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Abstract—Distributed characterization of mode coupling is key
to understanding the behavior of multimode and multicore fibers.
This paper presents a theoretical framework that precisely assess
limits and potentialities of mode-selective distributed measure-
ments based on Rayleigh backscattering.
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I. INTRODUCTION

Spatial division multiplexing (SDM) is the new paradigm
in optical fiber communications proposed as a solution to the
foreseen capacity crunch of backbone networks; at the base
of this new technology are few-mode and multi-core optical
fibers (FMF and MCF, respectively) [1]. An intense research
activity is focused on the propagation properties of these
waveguides, whose characteristic traits are mode coupling
and the related modal dispersion [2], [3]. Owing to these
phenomena, FMFs and MCFs behave like channels affected
by multi-path interference [4], and while in general mode
coupling can be seen as a detrimental effect [5], it has an
important beneficial role when optical nonlinearities come in
to play [6]. In this perspective, an accurate knowledge of
mode coupling is key to an effective description and clear
understanding of propagation in FMFs and MCFs.

Being a local property, mode coupling has to be investigated
with distributed techniques similarly to what has been done
for PMD in single-mode fibers [7]. To this aim, preliminary
experimental and theoretical works have already shown how
the analysis of Rayleigh-backscattered light can provide infor-
mation at least on some parameters, such as power coupling,
modal birefringence and differential modal delay [8]–[10]. In
this perspective, we present here a theoretical analysis showing
how, under proper assumptions, backscattering measurements
can actually provide an almost complete distributed character-
ization of the transmission Jones matrix.

II. THEORETICAL ANALYSIS

We describe light propagation along the optical fiber by the
N -dimensional vector ā(z), whose elements are the complex
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amplitudes of the N propagating modes (counting both po-
larization and spatial ones); note that this model can be used
both for FMFs and MCFs. The first assumption we make is
that there are no mode-dependent losses, so ā(z) = F(z)ā(0)
where F is the unitary N×N Jones matrix describing forward
propagation in the fiber. We can also write ∂zā = −jKā,
where ∂z represents derivative with respect to z and K is the
Hermitian coupling matrix, which describes all the coupling
properties of the fiber. Ideally, we would like to be able
to determine F(z) or, equivalently, K(z), which would be
possible if we were able to measure ā(z).

A. Round-trip propagation

While with cannot measure the light forward propagating
inside the fiber, we can measure the light backscattered at the
fiber input by Rayleigh scattering using techniques analogous
to those used for the transmitted light [11]. Let b̄(z) be the N -
dimensional complex vector describing the light backscattered
by the point z along the fiber. The relationship between ā(z)
and b̄(z) is in general involved and depends on the fiber
dispersion. However, assuming that this can be neglected, we
can write b̄(z) = B(z)F(z)ā(z), where B is the unitary matrix
representing backward propagation from z to the fiber input
and we used also the fact that Rayleigh backscattering can
be described, to a quite good approximation, by the identity
matrix (neglecting its intrinsic losses, immaterial to the present
analysis). The last hypothesis we make is that the fiber is
reciprocal, so that B = FT [7].

It can now be shown that ∂z b̄ = −jKB b̄ with

KB(z) = 2B(z)Re[K(z)]B†(z), (1)

where Re[·] is the real part and † the transpose conjugate.
Therefore, since we can measure b̄(z), we can calculate
KB , but the relationship between this matrix and B and
K, the quantities we are interested in, seems quite involved.
Nevertheless, note that

∂zB = −j
[
B(z)KT (z)B†(z)

]
B(z) , (2)

so that if K were real, we could calculate B by solving

∂zB = −j 1
2KB(z)B(z) (if Im[K] = 0) . (3)



B. The role of the imaginary part of K(z)

The elements of K(z) can be calculated with the coupled-
mode theory, which shows that only two physical phenomena
contribute to the imaginary part of K; these are Faraday
rotation and twisting the fiber [2]. The first effect has been
already ruled out when we assumed reciprocity. Regarding the
second, we can straightforwardly conclude that when the fiber
is not twisted, (3) holds and so B(z) can be calculated from
the measured values of KB(z), solving our problem. We can
reach, however, a more general conclusion.

Start by considering the transformation T(z) of the N -
dimensional Jones space given by

∂zT = Im[KT (z)]T(z) , T(0) = I ; (4)

it can be easily proved that since K is Hermitian, T is
orthogonal (i.e. TTT = I). With respect to this new reference
frame, the forward propagating field is described by the vector
â(z) = TT (z)ā(z) that obeys the equation

∂zâ = −jTT Re[K]Tâ(z) = −jKA(z)â(z) ; (5)

notice that KA(z) is real by construction.
Another important fact is that b̄(z) is invariant under the

transformation T. Indeed, â(z) = TT (z)F(z)ā(0) and hence
the forward-propagation matrix in the transformed space is
F̂(z) = TT (z)F(z); therefore, b̂(z) = F̂T (z)F̂(z)ā(0) =
b̄(z), where the last equality is a trivial consequence of the
orthogonality of T.

C. Physical interpretation

The above mathematical results have a clear physical in-
terpretation. To begin with, it can be shown that the transfor-
mation T(z) corresponds to rotating the physical reference
frame around the fiber axis by the same angle of rotation
induced by the twist on the modes [7]. Thus, the mathematical
invariance of b̄(z) is just representing the physical fact that
b̄(z) is measured at the fiber input, where the reference frame
is not changed since the twist-induced rotation is still zero
(T(0) = I). Moreover, owing to (5), we can conclude that,
from the point of view of the backscattering measurement,
the real fiber with coupling matrix K(z) is equivalent to a
fiber with the apparent coupling matrix

KA(z) = TT (z)Re[K(z)]T(z). (6)

Since KA is real, we can use (3) to calculate the backward-
propagation matrix B̂(z) with respect the rotate reference
frame and, finally, use (1) to calculate

KA(z) = 1
2B̂

†(z)KB(z)B̂(z) . (7)

The matrix Re[K] represents the effects of linear birefrin-
gence; in particular, its eigenvectors are the local modes of
propagation, whereas the eigenvalues are the corresponding
propagation constants. Given that T is orthogonal, Re[K]
and KA share the same eigenvalues, while their respective
eigenvectors are related by v̄ = Tv̄A.

We can therefore conclude that, by measuring b̄(z) we can
calculate KA(z) and hence the propagation constants of the

local modes along the optical fiber; regarding the eigenvectors
describing these local modes, they can be measured up to the
unknown rotation represented by T(z), which is due to the
possibly present twist. This is an intrinsic limit of distributed
measurements and is the N -dimensional generalisation of what
happens for polarization birefringence in single-mode fibers,
where the birefringence orientation and the apparent rotation
due to twist cannot be distinguished [12].

III. CONCLUDING REMARKS

The theoretical analysis presented in this work shows that
distributed measurements can provide an almost complete
characterization of the complex transfer matrix of the fiber
as a function of distance, with a residual uncertainty related
to twist. This can be however removed by carefully preparing
the experiment to avoid twist or by comparing measurements
taken in different and known twist conditions.

The theory is based on three assumptions. The first two are
absence of mode dependent loss and reciprocity. These are
not critical, since FMFs and MCFs typically have negligible
mode dependent loss and only strong magnetic fields can
break reciprocity; in any case, the theory can be generalized
also to nonreciprocal fibers. Differently, the third assumption–
i.e. negligible modal dispersion, is more critical and limits
the applicability of the proposed method to short samples of
low-dispersion fibers. For this reason, graded-index FMFs and
coulped-core MCFs seem the best candidates for successful
experimental tests.
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