The interplay between asymmetric dopaminergic degeneration, brain structural changes and cognition in de-novo PD: The PPMI dataset

E. Fiorenzato, A. Antonini, W. Weis, P. Bisiacchi, C. Semenza, A. Vallesi, R. Biundo (Venice, Italy)

Meeting: MDS Virtual Congress 2020

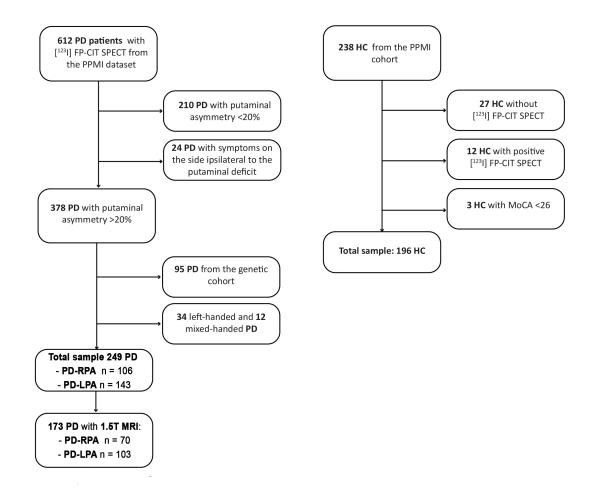
ABSTRACT NUMBER: 397

Keywords: Cognitive dysfunction, Dopaminergic neurons, Parkinsonism

Category: Parkinson's Disease: Cognitive functions

Objective: To characterize the impact of asymmetric dopaminergic degeneration, measured with I123-ioflupane SPECT (DATSCAN), on cortical integrity and cognitive deficits, in de-novo right-handed PD patients.

Background: PD is characterized by asymmetric motor onset that is linked to asymmetric nigro-striatal dopaminergic dysfunction. However, if right or left asymmetry contributes differently to cognitive performance and the extent of the neuroanatomical changes associated with asymmetry remain still controversial [1,2].


Method: From the PPMI cohort, among 612 de-novo PD and 238 HC who had DATSCAN, we have identified 249 right-handed PD, with left (n=106) vs. right (n=143) putaminal asymmetry index >20 % at baseline [3] (PD-LPA vs. PD-RPA, respectively) and 196 HC with negative DATSCAN and MoCA>26 [figure1]. Clinical, neuropsychological and neuroimaging data were analyzed in PD and HC subgroups. Cortical thickness, cortical folding and subcortical volumes were extracted.

Results: No significant differences were found between asymmetric PD vs. HC, but PD showed poorer cognitive performance in MoCA, HVLT, SDMT and semantic fluency task. PD-RPA showed significant higher MDS-UPDRS-III scores (p=0.003), while PD-LPA showed a poor performance in SDMT task (p=0.029) [table 1].

PD-LPA showed a significant cortical thinning, gyrification reduction and subcortical volume loss compared to PD-RPA [table2]. Multifactorial ANOVA revealed an interaction effect between left putaminal asymmetry onset, SDMT low performance and neuroanatomical alterations (reduced gyrification in the paracentral and temporal lobe and volume loss in the right caudate and left putamen).

Conclusion: We found that side of PD onset may differently affect cognition in PD. Namely, PD-LPA seems to be linked with processing-speed difficulties and neuroanatomical alterations in de-novo PD. Of note, these anatomical changes were mainly located in the left dominant hemisphere, observed to be vulnerable in early PD [4], and thus possibly contributing to high level cognitive dysfunctions.

Prospective longitudinal studies need to clarify if the co-presence of left cortical alterations together with ipsilateral putaminal degeneration may represent a vulnerable phenotype for cognitive decline in PD.

	HC n=196	PD-RPA n = 106	PD-LPA n = 143	P-value HC vs. PD	P-value PD-RPA vs PD-LPA
		Mean (SD)			
Age (years)	59.83 (11.25)	59.29 (9.68)	60.3 (9.8)	0.752	0.420
Sex female/male	69/127	45/61	50/93		0.229
Education (years)	16.02 (2.96)	15.3 (3.01)	15.64 (3)	0.13	0.376
Disease duration from symptoms (months)		5.69 (6.72)	5.67 (6.51)		0.986
MDS-UPDRS III		22.3 (8.51)	19.02 (8.62)		0.003
MDS-UPDRS asymmetry subscore					
Right-side		3.39 (3.38)	10.23 (3.95)		< 0.001
Left-side		12.17 (4.3)	2.76 (3.48)		< 0.001
Cognitive assessment					
MoCA ^a	28.07 (1.14)	26.86 (2.52)	27.1 (2.29)	< 0.0001	0.321
Benton JLO ^b	26.17 (4.03)	25.47 (4.3)	25.63 (4.09)	0.313	0.823
HVLT-R Immediate Recall ^b	26.08 (4.57)	24.25 (4.41)	24.91 (5.12)	0.004	0.307
HVLT-R Delayed Recall ^b	9.28 (2.36)	8.15 (2.36)	8.59 (2.49)	< 0.0001	0.125
HVLT-R Discrimination Recognition ^b	11.48 (0.83)	11.16 (1.17)	11.25 (1.34)	0.035	0.819
LNS ^b	10.85 (2.64)	10.75 (2.46)	10.46 (2.82)	0.404	0.561
$SDMT^b$	46.99 (10.64)	43.37 (10.71)	41.14 (8.78)	< 0.0001	0.029
Semantic fluency ^b	52.09 (11.31)	48.53 (11.33)	48.63 (12.22)	0.009	0.921

