Subspaces intersecting each element of a regulus in one point, André-Bruck-Bose representation and clubs

Michel Lavrauw^{*} Corrado Zanella[†]

Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Stradella S. Nicola 3 36100 Vicenza, Italy

{michel.lavrauw,corrado.zanella}@unipd.it

Submitted: Sep 3, 2014; Accepted: Feb 10, 2016; Published: Feb 19, 2016 Mathematics Subject Classifications: 51E20

Abstract

In this paper results are proved with applications to the orbits of (n-1)dimensional subspaces disjoint from a regulus \mathcal{R} of (n-1)-subspaces in $\mathrm{PG}(2n-1,q)$, with respect to the subgroup of $\mathrm{PGL}(2n,q)$ fixing \mathcal{R} . Such results have consequences on several aspects of finite geometry. First of all, a necessary condition for an (n-1)subspace U and a regulus \mathcal{R} of (n-1)-subspaces to be extendable to a Desarguesian spread is given. The description also allows to improve results in [2] on the André-Bruck-Bose representation of a q-subline in $\mathrm{PG}(2,q^n)$. Furthermore, the results in this paper are applied to the classification of linear sets, in particular clubs.

Keywords: club; linear set; subplane; André-Bruck-Bose representation; Segre variety

1 Introduction

The (n-1)-dimensional projective projective space over the field F is denoted by PG(n-1, F) or PG(n-1, q) if F is the finite field of order q (denoted by \mathbb{F}_q). The set of nonzero elements of a field F will be denoted by F^* , and similarly, the set of nonzero vectors of a vector space V by V^* . If L is an extension field \mathbb{F}_q , then the projective space defined by

^{*}The research of this author is supported by the Research Foundation Flanders-Belgium (FWO-Vlaanderen) and by a Progetto di Ateneo from Università di Padova (CPDA113797/11).

[†]The research of this author is supported by the Italian Ministry of Education, University and Research (PRIN 2012 project "Strutture geometriche, combinatoria e loro applicazioni").

the \mathbb{F}_q -vector space induced by L^d is also denoted by $\mathrm{PG}_q(L^d)$. For a (sets of) subspace(s) R of a vector space or a projective space, the notation $\langle R \rangle$ is used to denote the subspace generated by (the elements of) R. In case there is any ambiguity about the coefficient field, then the notation $\langle R \rangle_q$ will be used, to denote that the considered subspace is the one generated over \mathbb{F}_q . In this case the terminology of \mathbb{F}_q -span will sometimes be used. For example, if S is a set of two points on the projective line $\mathrm{PG}(1,q^2)$, then $\langle S \rangle_q$ denotes the \mathbb{F}_q -subline defined by S, while $\langle S \rangle_{q^2}$ coincides with the whole projective line $\mathrm{PG}(1,q^2)$.

For further notation and general definitions employed in this paper the reader is referred to [9, 11, 13].

For more information on Desarguesian spreads see [1].

This paper is structured as follows. In Section 2 subspaces which intersect each element of a regulus in one point are studied and a result from [4] is generalised. Section 3 contains one of the main results of this paper, determining the order of the normal rational curves obtained from *n*-dimensional subspaces on an external (n-1)-dimensional subspace with respect to a regulus in PG(2n-1, q), obtained from a point and a subline after applying the field reduction map to $PG(1, q^n)$. This leads to a necessary condition on the existence of a Desarguesian spread containing a subspace and regulus (Corollary 7). The André-Bruck-Bose representation of sublines and subplanes of a finite projective plane is studied¹ in Section 4 and improvements are obtained with respect to the known results [3, 14, 16, 2]. The results from the first sections of this paper are then applied to the classification problem for clubs of rank three in $PG(1,q^n)$ in Section 5. A study of the incidence structure of the clubs in $PG(1, q^n)$ after field reduction yields to a partial classification, concluding that the orbits of clubs under $PGL(2, q^n)$ are at least k - 1, where k stands for the number of divisors of n. The paper concludes with an appendix discussing a result motivated by Burau [4] for the complex numbers: the result is extended to general algebraically closed fields; a new proof is provided; and counterexamples are given to some of the arguments used in the original proof.

2 Subspaces intersecting each element of a regulus in one point

Let \mathcal{R} be a regulus of subspaces in a projective space and let S be any subspace of $\langle \mathcal{R} \rangle$. Questions about the properties of the set of intersection points, which for reasons of simplicity of notation we will denote by $S \cap \mathcal{R}$, often turn up while investigating objects in finite geometry. If S intersects each element of the regulus \mathcal{R} in a point, then the intersection $S \cap \mathcal{R}$ is a normal rational curve, see Lemma 1. This was already pointed out in [4, p.173] with a proof originally intended for complex projective spaces, but actually holding in a more general setting. The notation of [4] will be partly adopted.

The Segre variety representing the Cartesian product $PG(n, F) \times PG(m, F)$ in PG((n+1)(m+1)-1, F) is denoted by $S_{n,m,F}$. It is well known that $S_{n,m,F}$ contains two families $S_{n,m,F}^{I}$ and $S_{n,m,F}^{II}$ of maximal subspaces of dimensions n and m, respectively. When

¹A different study of \mathbb{F}_{q^k} -sublines and \mathbb{F}_{q^k} -subplanes of $\mathrm{PG}(2, q^n)$ in this representation can be found in [15].

convenient, the notation S^{I} or S^{II} will be used for a subspace belonging to the first or second family. The points of $\mathcal{S}_{n,m,F}$ may be represented as one-dimensional subspaces spanned by rank one $(m+1) \times (n+1)$ matrices. This is the standard example of a regular embedding of product spaces, see [17]. Note that in the finite case it is possible to embed product spaces in projective spaces of smaller dimension (see e.g. [7]). A regulus \mathcal{R} of (n-1)-dimensional subspaces can also be defined as $\mathcal{S}_{n-1,1,F}^{I}$.

