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Abstract: Real-time neural spike detection is an important step in understanding neurological activi-
ties and developing brain-silicon interfaces. Recent approaches exploit minimally invasive sensing
techniques based on implanted complementary metal-oxide semiconductors (CMOS) multi transis-
tors arrays (MTAs) that limit the damage of the neural tissue and provide high spatial resolution.
Unfortunately, MTAs result in low signal-to-noise ratios due to the weak capacitive coupling between
the nearby neurons and the sensor and the high noise power coming from the analog front-end. In
this paper we investigate the performance achievable by using spike detection algorithms for MTAs,
based on some variants of the smoothed non-linear energy operator (SNEO). We show that detection
performance benefits from the correlation of the signals detected by the MTA pixels, but degrades
when a high firing rate of neurons occurs. We present and compare different approaches and noise
estimation techniques for the SNEO, aimed at increasing the detection accuracy at low SNR and
making it less dependent on neurons firing rates. The algorithms are tested by using synthetic neural
signals obtained with a modified version of NEUROCUBE generator. The proposed approaches
outperform the SNEO, showing a more than 20% increase on averaged sensitivity at 0 dB and reduced
dependence on the neuronal firing rate.

Keywords: spike detection; brain-silicon interface; digital signal processing; neuroscience; low
power; noise estimators

1. Introduction

Neurons communicate by means of electric pulses, called action potentials (APs), or
“spikes”, a sudden, fast, transitory, and propagating change of the resting membrane poten-
tial. These voltage variations are recorded with neural sensors able to sense many neurons
at same time. Multielectrode intracortical recording is offering scientists great opportunities
to gain a better understanding of the brain, owing to a very good spatial and temporal
resolution [1,2]. Among these types of biosensors, the electrolyte oxide semiconductor field
effect transistor (EOSFET) multi transistor arrays (MTAs) are very promising, as they allow
researchers to integrate, in the same chip recording, signal processing electronics and a
communication interface outside the cutis [3,4].

EOSFET MTAs are a minimally invasive sensing technique that detects and records the
neural signals through capacitive coupling between the nearby neuron and the electronics.
In this extracellular recording technique, there is a space between the cell membrane
and the sensor surface (electrodes) which limits the damage of the cell and allows long-
term implants. The biocompatibility is guaranteed by the manufacturing process, that
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combines a complementary metal-oxide-semiconductor (CMOS) standard technique with
a biocompatible metal oxide for the gate [5,6]. The small size and pitch of the grid pixels
(electrodes) of the EOSFET MTAs results in a very good spatial resolution; on the other
hand, these sensors, being extracellular, provide a limited signal-to-noise ratio (3–6 dB)
compared to the standard passive electrodes [7], due to the weak capacitive coupling
between the nearby neurons and the sensor and the high noise power coming from the
analog front-end. For this reason, very efficient spike detection algorithms are required for
this kind of sensors to extract the relevant neural spikes from the background noise.

The spike detection is the core and the first step of spike sorting, which consists,
globally, of extracting the spikes and classifying them into different groups based on
the extracted features. In applications such as wireless brain-machine interfaces, these
operations should be performed on-the-fly, in the sensor themselves, to minimize the
data transmission [8,9]. Implantable systems, in addition to requiring an extremely small
area, must be characterized by a very low power consumption to be wireless-powered
and to preserve the brain tissue from thermal damage. These requirements call for a
computationally simple real-time processing algorithm [10,11].

Spike detection typically consists of two phases: pre-emphasis and threshold crossing.
The first step aims at differentiating the spike from the background noise while the second
consists in a comparison of the pre-emphasized signal with a threshold. The simplest
spike detection technique is amplitude thresholding, in which a spike is detected when
the amplitude (absolute value) of the recorded data crosses a pre-defined threshold [11].
The threshold can be set manually or based on the (estimated) standard deviation of the
data. In this case, the threshold is usually set to α·σ, where sigma is the noise standard
deviation estimate and α a multiplier in the range between 3 and 6. This approach is
attractive for real-time implementations because of its computational simplicity, but results
in low detection performances [12]. Another class of spike detection method uses template
matching [13]. These algorithms assume that neural spikes belong to a set of templates,
and matched filters are constructed from these templates to emphasize the spikes from
the background noise. Unfortunately, these algorithms (and the related wavelet-based
detectors) are computationally prohibitive for a real-time multichannel detector [14–16].
Other algorithms are based on the signal energy, such as those using a nonlinear energy
operator (NEO), or its smoothed version (smoothed NEO), that measure the instantaneous
product of the square amplitude and frequency of signals. The energy-based methods
are a good trade-off between accuracy and computational complexity, and for this reason
they are one of the best candidates for real-time implementation [17–19]. Whatever the
algorithm used to differentiate the spike from the noise, a common problem is the accurate
estimation of noise level in the raw data [20]. The challenge is to estimate the noise
distribution’s standard deviation σ, starting from recorded data that include spikes. Spikes
are outliers compared to background noise and affect the signal distributions, leading to
an overestimation of σ [21].

