index
(LBGI), and high blood glucose index (HBGI).38 These
metrics were calculated on a daily basis from individual
CGM profile, for each treatment effect and insulin formula-
tion, and averaged among the last 2 weeks of experiment. In
addition, the coefficient of variation of glucose excursion was
calculated on a 2-week basis (CV,_yeeks)-

Model parameter estimates were reported as median
(25th—75th) percentiles, with precision expressed as median
percent coefficient of variation (CV). As in Danne et al.,”’
outcome metrics were reported as meantSD. Comparison
was performed based on parameter distribution: z-test (paired
for the ““crossover” and unpaired for the ‘‘parallel” design,
see below) for normally distributed values, and nonpara-

Data vs. Model prediction
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metric test (Wilcoxon for the ‘‘crossover” and Mann—
Whitney U for the ““parallel’”” design, see below) otherwise.
The normality of distributions was assessed by the Lilliefors
test. Significance level was set at P=0.05 for all the statistical
tests.

As previously described, the simulation framework allows
to perform the same experimental scenario to the whole
virtual population, hence simulating a ‘‘crossover’ design.
However, since in a clinical trial, a “‘parallel” design will
likely be preferred for practical reason, here both design
settings have been simulated.

In the ““‘crossover’” design, we performed the paired
comparison between the two insulins, for both titration rules
and injection schedules. In the “‘parallel”” design, the virtual
population was randomly split in two equal subgroups (n=50
subjects each), that is, 50 subjects for the Gla-300 group and
the remaining 50 subjects for the Deg-100 group, and the
unpaired comparison, for each titration rule and injection
schedule, was performed. The random splitting of the virtual
population in the two treatment groups and the corresponding
statistical analysis were repeated 100-fold for each statistical
outcome. This allowed assessing the robustness of the sta-
tistical outcomes achievable by the ‘‘parallel” versus
“crossover’’ design, by quantifying how many times a sta-
tistically significant difference is detected among the 100
random extractions.

Results
Assessment of Deg-100 PK model

On average, the model well predicted plasma free insulin
Deg-100 data (Fig. 1, left panel) for both 0.4 and 0.6 U/kg
doses (black squares and white circles, respectively), as
confirmed by the weighted residuals, which were sufficiently
random and laid within the *1 interval (Fig. 1, right panel).
Model parameters were estimated with good precision, and no
statistically significant differences were found between ad-
ministration doses: F=69 [58-85]% (CV =34%), k,=0.0056
[0.0041-0.0072] min™" (22%), k,=0.0007 [0.0006-0.0009]
min~' (20%), m;=0.176 [0.176-0.177] min™" (50%), and
CL=1.10[1.09-1.11] L/min (34%).

Weighted residuals

2 —— 0.4 U/kg
-0==0.6 U/kg

(dimensionless)
o

Time (h)

Mean = SD of data versus model prediction (left) and weighted residuals (right panel) at 0.4 (white circles and

dashed line) and 0.6 U/kg (black squares and continuous line). SD, standard deviation.
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Assessment (0.6 U/kg)
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FIG. 2. Mean=*SD of free-active (see text for more details) simulated (black line) versus clinical (gray line) plasma
insulin obtained after 8-day administration of Deg-100 at 0.4 U/kg (left) and 0.6 U/kg (right panel). Deg-100, degludec

100 U/mL.

One hundred in silico Deg-100 PK parameter vectors have
been generated from the multivariate parameter distribution
and incorporated into the simulator, enabling to simulate the
PK of insulin Deg-100. After 8 days of insulin degludec
administration at 0.4 and 0.6 U/kg, the simulated plasma in-
sulin time courses well reproduced the data, as shown in
Figure 2. Maximum insulin concentration (Cy.y) and its
timing (T.x) were, respectively, 16.0£5.8 pU/mL and
538+ 97 min versus 17.0+4.0 puU/mL and 565+ 56 min for
simulated versus clinical data at 0.4 U/kg, while 24.0t
8.7 uU/mL and 538 +97 min versus 24.1+4.1 yU/mL and
512+ 159 min for simulated versus clinical data at 0.6 U/kg.
No statistically significant differences were found between
measured and simulated profiles.