Lemma 1. Let n > 1 be an integer, and F a field. Let S_t be a t-subspace of PG(2n-1, F) intersecting each $S^I \in \mathcal{S}_{n-1,1,F}^I$ in precisely one point. Define $\Phi = S_t \cap \mathcal{S}_{n-1,1,F}$, and assume $\langle \Phi \rangle = S_t$. Then $|F| \ge t$ and the following properties hold.

- (i) The set Φ is a normal rational curve of order t.
- (ii) Let $\Xi^I \in S_{n-1,1,F}^I$. Then the set $S(\Phi, \Xi^I)$ of the intersections of Ξ^I with all transversal lines l^{II} such that $l^{II} \cap \Phi \neq \emptyset$ is a normal rational curve of order t or t-1 if |F| = t, and of order t-1 if |F| > t.
- (iii) If Φ is contained in a subvariety $S_{t-1,1,F}$ of $S_{n-1,1,F}$, then homogeneous coordinates can be chosen such that Φ is represented parametrically by

$$\left\langle \begin{pmatrix} y_0^t & y_0^{t-1}y_1 & \dots & y_0y_1^{t-1} \\ y_0^{t-1}y_1 & y_0^{t-2}y_1^2 & \dots & y_1^t \end{pmatrix} \right\rangle, \quad (y_0, y_1) \in (F^2)^*, \tag{1}$$

and $S(\Phi, \Xi^{I})$, for z_0 , z_1 depending only on Ξ^{I} , by

$$\left\langle \begin{pmatrix} y_0^{t-1}z_0 & y_0^{t-2}y_1z_0 & \dots & y_1^{t-1}z_0 \\ y_0^{t-1}z_1 & y_0^{t-2}y_1z_1 & \dots & y_1^{t-1}z_1 \end{pmatrix} \right\rangle, \quad (y_0, y_1) \in (F^2)^*.$$

$$(2)$$

Proof. (i), (iii) The proof in [4, Sect.41 no.3], which is offered for $F = \mathbb{C}$, works exactly the same provided that |F| > t or, more generally, that Φ is contained in some subvariety $S_{t-1,1,F}$ of $S_{n-1,1,F}$. In case $|F| \leq t$, the size of Φ being |F| + 1 implies |F| = t, so Φ is just a set of t + 1 independent points in a subspace isomorphic to PG(t, t), hence Φ is a normal rational curve of order t.

(*ii*) The case |F| > t is proved in [4] immediately after the corollary at p. 175. If $|F| \leq t$, then |F| = t and two cases are possible. If Φ is contained in some $S_{t-1,1,F} \subseteq S_{n-1,1,F}$, Burau's proof is still valid as was mentioned in case (ii); so, $S(\Phi, \Xi^I)$ is a normal rational curve of order t - 1 = |F| - 1. Otherwise $S(\Phi, \Xi^I)$ is an independent (t + 1)-set, hence a normal rational curve of order |F|.

Remark 2. If |F| = t both cases in Lemma 1 (ii) can occur. The following two examples use the Segre embedding $\sigma = \sigma_{t-1,1,F}$ of the product space $PG(t-1,t) \times PG(1,t)$ in PG(2t-1,t). Let $\{s_0, s_1, \ldots, s_t\}$ be the set of points on PG(1,t) and suppose $\{r_0, r_1, \ldots, r_t\}$ is a set of t + 1 points in PG(t-1,t). Put $\Xi^I = \sigma(PG(1,t) \times s_0)$ and $\Phi := \{\sigma(r_i \times s_i) : i = 0, 1, \ldots, t\}$. Then Φ consists of t + 1 points on the Segre variety $S_{t-1,1,F}$. Depending on the set $\{r_0, r_1, \ldots, r_t\}$ one obtains the two cases described in Lemma 1 (ii).

- a. If $\{r_0, r_1, \ldots, r_t\}$ is a frame of a hyperplane of PG(t-1,t) then Φ generates a tdimensional subspace of PG(2t-1,t) intersecting $S_{t-1,1,F}$ in Φ and $S(\Phi, \Xi^I)$ is a normal rational curve of order t-1.
- b. If $\{r_0, r_1, \ldots, r_t\}$ generates PG(t-1, t) then Φ generates a t-dimensional subspace of PG(2t-1, t) intersecting $S_{t-1,1,F}$ in Φ and $S(\Phi, \Xi^I)$ is a normal rational curve of order t.

Remark 3. By (1) and (2), the map $\alpha : \Phi \to S(\Phi, \Xi^I)$ defined by the condition that X and X^{α} are on a common line in $\mathcal{S}_{n-1,1,F}^{II}$ is related to a projectivity between the parametrizing projective lines. Such an α is also called a projectivity.

3 The order of normal rational curves contained in $\mathcal{S}_{n-1,1,q}$

Here $n \ge 2$ is an integer. The field reduction map $\mathcal{F}_{m,n,q}$ from $\mathrm{PG}(m-1,q^n)$ to $\mathrm{PG}(mn-1,q)$ will also be denoted by \mathcal{F} . If S is a set of points, in $\mathrm{PG}(m-1,q^n)$, then $\mathcal{F}(S)$ is a set of subspaces, whose union, as a set of points will be denoted by $\tilde{\mathcal{F}}(S)$. The \mathbb{F}_{q^h} -span of a subset b of $\mathrm{PG}(d,q^n)$ is denoted by $\langle b \rangle_{q^h}$.