Another important issue concerns the variability of the neural firing rate. The spike
rate plays a major role in encoding the information transmitted by the spikes [22] and can
show large variability, depending on the specific stimulus. As a consequence, it is very
important to design a spike detector with a performance (almost) insensitive to the spike
firing rate [23].

In this paper we investigate the performance achievable by using spike detection
algorithms for MTAs, based on some variants of SNEO. We study the SNEO algorithm
applied to signals coming from an MTA sensor composed of 7 honeycomb pixels. We show
that detection performance benefits from the correlation of the signals detected by the MTA
pixels, but degrades when a high firing rate of neurons occurs. We present and compare
different approaches for robust noise estimation, aimed at increasing the detection accuracy
at low SNR and making the accuracy less dependent on neuron firing rates. To evaluate the
performances of the spike detector and the different noise estimation techniques, we used
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neural test data generated by our modified version of NEUROCUBE [24], a well-established
Matlab toolbox for generating realistic synthetic extracellular recordings.

A first-order estimate of the number of logic gates required for hardware implemen-
tation of the investigated spike detection algorithms is also provided, to find the most
suitable technique for an implantable on-chip implementation.

2. Materials and Methods
2.1. Figures of Merit

The spike detection performance is evaluated by measuring detection accuracy
defined as:

Accuracy =
TP

TP + FP + FN
× 100 (1)

where TP, FP, and FN are true positive (representing the number of correctly detected
spikes), false positive (the number of false spikes due to mis-detecting noise as spikes), and
false negative (representing the number of missed spikes), respectively [24]. The accuracy
is generally reported as a function of SNR.

Other parameters used to evaluate the quality of detection methods, are the false-alarm
rate (FAR) and the true-positive rate (TPR), defined as in [24]:

FAR =
FP

TP + FP
(2)

TPR =
TP

TP + FN
(3)

FAR and TPR are calculated in order to plot the receiver operating characteristic (ROC)
curve [9]. The area under this curve represents the probability that an ideal observer will
correctly classify an event in a two-alternative forced-choice [25].

2.2. Extracellular Recordings Datasets

The neural signal used for testing has been generated by a modified version of the
toolbox NEUROCUBE [24], a generator for extracellular recording based on detailed
models of individuals neurons, which emulates a typical in-vivo scenario. In NEUROCUBE
the neurons near the recording electrodes are modelled by detailed biophysics models
that accurately take into account the distance between a neuron and each electrode. We
added to the generator the possibility to add artifacts and local field potential (LFP) as
described in [26]. The LFP characterizes the low frequency content of the background noise
(≤300 Hz). Thermal noise, which takes into account the contribution due to the analog
front-end and is very important for EOSFET MTAs [7], is simulated by adding a Gaussian
noise with zero mean to the extracellular recording.

The NEUROCUBE generator does not allow us to simulate an electrode configuration
similar to that of an in vitro recording with an MTA sensor. So, we further modified the
toolbox to include the possibility of simulating an array of 7 honeycomb channels, using
the sensor dimensions reported in [3]: pixel size of 6 µm, spaced by 2 µm. The simulation
parameters are characterized by a sampling rate of 10 kHz and an active neuron firing rate
of 10% in 1 mm3 of virtual brain tissue. The 7-honeycomb pattern is shown in Figure 1a.
Thanks to the small size of the pixels and the reduced pixel spacing, the AP produced by a
single neuron is captured by more than 1 pixel, albeit with different amplitudes (related
to the neuron-pixel distance). This effect can be observed in the simulation of Figure 1b,
which shows signals detected by two sensor pixels, for a neuron positioned on the west
side of the sensor (in the absence of interference and noise). In practice, the detected APs
are submerged in noise, as shown in Figure 1c, where the AP signal detected from pixel #1
is displayed, for SNR = 3 dB. Figure 2a,b shows the effect of different noise levels (SNR) on
the same AP detected by pixel #1. At a lower SNR value, the AP shape is corrupted (see
Figure 2a), making the detection procedure more difficult.
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Figure 2. Signal detected by pixel #1 for a neuron positioned on the west side of the sensor at
different SNR levels, adding white noise on a noiseless synthetic recording. (a) SNR = 0 dB and
(b) SNR = 6 dB.