In silico trial

“Crossover” design. The simulated average 24-h glucose
profiles of 100 virtual patients under Gla-300 versus Deg-100 for
titration rules A and B are shown in Figure 3. Overall, i.e. av-
eraging results of morning and evening dosing, the glucose
control achieved using the two insulins is almost superimposable
on average (Fig. 3, top panels), with lower glucose values ob-
tained with titration rule B (135.7+21.7mg/dL vs. 134.7%
21.3mg/dL, Gla-300 vs. Deg-100, respectively; P=0.77) than
titration rule A (160.0+23.5mg/dL vs. 160.1 £21.9mg/dL,
Gla-300 vs. Deg-100, respectively; P=0.21) likely due to the
lower prebreakfast BG target aimed by titration rule B (Sup-
plementary Table S1).

For both insulins and titration rules, a better glucose con-
trol is achieved during afternoon and dinner with the morning
versus evening administration. However, Gla-300 achieves a
better glucose control during night with evening versus
morning administration for both titration rules (Fig. 3, middle
panels), while the opposite occurs for Deg-100 (Fig. 3, bot-
tom panels) most likely due to the Deg-100 PK profile with a
Tmax around 11 h.

The comparison, in terms of outcome metrics, between
Gla-300 and Deg-100 is reported in Table 1. Glucose control,
expressed as mean percentage of time within the range of 70—
140 mg/dL (primary outcome), was similar between the two
insulins for both titration rule A (39.5%*16.4% vs.
38.9% + 15.9%, Gla-300 and Deg-100 respectively; P=0.26)

and titration rule B (56.8% £ 16.8% vs. 57.4% +17.4%, Gla-
300 and Deg-100, respectively; P=0.95). Although both
insulins show no statistically significant difference in the
primary outcome, differences between Gla-300 versus Deg-
100 are found in some secondary outcomes, depending upon
the injection schedule.

In particular, when administered in the morning, virtual
patients with Gla-300 showed a lower glucose variability,
both within-day (SD9'*3%°_spPee1%: _2 8 mg/dL, P <0.001
and —2.6 mg/dL, P<0.001 for titration rules A and B, re-
sgectively) and day-to-day (CVaweeks" ™ °-C Vs weeks %
1%0:—0.9%, P=0.009 and —1.4%, P<0.001 for titration rules
A and B, respectively), together with a lower LBGI (LBGI®™*
J0_LBGIP*!%: —0.02, P=0.76 and —0.14, P=0.032 for ti-
tration rules A and B, respectively). Conversely, when ad-
ministered in the evening, virtual patients with Deg-100
showed a lower day-to-day glucose variability (CV,._yeeks &
YV, geeks % =1.4%, P<0.001 and —1.1%, P=0.023
for titration rules A and B, respectively) and LBGI (LBGI™®¢"
'9_LBGI***: —0.04, P=0.015 and —0.06, P=0.15 for ti-
tration rules A and B, respectively).

In addition, the number of virtual patients with CV,_yeeks
lower than 36%°’ was slightly lower for Gla-300 versus Deg-
100, when injected in the evening (titration rule A: 88% vs.
95%, for Gla-300 vs. Deg-100, respectivelys; titration rule B:
79% vs. 82%, for Gla-300 vs. Deg-100, respectively), while it
was higher for Gla-300 versus Deg-100 with morning ad-
ministration (titration rule A: 96% vs. 89%, for Gla-300 vs.
Deg-100, respectivelys; titration rule B: 86% vs. 72%, for Gla-
300 vs. Deg-100, respectively).

Finally, for both titration rules, average stable doses at the
end of each treatment period were significantly lower
(P<0.001) for Gla-300 (0.43£0.13 U/kg and 0.56+0.14 U/kg
for titration rules A and B, respectively) versus Deg-100
(0.38%£0.13 U/kg and 0.51£0.13 U/kg for titration rules A and
B, respectively). In particular, average doses resulted slightly
higher when administered in the morning than evening both
for Gla-300 (Gla-300™°™"¢-Gla-300V°"""¢: 0.04 £0.06 U/kg,
P<0.001, and 0.02+0.06 U/kg, P=0.01, for titration rules
A and B, respectively) and Deg-100 (Deg-100""""8-Deg-
100°¥°™"€; 0.02£0.06 U/kg, P=0.009, and 0.01£0.07 U/kg,
P=0.45, for titration rules A and B, respectively).
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TITRATION RULE B
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FIG. 3. Meantstandard error of 100 simulated CGM glucose profiles over 24 h during the last 2 weeks for titration rules
A (left) and B (right) and morning (triangle) versus evening (diamond) injections: Gla-300 (blue) versus Deg-100 (green)
overall (top), Gla-300 by injection schedule (middle) and Deg-100 by injection schedule (bottom panels). CGM, continuous
glucose monitoring; Gla-300, glargine 300 U/mL. Color images are available online.