Proposition 4. Let b be a q-subline of $PG(1, q^n)$, and let Θ be a point of $PG(1, q^n)$. Let $(1, \zeta)$ and $(1, \zeta')$ be homogeneous coordinates of Θ with respect to two reference frames for $\langle b \rangle_{q^n}$, each of which consists of three points of b. Then $\mathbb{F}_q(\zeta) = \mathbb{F}_q(\zeta')$.

Proof. Homogeneous coordinates of a point in both reference frames, say (x_0, x_1) and (x'_0, x'_1) , are related by an equation of the form $\rho(x'_0 x'_1)^T = A(x_0 x_1)^T$, $\rho \in \mathbb{F}_{q^n}^*$, $A \in \mathrm{GL}(2,q)$. Hence $(\rho \ \rho \zeta')^T = A(1 \ \zeta)^T$ and this implies $\zeta' \in \mathbb{F}_q(\zeta)$. The proof of $\zeta \in \mathbb{F}_q(\zeta')$ is similar.

By Proposition 4, given a q-subline b in a finite projective space $PG(d, q^n)$ and a point $\Theta \in \langle b \rangle_{q^n}$, with homogeneous coordinates $(1, \zeta)$ with respect to a reference frame of $\langle b \rangle_{q^n}$ consisting of three points of b, the *degree* of Θ over b, denoted by $[\Theta : b]$, is well-defined in terms of the field extension degree as follows: $[\Theta : b] = [\mathbb{F}_q(\zeta) : \mathbb{F}_q]$.

This $[\Theta : b]$ also equals the minimum integer m such that a subgeometry $\Sigma \cong \mathrm{PG}(d, q^m)$ exists containing both b and Θ .

Proposition 5. Any n-subspace of PG(2n-1,q) containing an (n-1)-subspace $S^{I} \in S^{I}_{n-1,1,q}$ intersects $S_{n-1,1,q}$ in the union of S^{I} and a line in $S^{II}_{n-1,1,q}$.

Theorem 6. Let b be a q-subline of $PG(1, q^n)$, and $\Theta \notin b$ a point of $PG(1, q^n)$. Then in PG(2n - 1, q) any n-subspace \mathcal{H} containing $\mathcal{F}(\Theta)$ intersects the Segre variety $\mathcal{S}_{n-1,1,q} = \tilde{\mathcal{F}}(b)$, in a normal rational curve whose order is $\min\{q, [\Theta : b]\}$.

Proof. Set $L = \mathbb{F}_{q^n}$, $F = \mathbb{F}_q$. Without loss of generality, $PG(2n - 1, q) = PG_q(L^2)$, $\mathcal{F}(b) = \{L(x, y) \mid (x, y) \in (F^2)^*\}^2$, and $\Theta = L(1, \xi)$ with $[F(\xi) : F] = [\Theta : b]$. The

²For
$$x, y \in L$$
, $F(x, y) = \langle (x, y) \rangle_q$, and $L(x, y) = \langle (x, y) \rangle_{q^n}$.

The electronic journal of combinatorics 23(1) (2016), #P1.37

n-subspace \mathcal{H} intersects L(1,0) in one point Y of the form $Y = F(\theta,0), \theta \in L^*$. For any $x \in F$, seeking for the intersection $\langle \mathcal{F}(\Theta), Y \rangle_q \cap L(x,1)$, or

$$\langle L(1,\xi), F(\theta,0) \rangle_q \cap L(x,1)$$

gives two equations in $\alpha, \beta \in L$:

$$\alpha + \theta = \beta x, \quad \alpha \xi = \beta,$$

whence $\beta = \theta(x - \xi^{-1})^{-1}$. The intersection point is then $F(x\theta(x - \xi^{-1})^{-1}, \theta(x - \xi^{-1})^{-1})$. So, for $\Xi = L(0, 1)$, the set of the intersections of Ξ with all lines in $\mathcal{S}_{n-1,1,q}^{II}$ which meet \mathcal{H} is

$$S(\mathcal{H} \cap \mathcal{S}_{n-1,1,q}, \Xi) = \{ F(0, \theta(x - \xi^{-1})^{-1}) \mid x \in \mathcal{F}_q \} \cup \{ F(0, \theta) \}.$$

This $S(\mathcal{H} \cap \mathcal{S}_{n-1,1,q}, \Xi)$ is obtained by inversion from the line joining the points $F(0, \theta^{-1})$ and $F(0, \theta^{-1}\xi^{-1})$. By [10, Theorem 5], \mathcal{C}_Y is a normal rational curve of order $\delta' = \min\{q, [F(\xi^{-1}) : F] - 1\} = \min\{q, [\Theta : b] - 1\}$. Now apply lemma 1 for $S_t = \langle \mathcal{H} \cap \mathcal{S}_{n-1,1,q} \rangle_q$: if $t \ge q$, then t = q and $\delta' = q$ or $\delta' = q - 1$, so $[\Theta : b] \ge q$ and $t = \min\{q, [\Theta : b]\}$. If on the contrary t < q, then $t - 1 = \delta' = [\Theta : b] - 1$, so $t = [\Theta : b]$ and $t = \min\{q, [\Theta : b]\}$ again.

An important consequence of the above result answers the question of the existence of a Desarguesian spread containing a given regulus \mathcal{R} and a subspace disjoint from \mathcal{R} .