In the spike detection pipeline the synthetic signal is firstly filtered with a 4th-order
passband Butterworth filter (300–3000 Hz) to eliminate low-frequency LFP and to limit
high-frequency thermal noise before further processing [27]. Therefore, to reduce CPU
time, we keep the generation of the synthetic data simple and fast, considering only the
thermal noise superimposed to the noiseless simulated extracellular recording.

2.3. SNEO Algorithm

Energy operators basically measure the cross energy between a signal and its deriva-
tives [11]. A spike may be described as a short-lived burst with high amplitude and
frequency; therefore, this class of operators enhances the differentiation between spikes
and noise, improving the signal-to-noise ratio (SNR). This property and the low hardware
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complexity make the spike detection algorithm based on an energy operator suitable for
on-chip implementation [28,29]. A popular technique is the non-linear energy operator
(NEO), sometimes known as teager energy operator (TEO) [30]. In discrete time, the NEO
ϕ of a signal x(n) is defined as:

ϕ[x(n)] = x(n)2 − x(n− 1)x(n + 1) (4)

Equation (4) describes how the NEO emphasizes both localized high energy and
frequency on input signal: it is large only when the signal is high in power (i.e., large
magnitude) and changing fast (i.e., high frequency) [31].

The multi-resolution version of NEO (k-NEO) [32] is introduced to improve detection
performance at a low SNR. The k-NEO operator introduces a resolution parameter k and is
described as follows:

ϕK[x(n)] = x(n)2 − x(n− k)x(n + k) (5)

The k-NEO output is often smoothed by a window such as Bartlett or Hamming [28],
which is called Smoothed NEO, or SNEO, as described in Equation (6).

ϕSNEO[x(n)] = ϕK[x(n)]⊗ w(n) (6)

In the following we use the Hamming window of length 4k + 1, as suggested in [32].
Figure 3 shows how the value of k (and hence the window width) affects the SNEO output.
In the following we used k = 4 as the best compromise between spike amplification and
time resolution.
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Figure 3. The smoothed non-linear energy operator (SNEO) output at different resolution parameters
considering a noiseless spike as input.

2.4. Thresholding

The threshold in any spike detection algorithm should be selected to maximize the
probability of detecting the spikes, while keeping the number of false detections below
a reasonable limit. The standard approach for SNEO is to take the threshold as a scaled
version of the mean of ϕSNEO:

Th = C
1

NC
∑NC−1

i=0 ϕSNEO[x(i)] (7)
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where NC is the size of the sliding window used to estimate the mean, and C is the scale
factor determined by the experiment with the ROC curves, as suggested in [33]. A schematic
of the classical SNEO method is shown in Figure 4. Taking advantage of spatial correlation
leads to a higher probability of detecting a true spike and thus improves performance. This
is shown by the ROC curves in Figure 5.
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Figure 5. (a) receiver operating characteristic (ROC) curve using data from a single pixel of the multi
transistor arrays (MTA), for SNR = 3 dB. (b) ROC curve exploiting the correlation between signals
coming from the 7 honeycomb pixels is exploited, for SNR = 3 dB. In both plots, true-positive and
false-alarm rates are averaged on 10 datasets.

Figure 5a displays the ROC when data sampled from a single MTA pixel is employed
for spike detection. By reducing the scale factor C, both true-positive rate and false-
alarm rates increase, as expected. A FAR lower than 0.02 is obtained for C = 6, with a
corresponding TPR of about 0.26.

Figure 5b shows the ROC obtained when the input of the k-NEO is obtained as
the average of the signals coming from the 7 pixels of the sensor, to exploit the spatial
correlation. The ROC curve increases much more steeply in this case. For C = 5, a FAR
lower than 0.01 is obtained with a TPR of about 0.98. This example clearly shows that
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detection performance largely benefits from the correlation of the signals detected by the
MTA pixels.