“Parallel” design. In addition to simulating the ‘“‘cross-
over’’ design, i.e. comparing each treatment in the same virtual
patient described in the paragraph above, here we also ana-
lyzed the simulation results assuming a ‘“‘parallel” design. In
particular, we randomly split the virtual population in the two
treatment groups of 50 patients each and we performed the
corresponding statistical analysis for each statistical outcome.
Moreover, we performed this random splitting of the virtual
population 100-fold and captured how many times a specific
outcome metric showed a statistically significant difference
between treatment groups (Supplementary Table S2).

In particular, a statistically significant difference in the
primary outcome, for both titration rules and injection sched-
ules, was found in <5% of the times. However, in some of the
secondary outcomes, a slightly higher occurrence of a statis-
tically significant difference has been observed. In particular,
when administered in the morning, Gla-300 showed a lower
within-day variability than Deg-100 in 17% and 15% of the
cases (titration rules A and B, respectively), together with a
lower between-day variability in 11% and 20% of the cases
(titration rules A and B, respectively). In contrast, when ad-
ministered in the evening, Deg-100 showed a lower between-

day variability than Deg-100 in 21% and 11% of the cases
(titration rules A and B, respectively). In summary, assuming a
“parallel”” design, in at least 79% of the virtual trials, no sta-
tistically significant difference between the two insulins has
been found for any of the primary or secondary outcomes.

Discussion

Long-acting insulin analogues are currently used in MDI
therapy for T1D to cover basal insulin needs. Research in the
field is very active, with pharma companies working on the
development of new basal insulin analogues aiming to reduce
both day-to-day and within-day variabilities in BG levels.
However, before a new basal insulin can be brought to the pa-
tients, its efficacy and safety must be proven in comparison with
the existing treatment options in timely and costly clinical trials.

With the development of simulation platforms able to re-
produce glucose variability characterizing the T1D popula-
tion, such as the UVA/Padova T1DS,!” clinical head-to-head
comparisons of different insulin treatments can be performed
to evaluate efficacy and safety in a cost-effective way. In
addition, virtual trials can be run multiple times pulling



IN SILICO COMPARISON OF INSULIN GLA-300 AND DEG-100 559
TABLE 1. “CROSSOVER’’ DESIGN: OUTCOME METRICS AND STATISTICAL ANALYSIS
Titration rule A Titration rule B
Metric Dosing regimen Gla-300 Deg-100 P Gla-300 Deg-100 P
Mean (mg/dL) Morning 154.8£22.7 155.4+214 0.37 133.1£21.6 131.6%£20.5 0.47
Evening 165.2+£23.2 164.8£21.6 0.39 138.2+21.6 137.7£21.8 0.78
SD (mg/dL) Morning 38.0x11.2 40.8+12.0 <0.001 354+98 38.0x11.1 <0.001
Evening 43.2+14.6 41.2+11.8 0.10 39.2+12.7 38.0+10.2 0.78
CVo_weeks (%) Morning 27.9+£5.0 28.8+5.8 0.004 30.0£5.2 31.4%6.1 <0.001
Evening 29.1+5.8 27.8+5.0 <0.001 31.5%+6.1 304%53 0.023
To.54 (%) Morning 0.2£0.5 0.2£0.5 0.60 0.7£0.9 0.8£0.9 0.45
Evening 0.1£0.3 0.1£0.2 0.17 0.6£0.7 0.5£0.6 0.21
Ty.70 (%) Morning 1.3+19 1.4+£2.0 0.61 42+34 47+£3.6 0.14
Evening 07+1.1 0.6£0.9 0.06 3.6x3.2 33+26 0.13
T 70-140 (%) Morning 42.5+17.3 42.7+£15.9 0.93 58.5+17.5 59.2+16.7 1
Evening 36.4+14.9 35.1+15.0 0.14 55.1+16.0 55.6+17.9 0.75
Ti70-180 (%) Morning 73.4+16.0 72.6+15.2 0.19 81.2+11.9 80.8+11.0 0.29
Evening 67.1£16.0 67.4%+16.3 0.92 78.9+12.7 79.5+13.3 0.43
T,. 150 (%) Morning 25.3x+16.4 26.0x15.5 0.20 14.6+13.1 14.6+11.9 0.64
Evening 32.2+16.2 32.0+16.5 0.75 17.5+£13.6 1721144 1
T,. 250 (%) Morning 47+6.6 5.1+£6.3 0.14 22+3.7 22+3.6 0.21
Evening 7.7%£9.2 6.6£7.5 0.65 33154 26+39 0.70
LBGI (%) Morning 0.41+0.44 0.43+£0.48 0.76 1.19+0.82 1.33+0.85 0.032
Evening 0.27+0.27 0.23+£0.22 0.015 1.05+0.73 0.99+0.65 0.15
HBGI (%) Morning 5.66%+3.52 5.81+3.33 0.15 3.33+2.60 3.30+2.45 0.74
Evening 7.29+4.04 7.04+3.61 0.83 4.02+3.01 3.85+2.79 0.98