Corollary 7. If a regulus $\mathcal{R} = S_{n-1,1,q}$ and an (n-1)-dimensional subspace U, disjoint from \mathcal{R} , in PG(2n-1,q) are contained in a Desarguesian spread then there is an integer c such that any n-subspace \mathcal{H} containing U intersects \mathcal{R} in a normal rational curve of order c.

The following remark illustrates that this necessary condition is not always satisfied.

Remark 8. For n > 2 by using the package FinInG [5] of GAP [6] examples can be given of (n-1)-subspaces disjoint from $S_{n-1,1,q}$ contained in *n*-subspaces intersecting the Segre variety in normal rational curves of distinct orders. We include one explicit example. Let q = 4, $\mathbb{F}_q = \mathbb{F}_2(\omega)$, with $\omega^2 + \omega + 1 = 0$. Let \mathcal{R} be the regulus of 3-dimensional subspaces of PG(7, 4) obtained from the standard subline PG(1, q) in PG(1, q⁴), and put

$$S_3 := \langle (1, 0, 0, 0, \omega^2, 1, 0, 1), (0, 1, 0, 0, 1, \omega^2, 0, \omega^2), \\ (0, 0, 1, 0, 0, \omega, 1, \omega), (0, 0, 0, 1, \omega^2, \omega^2, \omega, 1) \rangle.$$

Then S_3 is a three-dimensional subspace disjoint from the regulus \mathcal{R} . Moreover, the 4dimensional subspace $\langle S_3, (1,0,0,0,0,0,0,0) \rangle$ intersects the regulus \mathcal{R} in a normal rational curve of order 4, while the 4-dimensional subspace $\langle S_3, (0,1,0,\omega^2,0,0,0,0) \rangle$ intersects \mathcal{R} in a conic.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(1) (2016), #P1.37

4 André-Bruck-Bose representation

The André-Bruck-Bose representation of a Desarguesian affine plane of order q^n is related to the image of $PG(2, q^n)$, under the field reduction map \mathcal{F} , by means of the following straightforward result.

Proposition 9. Let \mathcal{D} be the Desarguesian spread in $\mathrm{PG}(3n-1,q)$ obtained after applying the field reduction map \mathcal{F} to the set of points of $\mathrm{PG}(2,q^n)$, l_{∞} a line in $\mathrm{PG}(2,q^n)$, and \mathcal{K} a (2n)-subspace of $\mathrm{PG}(3n-1,q)$, containing the spread $\mathcal{F}(l_{\infty})$. Take $\mathrm{PG}(2,q^n) \setminus l_{\infty}$ and $\mathcal{K} \setminus \langle \mathcal{F}(l_{\infty}) \rangle_q$ as representatives of $\mathrm{AG}(2,q^n)$ and $\mathrm{AG}(2n,q)$, respectively. Then the map φ : $\mathrm{AG}(2,q^n) \to \mathrm{AG}(2n,q)$ defined by $\varphi(X) = \mathcal{F}(X) \cap \mathcal{K}$ for any $X \in \mathrm{AG}(2,q^n)$ is a bijection, mapping lines of $\mathrm{AG}(2,q^n)$ into n-subspaces of $\mathrm{AG}(2n,q)$ whose (n-1)subspaces at infinity belong to the spread $\mathcal{F}(l_{\infty})$.

The notation in Proposition 9 is assumed to hold in the whole section. The following result improves [2, Theorems 3.3 and 3.5], by determining the order of the involved normal rational curves.

Theorem 10. Let b be a q-subline of $PG(2, q^n)$, not contained in l_{∞} . Set $\Theta = \langle b \rangle_{q^n} \cap l_{\infty}$. Then the André-Bruck-Bose representation $\varphi(b \setminus l_{\infty})$ is the affine part of a normal rational curve whose order is $\delta = \min\{q, [\Theta : b]\}$. More precisely, if $\delta = 1$, then $\varphi(b \setminus l_{\infty})$ is an affine line; if $\delta > 1$, then $b \cap l_{\infty} = \emptyset$, and $\varphi(b)$ is a normal rational curve with no points at infinity.

Proof. The intersection $\mathcal{H} = \langle \mathcal{F}(b) \rangle_q \cap \mathcal{K}$ is an *n*-space containing $\mathcal{F}(\Theta)$, and contained in the span of the Segre variety $\mathcal{S}_{n-1,1,q} = \tilde{\mathcal{F}}(b)$, as defined at the start of Section 3. The result follows from Proposition 5 and Theorem 6.

The results in [2, Theorems 3.3 and 3.5] also characterize the normal rational curves arising from q-sublines in $AG(2, q^n)$.

In [3, 14, 16] for n = 2 and [2, Theorem 3.6 (a)(b)] for any n the André-Bruck-Bose representation of a q-subplane tangent to a line at the infinity is described. Further properties are stated in the following theorem:

Theorem 11. Let B be a q-subplane of $PG(2, q^n)$ that is tangent to l_{∞} at the point T. Let b be a line of B not through T, $\Theta = \langle b \rangle_{q^n} \cap l_{\infty}$, and $\delta = \min\{q, [\Theta : b]\}$. Then there are a normal rational curve C_0 of order δ in the n-subspace $\varphi(\langle b \rangle_{q^n})$, a normal rational curve $C_1 \subset \mathcal{F}(T)$ of order δ' , with

$$\delta' \begin{cases} = [\Theta:b] - 1 & \text{for } q > [\Theta:b] \\ \in \{q-1,q\} & \text{otherwise,} \end{cases}$$
(3)

and a projectivity $\kappa : C_0 \to C_1$ (in the sense of Remark 3), such that $\varphi(B \setminus l_\infty)$ is the ruled surface union of all lines XX^{κ} for $X \in C_0$.