In the following analysis we consider simulated data for SNR = 0 dB. An example
of the ROC curve at SNR = 0 dB and a sliding window of Nc = 5000 samples is shown in
Figure 6a. The ROC shows that using C = 5 is a reasonable choice, giving a false-alarm rate
of less than 0.02 (2%) and a respectable 60% accuracy even at SNR = 0 dB.
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Unfortunately, computing the threshold from the mean value of the SNEO operator
results in performance degradation for high neuron firing rates. Figure 7 shows the
accuracy curves for different neuron firing rates. As can be clearly observed, as the firing
rate increases the detection performance worsens due to the increment of the threshold
value. The accuracy at 0 dB SNR decreases from 60% for a firing rate of 10 Hz to about 25%
when the firing rate reaches 200 Hz.
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2.5. Proposed Approaches

To reduce the performance degradation for high firing rates, we have investigated
two alternatives to the basic SNEO algorithm. Let us assume, for the time being, that the
noise standard deviation σ is known beforehand (in practice, the σ value is estimated from
the recorded neural signal—we will discuss some simple robust estimation techniques
in Section 2.6).

In a first approach (that we name the following pre-normalization technique, or
pre-norm) the signal coming from each channel, xi, is normalized (divided by) the corre-
sponding channel noise standard deviation σi. Then, the mean of the normalized channel
is calculated:

x(n) =
1
7

t

∑
i=1

xi(n)
σi

(8)

The SNEO operator is applied to x(n), and the result is compared with the threshold C.
Figure 8 shows this implementation.
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Figure 9 shows the improvement given by the pre-norm technique. The accuracy
curves get closer to each other, showing the almost independence of the method from the
neurons firing rates. The accuracy value at SNR = 0 dB is quite the same for the four firing
rates (about 61%).
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Unfortunately, the pre-norm technique requires a division to be performed for each
channel. This increases the computational cost and makes this approach less amenable to
hardware implementation.

To alleviate this problem, we developed a second algorithm named in the following
post-normalization technique, or post-norm. In this algorithm, the mean of the signals
coming from each channel is computed as:

xmean(n) =
1
7

t

∑
i=1

xi(n) (9)

xmean is sent to the SNEO operator, as in the basic algorithm of Section 2.4. The noise
variance of xmean is estimated and a spike is detected when:

ϕSNEO[x(n)] > Cσ2
mean (10)

The post-norm algorithm avoids divisions and is depicted in the block diagram in
Figure 10. As shown in Figure 11, the accuracy curves remain better and closer than
the standard SNEO, with a slight performance decrease (about 1 dB) compared to the
pre-norm approach.
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2.6. Noise Estimation Techniques

Noise estimation techniques aim at estimating the noise distribution’s standard devia-
tion σ, starting from recorded data that include spikes. Spikes are outliers with respect to
background noise and affect the signal distributions, leading to an overestimation of σ [21].

Please note that in the following discussion we assume that the signal x has zero mean
thanks to the 2nd-order high pass filtering.

2.6.1. Median

The most well-known robust statistical method to estimate the background noise is
based on computing the median of absolute value of the signal, scaled by a numerical
factor of 0.6745, assuming a Gaussian noise distribution as in [34]:

σn = median
{
| x(n)|
0.6745

}
(11)

where x(n) is the sample of the waveform at time n. This technique will be named median
absolute deviation (MAD) in the following. Please note that the median requires us to
sort a large array of neural samples, which requires a lot of computational resources and
precludes a low-power hardware implementation [28].

2.6.2. Mean Absolute

A simpler way to estimate the background noise is simply to take the root mean
square of x(n), but the main issue of this straightforward technique is its dependency from
the spike firing rates, which degrades the overall performance of the spike detection [35].
A viable alternative is using the absolute value of the signal in the moving average. This
limits the error in the estimate due to spikes, since spike amplification by the squaring is
avoided, while keeping low the complexity of the hardware implementation. The new σ
estimation is defined as follows:

σn = 1.25
1
M

M

∑
n=1
|x(n)| (12)

where M is the length of the moving average window, while the coefficient 1.25 is computed
so that σn is equal to the standard deviation of x, when x is a zero-mean signal with a
Gaussian distribution. Considering the main operations required for this estimate, we
name this technique absolute average, or AA.