Mean = SD of outcome metrics obtained with Gla-300 and Deg-100. All metrics were calculated on a daily basis of the individual
continuous glucose monitoring profile, except for CV,_yeeks, Which was calculated on a 2-week basis. Comparison was performed based on
parameter distribution: paired #-test for normally distributed values, and Wilcoxon signed-rank test otherwise. Significance level was set at

P=0.05 (shaded gray area highlights statistically significant values).

CV, coefficient of variation; Deg-100, degludec 100 U/mL; Gla-300, glargine 300 U/mL; HBGI, high blood glucose index; LBGI, low

blood glucose index; SD, standard deviation.

different virtual patients into the trial each time and assessing
the probability for showing a statistical difference in any of
the clinical endpoints. In addition, as subtle treatment dif-
ferences often remain “‘invisible’’ in clinical trials due to the
high patient-to-patient variability (or due to the small patient
number in each treatment arm), computer simulations also
offer the opportunity to explore different treatment effects
and clinical trial designs in the same virtual patient and po-
tentially make subtle differences visible.

In particular, here we performed a virtual trial to compare the
glucose control achieved by insulin Gla-300 versus Deg-100 in
patients with TID. We aimed at, based on the findings of a
clamp study comparing both insulins,'* predicting their clinical
efficacy under a more physiological everyday life settings.

Toward this end, a model describing the sc absorption of
insulin Deg-100 was developed and incorporated into the
UVA/Padova T1DS, in addition to the one already available for
insulin Gla-300."®!'? The model well fitted free insulin Deg-100
data (Fig. 1) and parameters were estimated with precision. The
model was then incorporated into the simulator and individual
parameterizations have been randomly generated and assigned
to the virtual subjects (Fig. 2). It is worth noting that, in the
parameter generation, we took into account the existence of the
correlation among model parameters derived from a study
where subjects received both Gla-300 and Deg-100."

A head-to-head virtual trial was conducted to compare
glucose control in patients with T1D under MDI therapy
treated with Gla-300 or Deg-100. In particular, for each in-
sulin, the virtual patient underwent the same experimental

protocol, that is, three meals per day with optimal meal insulin
bolus, with basal insulins uptitrated to their individual dose for
8 weeks followed by 4 weeks of stable dosing, by either
morning or evening injection and two different titration rules.
The simulations show the overall similarity of the 24-h
glucose profiles of virtual patients under treatment with Gla-
300 or Deg-100: almost superimposable average glucose
control for two insulins (Fig. 3, top panels), with no statisti-
cally significant difference in the primary outcome, regardless
of injection schedules (morning or evening) and titration rules
to guide patients to their individual insulin dose. In the
“crossover”’ design, some statistically significant differences
in the secondary outcomes are revealed: Gla-300 showed—
regardless of the applied titration rule—a lower within- and
between-day variability and a lower LBGI when administered
in the morning, while Deg-100 showed a lower between-day
variability and LBGI when administered in the evening.
Average insulin doses in the stable period, that is, after 8 weeks
of uptitration, resulted to be lower for Deg-100 than Gla-300,
in accordance with the results reported in Bailey et al.'*
These results were obtained in an in silico ‘“‘crossover” trial
that represents the best configuration to do a robust comparison
since each patient underwent the same identical experimental
protocol except for the insulin treatment. To assess if these
differences would be detected also in a more traditionally
chosen ““parallel design,” we randomly (100-fold) split the
virtual population in two equal subgroups and compared the
observed differences in the primary and secondary endpoints
between groups. As expected, given the reduced statistical
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power of the ““parallel” versus ‘“‘crossover’” design, these
differences only became ‘“visible” in the “‘parallel”” design in
less than or equal to 21% of the cases, in correspondence with
the ““crossover’ design pointing to statistical significance.