Proof. By Theorem 10, $C_0 := \varphi(b)$ is a normal rational curve of order δ in the *n*-subspace $\varphi(\langle b \rangle_{q^n} \setminus l_{\infty})$, and for any $P = \varphi(X) \in C_0$, the subline TX of B corresponds to an affine line PP^{κ} with $P^{\kappa} \in \mathcal{F}(T)$ at infinity. Define $C_1 = \{P^{\kappa} \mid P \in C_0\}$.

By the field reduction map $\mathcal{F} = \mathcal{F}_{3,n,q}$, the subplane *B* is mapped to $\mathcal{F}(B)$ which is the set of all maximal subspaces of the first family in $\mathcal{S}_{n-1,2,q} \subset \mathrm{PG}(3n-1,q)$. Considering \mathbb{F}_{q^n} as an \mathbb{F}_q -vector space, the homomorphism

$$\mathbb{F}_{q^n} \times \mathbb{F}_q^3 \to \mathbb{F}_{q^n} \otimes \mathbb{F}_q^3 : \ (\lambda, v) \mapsto \lambda \otimes v$$

corresponds to a projective embedding $g : \mathrm{PG}(n-1,q) \times B \to \mathcal{S}_{n-1,2,q}$ whose image is $\mathcal{S}_{n-1,2,q}$, and such that $\mathcal{F}(X) = (\mathrm{PG}(n-1,q) \times X)^g$ for any point X in B. It holds $\varphi(B \setminus l_{\infty}) = \mathcal{S}_{n-1,2,q} \cap \mathcal{K} \setminus \mathcal{F}(T)$. For any point U in B define

$$\kappa_U : (X, Y)^g \in \mathcal{S}_{n-1,2,q} \mapsto (X, U)^g \in \mathcal{F}(U).$$

Note that for any $Y \in B$, the restriction of κ_U to $\mathcal{F}(Y)$ is a projectivity. For any $U \in b$, using the notation from Lemma 1 it holds $\mathcal{C}_0^{\kappa_U} = S(\mathcal{C}_0, \mathcal{F}(U))$, and as a consequence, $\mathcal{C}_0^{\kappa_U}$ is a normal rational curve of order δ' as in (3). Now, since for any $P \in \mathcal{C}_0$, say $P = (X_P, Y_P)^g$, the points P, P^{κ} and P^{κ_T} are on the plane $(X_P \times B)^g \in \mathcal{S}_{n-1,2,q}^{II}$, and $P^{\kappa}, P^{\kappa_T} \in \mathcal{F}(T)$, it follows that $P^{\kappa} = P^{\kappa_T}$. It also follows that $\mathcal{C}_1 = \mathcal{C}_0^{\kappa_U \kappa_T} = S(\mathcal{C}_0, \mathcal{F}(U))^{\kappa_T}$, and hence \mathcal{C}_1 is a normal rational curve of order δ' as in (3). Finally, $\kappa_U : \mathcal{C}_0 \to S(\mathcal{C}_0, \mathcal{F}(U))$ is a projectivity as defined in Remark 3, and hence so is κ .

5 On the classification of clubs

An \mathbb{F}_q -club (or simply a club) in $\mathrm{PG}(1, q^n)$ is an \mathbb{F}_q -linear set of rank three, having a point of weight two, called the *head* of the club. An \mathbb{F}_q -club has $q^2 + 1$ points, and the non-head points have weight one. From now on it will be assumed that n > 2. The next proposition is a straightforward consequence of the representation of linear sets as projections of subgeometries [12, Theorem 2].

Proposition 12. Let L be an \mathbb{F}_q -club in $\mathrm{PG}(1, q^n) \subset \mathrm{PG}(2, q^n)$. Then there are a q-subplane Σ of $\mathrm{PG}(2, q^n)$, a q-subline b in Σ , and a point $\Theta \in \langle b \rangle_{q^n} \setminus b$, such that L is the projection of Σ from the center Θ onto the axis $\mathrm{PG}(1, q^n)$.

As before the notation \mathcal{F} and $\tilde{\mathcal{F}}$ is used, where $\mathcal{F} = \mathcal{F}_{2,n,q}$ denotes the field reduction map from $\mathrm{PG}(1,q^n)$ to $\mathrm{PG}(2n-1,q)$.

Proposition 13. Let L be an \mathbb{F}_q -club of $\mathrm{PG}(1, q^n)$ with head Υ . Then $\tilde{\mathcal{F}}(L)$ contains two collections of subspaces, say F_1 and F_2 , satisfying the following properties.

- (i) The subspaces in F_1 are (n-1)-dimensional, are pairwise disjoint, and any subspace in F_1 is disjoint from $\mathcal{F}(\Upsilon)$.
- (ii) Any subspace in F_2 is a plane and intersects $\mathcal{F}(\Upsilon)$ in precisely a line.

- (iii) Any point of $\mathcal{F}(\Upsilon)$ belongs to exactly q+1 planes in F_2 .
- (iv) If L is not isomorphic to $PG(1,q^2)$, and l is any line of PG(2n-1,q) contained in $\tilde{\mathcal{F}}(L)$, then l is contained in $\mathcal{F}(\Upsilon)$ or in a subspace in $F_1 \cup F_2$.