2.6.3. Winsorization

Another, more robust approach we propose is based on a technique called winsorization.
The idea is to truncate the high value samples in the signal that come, with high probability,
from spike outliers. In this way the clipped signal is mainly composed of noise, and we can
obtain a robust estimate of σ from it [36] (a similar technique is the kappa-sigma clipping
used in astronomy [37]). Our implementation of winsorization method follows three steps:

1. An initial noise standard deviation σ′ is required for the clipping (we used AA for
this initial estimate).

2. σ′ is then used for the clipping of the absolute value of the signal as follows:

x′(n) =
{
|x(n)| i f |x(n)| < σ′n
σ′n i f |x(n)| ≥ σ′n

(13)

3. from the clipped signal x′(n), the standard deviation is finally estimated as:

σ
′′
n = 1.58

1
M∑

n
x′(n) (14)
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where the coefficient 1.58 is computed so that σ
′′
n is equal to the standard deviation of

x, when x is a zero-mean signal with a Gaussian distribution.

Since this approach combines winsorization and a moving average operation, we
name this technique winsorization average, or WA, in the following.

3. Results
3.1. Performance Results

The values reported in the following have been obtained by averaging the results
of 10 independent simulations, for each firing rate and SNR value. In all cases, the scale
factor C has been chosen to obtain an accuracy not lower than 60% for a 10 Hz firing rate
and a FAR lower than 0.02 at SNR = 0 dB. The detection performances for the standard
SNEO and the proposed approaches at SNR = 0 dB for each firing rate are summarized in
Tables 1–3, respectively.

Table 1. Detection performances of Standard SNEO at different firing rates at SNR = 0 dB (C = 5).

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 61.02 43.25 30.31 22.65
FAR (%) 1.14 0.00 0.00 0.00

Accuracy (%) 60.01 43.24 30.30 22.64

Table 2. Detection performances of pre-norm algorithm at different firing rates at SNR = 0 dB (C = 7).

MAD

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 62.38 62.05 60.28 59.58

FAR (%) 1.33 0.24 0.1 0.08

Accuracy (%) 61.74 61.94 60.24 59.49

AA

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 62.63 62.09 59.81 58.98

FAR (%) 1.78 0.28 0.11 0.08

Accuracy (%) 61.91 61.85 59.77 58.95

WA

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 63.63 63.15 62.48 60.64

FAR (%) 1.02 0.31 0.12 0.08

Accuracy (%) 62.76 62.81 62.24 60.61

Figure 12 compares the performance of the investigated noise estimation techniques
applied to the pre-norm algorithm, using the scale factor of 10 Hz (C = 7). As can be
observed, the three sigma estimation techniques perform equally well in this case, with
results very close to the ones in Figure 9 (that assumes an a-priori knowledge of the sigma).
As a result, the simple AA approach is preferred, due to its simplicity.



Electronics 2021, 10, 410 12 of 17

Table 3. Detection performances of post-norm algorithm at different firing rates at SNR = 0 dB
(C = 50).

MAD

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 60.82 55.21 49.10 45.15

FAR (%) 1.5 0.12 0.01 0.00

Accuracy (%) 60.25 55.17 49.10 45.14

AA

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 61.38 50.86 40.72 34.74

FAR (%) 1.44 0.01 0.00 0.00

Accuracy (%) 60.04 50.86 40.71 34.74

WA

10 Hz 50 Hz 100 Hz 200 Hz

TPR (%) 61.19 55.40 48.71 45.00

FAR (%) 1.49 0.09 0.02 0.00

Accuracy (%) 60.09 55.32 48.70 45.09
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The accuracy curves for the post-norm algorithm are shown in Figure 13. In this
case the sigma estimation technique plays an important role in defining accuracy, and the
results are less optimistic than shown in Figure 11. The detection decrease is also evident
comparing the performance values of the pre-norm and post-norm approach reported in
Tables 2 and 3, respectively. It can be observed from Figure 13 that the WA estimate give
remarkably good results, very close to the MAD technique, while being much simpler and
more amenable to hardware implementation. The simpler AA estimate, while giving better
results compared to the standard SNEO algorithm, is less effective that WA (see Table 3).
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3.2. Resource Consumption

The hardware complexity of the investigated algorithms can be estimated by consider-
ing the required arithmetic operations and their hardware cost, in terms of logic gates.

The cost of each arithmetic operator is assumed as: adder 5N, multiplier 6N2, division
13N + 20N2, comparator 7N, and register 9N, where N is the number of bits.