Regions	PD-LPA	PD-RPA	F	p value
Cortical thickness	-			
left inferiorparietal lobe	2.21 (0.26)	2.3 (0.18)	5.904	0.016
left inferiortemporal lobe	2.5 (0.27)	2.58 (0.21)	4.885	0.028
right caudal middle frontal gyrus	2.3 (0.28)	2.37 (0.2)	4.032	0.046
right cuneus	1.81 (0.22)	1.87 (0.2)	4.851	0.029
right inferiorparietal lobe	2.23 (0.26)	2.32 (0.17)	5.948	0.016
Gyrification index				
left cuneus	34.04 (7.68)	37.06 (8.05)	7.498	0.007
left paracentral lobule	23.15 (7.63)	29.67 (22.18)	6.214	0.014
left pericalcarine cortex	24.87 (6.8)	26.84 (7.09)	4.888	0.028
left transverse temporal gyrus	9.22 (3.84)	10.62 (4.61)	5.309	0.022
right cuneus	35.93 (8.8)	40.03 (10.09)	9.731	0.002
right precuneus	76.89 (16.98)	82.81 (25.69)	4.674	0.032
right superior parietal lobe	97.65 (17.25)	107.67 (48.76)	4.819	0.03
<u>Subcortical volumes</u>				
left amygdala	614.39 (120.23)	658.04 (91.88)	6.369	0.013
left ventral caudate	2764.64 (400.11)	2909.75 (619.06)	5.457	0.021
left dorsal caudate	4096.79 (887.73)	4409.19 (1566.09)	4.483	0.036
left nucleus accumbens	1839.18 (303.28)	1942.68 (257.59)	6.115	0.014
left ventromedial putamen	1894.38 (276.54)	1977.06 (243.03)	6.947	0.009
left rostral temporal thalamus	1381.84 (170.38)	1457.42 (247.00)	9.21	0.003
right ventral caudate	2004.64 (348.56)	2076.71 (301.25)	4.627	0.033
right dorsal caudate	5197.87 (1207.57)	5685.12 (2297.48)	5.981	0.016
right medial prefrontal thalamus	1127.72 (162.56)	1166.57 (155.85)	4.167	0.043
right rostral temporal thalamus	1185.15 (259.69)	1269.88 (375.45)	5.095	0.025
right hippocampalfissure	171.59 (31.84)	160.13 (24.78)	4.415	0.037

References: 1. Scherfler C, Seppi K, Mair KJ, Donnemiller E, Virgolini I, Wenning GK, et al. Left hemispheric predominance of nigrostriatal dysfunction in Parkinson's disease. Brain. 2012;135(11):3348–54. 2. Verreyt N, Nys GMS, Santens P, Vingerhoets G. Cognitive differences between patients with left-sided and right-sided Parkinson's disease. A review. Neuropsychol Rev. 2011;21(4):405–24. 3. Zijlmans J, Evans A, Fontes F, Katzenschlager R, Gacinovic S, Lees AJ, et al. [123I] FP-CIT spect study in vascular parkinsonism and Parkinson's disease. Mov Disord. 2007;22(9):1278–85. 4. Claassen DO, McDonell KE, Donahue M, Rawal S, Wylie SA, Neimat JS, et al. Cortical asymmetry in Parkinson's disease: early susceptibility of the left hemisphere. Brain Behav. 2016;6(12):e00573.

To cite this abstract in AMA style:

E. Fiorenzato, A. Antonini, W. Weis, P. Bisiacchi, C. Semenza, A. Vallesi, R. Biundo. The interplay between asymmetric dopaminergic degeneration, brain structural changes and cognition in de-novo PD: The PPMI dataset [abstract]. *Mov Disord*. 2020; 35 (suppl 1). https://www.mdsabstracts.org/abstract/the-interplay-between-asymmetric-dopaminergic-degeneration-brain-structural-changes-and-cognition-in-de-novo-pd-the-ppmi-dataset/. Accessed February 16, 2021.

MDS Abstracts - https://www.mdsabstracts.org/abstract/the-interplay-between-asymmetric-dopaminergicdegeneration-brain-structural-changes-and-cognition-in-de-novo-pd-the-ppmi-dataset/