Proof. The assumptions imply the existence of Σ and a *q*-subline *b* in Σ as in Proposition 12. The assertions are a consequence of the fact that $\tilde{\mathcal{F}}(\Sigma)$ is a Segre variety $\mathcal{S}_{n-1,2,q}$ in $\mathrm{PG}(3n-1,q)$. Let

$$p_1: \operatorname{PG}(2,q^n) \setminus \Theta \to \operatorname{PG}(1,q^n)$$

be the projection with center Θ , associated with

 $p_2: \mathrm{PG}(3n-1,q) \setminus \mathcal{F}(\Theta) \to \mathrm{PG}(2n-1,q).$

The collections F_1 and F_2 are defined as follows:

$$F_1 = \{ \mathcal{F}(p_1(X)) \mid X \in \Sigma \setminus b \} = \mathcal{F}(L) \setminus \mathcal{F}(\Upsilon), \quad F_2 = \{ p_2(V^{II}) \mid V^{II} \in \tilde{\mathcal{F}}(\Sigma)^{II} \}.$$

The assertion (i) is straightforward, as well as dim(V) = 2 for any $V \in F_2$. For any $V^{II} \in \tilde{\mathcal{F}}(\Sigma)^{II}$, the intersection $V^{II} \cap \langle \tilde{\mathcal{F}}(b) \rangle_q$ is a line, and this with $p_2^{-1}(\mathcal{F}(\Upsilon)) = \langle \tilde{\mathcal{F}}(b) \rangle_q \setminus \mathcal{F}(\Theta)$ implies the second assertion in (ii). Next, let P be a point in $\mathcal{F}(\Upsilon)$. A plane $V = p_2(V^{II})$ contains P if, and only if, V^{II} intersects the n-subspace $\langle \mathcal{F}(\Theta), P \rangle_q$, that is, V^{II} intersects the normal rational curve $\mathcal{S}_{n-1,2,q} \cap \langle \mathcal{F}(\Theta), P \rangle_q$; this implies (iii).

Assume that a line $l \subset \tilde{\mathcal{F}}(L)$ exists which is neither contained in $\mathcal{F}(\Upsilon)$, nor in a $T \in F_1 \cup F_2$. Let Q be a point in $l \setminus \mathcal{F}(\Upsilon)$, and let $V \in F_2$ such that $Q \in V$. It holds $L = \mathcal{B}(V)$. Then $\mathcal{B}(l)$ is a q-subline of L. Suppose that a line l' in V exists such that $\mathcal{B}(l') = \mathcal{B}(l)$. Since $\mathcal{B}(Q) \neq \mathcal{B}(Q')$ for any $Q' \in V$, $Q' \neq Q$, the line l' contains Q. Then l, l' are two distinct transversal lines in $\mathcal{B}(l)^{II}$, a contradiction. Hence $\mathcal{B}(l') \neq \mathcal{B}(l)$ for any line l' in V, that is, $\mathcal{B}(l)$ is a so-called *irregular subline* [8]. By [8, Corollary 13], no irregular subline exists in L, and this contradiction implies (iv).

Proposition 14. Let L be an \mathbb{F}_q -club with head Υ . Let Θ be the point and b be the subline as defined in Proposition 12. Then for any point X in $\mathcal{F}(\Upsilon)$, the intersection lines of $\mathcal{F}(\Upsilon)$ with any q distinct planes in F_2 containing X span an s-dimensional subspace, where

(i)
$$s = [\Theta:b] - 1$$
 if $q > [\Theta:b];$

(ii)
$$s \in \{q-1,q\}$$
 if $q \leq [\Theta:b]$.

Proof. Let p_2 be the projection map as defined in the proof of Proposition 13, $X = p_2(P)$, and $\mathcal{H} = \langle \mathcal{F}(\Theta), P \rangle_q$. For any plane $V = p_2(V^{II})$, it holds $X \in V$ if, and only if $V^{II} \cap \mathcal{H} \neq \emptyset$. The intersection $\mathcal{H} \cap \tilde{\mathcal{F}}(b)$ is a normal rational curve of order min $\{q, [\Theta : b]\}$ (cf. Theorem 6). Let $V_0 = p_2(V_0^{II})$ be the unique plane of F_2 through X distinct from the q planes chosen in the assumptions (cf. Proposition 13). Let $Q = \tilde{\mathcal{F}}(b) \cap V_0^{II}; \mathcal{B}(Q)$ is an (n-1)-subspace of $\tilde{\mathcal{F}}(b)^I$. Such $\mathcal{B}(Q)$ is mapped onto $\mathcal{B}(X) = \mathcal{F}(\Upsilon)$ by p_2 . Assume $V_i = p_2(V_i^{II}), i = 1, 2, \ldots, q$, are the q planes chosen in the assumptions. Any V_i^{II} , $i = 1, 2, \ldots, q$, intersects \mathcal{H} , hence $V_i^{II} \cap \mathcal{B}(Q)$ is the intersection of $\mathcal{B}(Q)$ with a transversal line of $\tilde{\mathcal{F}}(b)$ intersecting the normal rational curve $\mathcal{H} \cap \tilde{\mathcal{F}}(b)$. By Lemma 1 *(ii)*, the set

$$S = \{ V_i^{II} \cap \mathcal{B}(Q) \mid i = 1, 2, \dots, q \} \cup \{ Q \}$$

is a normal rational curve of order s where s takes the values as stated in (i) and (ii). Since $V_i \cap \mathcal{F}(\Upsilon)$ is the line through X and a point of $p_2(S)$, distinct from X, the span of the intersection lines is the same as the span of $p_2(S)$.