Performing a hypothesis testing requires the definition of
the null hypothesis. This is sometimes implicitly set to be
“Treatment A is equal to Treatment B,” thus finding a
P>0.05 does not necessarily mean that Treatment A is not
inferior to Treatment B.* Thus, we performed a noninferiority
test on the primary outcome and found that Gla-300 is not worse
than Deg-100. In particular, we assumed no difference in the
outcome between the two insulins, with a noninferiority margin
(A) equal to 50% of the SD of the primary outcome for Deg-100
(A=0.5-SD=8%) and a significance level a=2.5%.

Although this work reveals the great potential of computer
simulations to inform or even reduce the number of clinical
trials, we would also like to highlight some differences be-
tween virtual versus real experiments and the limitations of
the first ones. Obviously, the virtual patients are under much
more controlled and standardized conditions than the true
patients enrolled in a clinical trial. The virtual patient strictly
adheres to the titration rule to reach the individual glucose
target and to the meal schedule, while the patient enrolled in a
clinical trial may not. In addition, patient habits, such as
physical activity or ‘‘nocturnal snacks’ were not included in
this study. Thus, the results presented in this work are ob-
tained in ideal conditions since, by definition, the virtual trial
allows keeping under control any confounding effect and thus
making also small differences visible, which may disappear
in a less standardized setting of a clinical trial.

Another limitation is the value for Deg-100 albumin-bound-
to-free ratio used in this work, which has been calculated by
comparing the PK-normalized clinical efficacy of Deg-100
versus Gla-300 using the data from the euglycemic clamp
study reported in Bailey et al."* This approach for calculating
the free and active concentration of Deg-100 may intrinsically
account for the albumin-bound-to-free ratio of insulin Deg-100
and/or possible different intrinsic activity in Deg-100 versus
Gla-300. However, if a different value was assumed for this
efficacy factor, the results would be unchanged apart from the
optimal dose achieved in each virtual patient. Future work will
exploit the assessment of the insulin dosing between the two
insulins exploiting the findings of the ongoing clinical trials
comparing the two insulins to better reproduce the optimal
insulin doses of the two insulin analogues.

In conclusion, as the clinical trial may be seen as a model
for the real world, we believe that a virtual trial can be seen as
a model for a clinical trial and thus is an important means for
its experimental design. As a matter of fact, the results of this
work have been used to support and inform the design of a
clinical trial, for example, time of dosing, glucose target, and
titration rule, comparing insulin Gla-300 versus Deg-100 in
patients with T1D using a CGM-based metric as a clinical
endpoint (NCT04075513).

Models are indeed simplified versions of the real world but, if
properly developed and used, they can be of help in reducin%
costs and time both in the design and in product development.*

Conclusions

In this work, an in silico trial was performed aiming to
inform and derisk the design of a head-to-head clinical trial

SCHIAVON ET AL.

comparing glucose control in patients with T1D receiving
Gla-300 or Deg-100. Different titration rules as well as
dosing schedules have been explored in crossover and par-
allel trial designs. Toward this end, a model of sc absorption
of Deg-100 was developed and incorporated into the
UVA/Padova T1DS, which already included a PK model of
Gla-300. Overall, the results of the in silico trial suggest a
similar efficacy of Gla-300 and Deg-100 in the main end-
point, the time with glucose in the range of 70-140 mg/dL.
The applied methodology could become a new paradigm for
the design of clinical trial testing of novel insulins as well as
for optimizing titration rules and dosing regimens for those
already on the market.
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