Theorem 15. Let $\mathcal{I}_{n,q}$ be the set of integers h dividing n and such that 1 < h < q. For any $h \in \mathcal{I}_{n,q}$, let L_h be the linear set obtained by projecting a q-subplane Σ of $PG(2, q^n)$ from a point Θ_h collinear with a q-subline b in Σ and such that $[\Theta_h : b] = h$. Then the set $\Lambda = \{L_h \mid h \in \mathcal{I}_{n,q}\}$ contains \mathbb{F}_q -clubs in $PG(1, q^n)$ all belonging to distinct orbits under $PGL(2, q^n)$.

Proof. If n is odd, then no club is isomorphic to $PG(1, q^2)$. So, by Proposition 13 *(iv)*, the families F_1 and F_2 are uniquely determined. The thesis is a consequence of Proposition 14, taking into account that if L and L' are projectively equivalent, then $\tilde{\mathcal{F}}(L)$ and $\tilde{\mathcal{F}}(L')$ are projectively equivalent in PG(2n-1,q).

In order to deal with the case n even, it is enough to show that in Λ at most one club is isomorphic to $\mathrm{PG}(1,q^2)$. So assume $L_h \cong \mathrm{PG}(1,q^2)$. Then $\tilde{\mathcal{F}}(L_h)$ has a partition \mathcal{P}_1 in (n-1)-subspaces, and a partition \mathcal{P}_2 in 3-subspaces. From [8, Lemma 11] it can be deduced that any line contained in $\tilde{\mathcal{F}}(L_h)$ is contained in an element of \mathcal{P}_1 or \mathcal{P}_2 . The intersections of a subspace U of a family \mathcal{P}_i with the elements of the other family form a line spread of U. Hence all planes in F_2 are contained in 3-subspaces of \mathcal{P}_2 , and all planes of F_2 through a point X in $\mathcal{F}(\Upsilon)$ meet $\mathcal{F}(\Upsilon)$ in the same line. By Proposition 14 this implies h = 2.

Acknowledgement

The authors thank Hans Havlicek for his helpful remarks in the preparation of this paper.

References

- [1] L. BADER, G. LUNARDON: Desarguesian spreads. Ric. Mat. 60 (2011), 15–37.
- [2] S.G. BARWICK, WEN-AI JACKSON: Sublines and subplanes of $PG(2, q^3)$ in the Bruck-Bose representation in PG(6, q). Finite Fields App. **18** (2012), 93–107.
- [3] R.C. BOSE, J.W. FREEMAN, D.G. GLYNN: On the intersection of two Baer subplanes in a finite projective plane. Utilitas Math. 17 (1980), 65–77.
- [4] W. BURAU: *Mehrdimensionale projektive und höhere Geometrie*. VEB Deutscher Verlag der Wissenschaften, Berlin, 1961.
- [5] FinInG a GAP package Finite Incidence Geometry, version 1.0, 2014. Bamberg, J.; Betten, A.; Cara, Ph.; De Beule, J.; Lavrauw, M. and Neunhöffer, M.

- [6] GAP Groups, Algorithms, and Programming, Version 4.7.5; 2014. (http://www.gap-system.org)
- [7] M. LAVRAUW, J. SHEEKEY, C. ZANELLA: On embeddings of minimum dimension of $PG(n,q) \times PG(n,q)$. Des. Codes Cryptogr. **74** (2015), no. 2, 427–440.
- [8] M. LAVRAUW, G. VAN DE VOORDE: On linear sets on a projective line. Des. Codes Cryptogr. 56 (2010), 89–104.
- [9] M. LAVRAUW, G. VAN DE VOORDE: Field reduction and linear sets in finite geometry. Topics in finite fields, 271–293, Contemp. Math., 632, Amer. Math. Soc., Providence, RI, 2015.
- [10] M. LAVRAUW, C. ZANELLA: Geometry of the inversion in a finite field and partitions of $PG(2^k 1, q)$ in normal rational curves. J. Geom. **105** (2014), 103–110.
- [11] M. LAVRAUW, C. ZANELLA: Subgeometries and linear sets on a projective line. Finite Fields Appl. 34 (2015), 95–106.
- [12] G. LUNARDON, O. POLVERINO: Translation ovoids of orthogonal polar spaces. Forum Math. 16 (2004), 663–669.
- [13] O. POLVERINO: Linear sets in finite projective spaces. Discrete Math. **310** (2010), 3096–3107.
- [14] C.T. QUINN, L.R.A. CASSE: Concerning a characterisation of Buekenhout-Metz unitals, J. Geom. 52 (1995), 159–167.
- [15] S. ROTTEY, J. SHEEKEY, G. VAN DE VOORDE: Subgeometries in the André/Bruck-Bose representation. Finite Fields and Their Applications, 35 (2015) 115–138.
- [16] R. VINCENTI: Alcuni tipi di varietà \mathcal{V}_2 di $S_{4,q}$ e sottopiani di Baer. Boll. Un. Mat. Ital. Suppl. (1980), no. 2, 31–44.
- [17] C. ZANELLA: Universal properties of the Corrado Segre embedding. Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 65–79.

A Appendix: On a result in [4]

In [4, p.175] the following result (Korollar) is stated for $F = \mathbb{C}$.

Corollary 16. Let F be an algebraically closed field. If an s-subspace S_s of PG(2s-1, F) meets all $S^I \in \mathcal{S}_{s-1,1,F}^I$ only in points, then such points span S_s .

In [4] the previous result is seemingly proved using methods valid in any field with enough elements. However such a generalisation would contradict Theorem 3.3. In the opinion of the authors the proof in [4] is obtained using an erroneous argument. As a matter of fact, it is claimed in the proof at page 174 that the assumption $\langle \Phi \rangle = S_s$ is not used. However the contradiction $S_s \subset \langle S_{s-2,1,\mathbb{C}} \rangle$ is inferred from $\Phi \subset S_{s-2,1,\mathbb{C}}$.

A further counterexample, which exists whenever a hyperbolic quadric $Q^+(3, F)$ in a three-dimensional projective space admits an external line (a condition which is not met when the field F is algebraically closed) is the following. If ℓ is the line corresponding to the two-dimensional vector space $\langle e_1 \rangle \otimes \langle e'_1, e'_2 \rangle$ and m is a line external to the hyperbolic quadric obtained by the intersection of the Segre variety $S_{2,1,F}$ with the 3-space corresponding to the vector space $\langle e_2, e_3 \rangle \otimes \langle e'_1, e'_2 \rangle$, then the 3-dimensional subspace $\langle \ell, m \rangle$ intersects $S_{2,1,F}$ in the line ℓ belonging to $S_{2,1,F}^{II}$.

For the sake of completeness, a proof for corollary 16 is given.

Proof of corollary 16. Define

$$S_t = \langle S_s \cap \mathcal{S}_{s-1,1,F} \rangle, \ t = \dim S_t \tag{4}$$

and suppose t < s. It is proved in [4, p.173 (6)] that $S_t \subset \langle S_{t-1,1,F} \rangle$ for some $S_{t-1,1,F} \subset S_{s-1,1,F}$.

Note that $S_s \cap \langle \mathcal{S}_{t-1,1,F} \rangle = S_t$; otherwise, comparing dimensions, S_s would intersect each $S^I \in \mathcal{S}_{t-1,1,F}$ in more than one point. Now choose

- a subspace $S_{s-t-1} \subset S_s$ such that $S_{s-t-1} \cap \langle \mathcal{S}_{t-1,1,F} \rangle = \emptyset$;
- a Segre variety $\mathcal{S}_{s-t-1,1,F} \subset \mathcal{S}_{s-1,1,F}$, such that $\langle \mathcal{S}_{s-t-1,1,F} \rangle \cap \langle \mathcal{S}_{t-1,1,F} \rangle = \emptyset$;
- two distinct $A^I, B^I \in \mathcal{S}^I_{s-t-1,1,F}$.

Since $\langle S_{s-t-1,1,F} \rangle$ and $\langle S_{t-1,1,F} \rangle$ are complementary subspaces of $\langle S_{s-1,1,F} \rangle$, a projection map

$$\pi: \langle \mathcal{S}_{s-1,1,F} \rangle \setminus \langle \mathcal{S}_{t-1,1,F} \rangle \to \langle \mathcal{S}_{s-t-1,1,F} \rangle$$

is defined by $\pi(P) = \langle P \cup \mathcal{S}_{t-1,1,F} \rangle \cap \langle \mathcal{S}_{s-t-1,1,F} \rangle.$

Now suppose $\pi(S_{s-t-1}) \cap S_{s-t-1,1,F} = \emptyset$. In $\langle S_{s-t-1,1,F} \rangle$ consider

- the regulus \mathcal{R} corresponding to $\mathcal{S}^{I}_{s-t-1,1,F}$, and the projectivity $\kappa : A^{I} \to B^{I}$ such that, for any $P \in A^{I}$, the line $\langle P, \kappa(P) \rangle$ belongs to $\mathcal{S}^{II}_{s-t-1,1,F}$;
- the regulus \mathcal{R}' containing A^I , B^I and $\pi(S_{s-t-1})$, and the projectivity $\kappa' : A^I \to B^I$ such that, for any $P \in A^I$, the line $\langle P, \kappa'(P) \rangle$ is a transversal line of \mathcal{R}' .

Since F is an algebraically closed field, $\kappa'^{-1} \circ \kappa$ has a fixed point P. Therefore $\kappa(P) = \kappa'(P)$, so \mathcal{R} and \mathcal{R}' have a common transversal. This contradicts $\pi(S_{s-t-1}) \cap \mathcal{S}_{s-t-1,1,F} = \emptyset$. So, a point $P \in S_{s-t-1}$ exists such that $\pi(P) \in \mathcal{S}_{s-t-1,1,F}$.

Next, let $C^{I} \in \mathcal{S}_{s-1,1,F}^{I}$ be such that $\pi(P) \in C^{I}$, and Q the point in $\langle \mathcal{S}_{t-1,1,F} \rangle$ such that Q, P, and $\pi(P)$ are collinear. If $Q \in S_t$, then $\pi(P) \in S_s$, a contradiction; also $Q \in C^{I}$ leads to a contradiction (since it implies $P \in C^{I}$). So $Q \notin S_t \cup C^{I}$ and by a dimension argument two points $Q_1 \in C^{I} \setminus S_t$ and $Q_2 \in S_t \setminus C^{I}$ exist such that Q, Q_1 and Q_2 are collinear: they are on the unique line through Q meeting both $C^{I} \cap \langle \mathcal{S}_{t-1,1,F} \rangle$ and a (t-1) subspace of S_t disjoint from C^{I} .

The plane $\langle P, Q_1, Q_2 \rangle$ contains the lines $PQ_2 \subset S_s$ and $\pi(P)Q_1 \subset \mathcal{S}_{s-1,1,F}$ which meet outside $\langle \mathcal{S}_{t-1,1,F} \rangle$. This is again a contradiction.