Table 4 reports the complexity estimate of the blocks in common between the inves-
tigated techniques (input filter, the mean of the seven channels, and SNEO), while the
resources needed for the noise estimates AA and WA are listed in Table 5. We have not
considered the MAD technique that requires the sorting of an array of values and is not
suited for hardware implementation [38]. The additional computational resources required
to implement each detector are shown in Table 6.

Table 4. Resources required by the hardware implementation of common blocks. The division by 7
in the mean block is implemented by a multiplication for the inverse of 7.

Filter Mean SNEO *2

Adder 8 6 4k + 1
Multiplicator 9 1 4k + 3

Divisor 0 0 *1 0
Register 19 8 10k + 3

Weighted Total 211N + 54N2 102N + 6N2 (186k + 46) N+
(96k + 36) N2

*1 the division of 7 is obtained by a multiplication for the inverse of 7. *2 the SNEO block resources are given as a
function of tuning parameter k.

Table 5. Resources required by the hardware implementation of noise estimate blocks. The length M
of the window is assumed to be a power of 2, to avoid hardware division.

AA WA

Adder 2 + 1 *1 4 + 2 *1

Multiplicator 1 2
Comparator 0 1

Divisor 0 0
Register 3 + 1 *1 6 + 2 *1

Other operations (1 + 1) *2 (2 + 3) *2

Weighted Total 69N + 6N2 148N + 12N2

*1 the adder is weighted as 2N as so its register. *2 some methods require other additional logic such as the inverter
and multiplexer evaluated, respectively, as N and 3N.
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Table 6. Additional resources to build up each detector.

Standard SNEO Pre-Norm Post-Norm

Adder 1 + 1 *1 0 0
Multiplicator 1 *1 0 2 *1

Comparator 1 *1 1 1 *1

Divisor 0 7 0
Register 11 8 2

STD 0 AA or WA AA or WA
Weighted Total 151N + 24N2 140N2 + 205N + STD 32N + 48N2 + STD

*1 the adder, multiplier, and comparator are weighted as 3N, 4N, 2N considering the square operation for the
noise variance.

4. Discussion

Figure 14 shows the accuracy curves averaged on the four firing rates considered
(10 Hz, 50 Hz, 100 Hz, 200 Hz); Figure 14a refers to the pre-norm approach, and Figure 14b
to the post-norm approach. Table 7 summarizes the averaged detection performances at
SNR = 0 dB and the hardware complexity. The number of logic gates has been estimated
considering the SNEO tuning parameter k = 4 and assuming values encoded on N = 8-bit
number, which is a typical value for power-constrained applications [3,30].
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Table 7. Averaged detection performance at SNR = 0 dB and computational cost (N = 8, k = 4).

Standard
SNEO

Pre-Norm
MAD

Pre-Norm
WA

Pre-Norm
AA

Post-Norm
MAD

Post-Norm
WA

Post-Norm
AA

#Logic Gates 42288 - 52096 51080 - 44824 43808
TPR 39.22% 61.07% 62.18% 60.88% 52.57% 52.46% 46.78%
FAR 0.27% 0.51% 0.57% 0.56% 0.42% 0.40% 0.36%

Accuracy 39.12% 60.87% 61.80% 60.66% 52.42% 52.32% 46.65%

The results in Figure 14a and in Table 7 show that the accuracy of the pre-norm
approach outperforms the classic SNEO by a factor of 1.5× at 0 dB SNR. The false-alarm
rate is larger that SNEO but still has an acceptable value, lower than 0.6%. The estimated
number of logic gates for the pre-norm algorithm, however, is more than 1.2× compared
to the standard SNEO method (mainly for the need of hardware divider), making this
technique less attractive when low power is the main concern.
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The post-norm approach shows a decrease of performance compared to pre-norm,
and the choice of noise estimate method, moreover, influences the detection results. The
MAD and WA estimates provides almost the same performance, while AA sigma estimates
result in a 7% accuracy reduction (see Table 7). In any case, post-norm gives a better
detection performance than classic SNEO in terms of accuracy and sensitivity (TPR). The
MAD/WA accuracy outperforms classic SNEO by a factor of 1.3× at 0 dB SNR, while the
AA outperforms SNEO by a factor of 1.1×, as summarized in Table 7. The false-alarm rate
is larger that SNEO but remains below 0.5%. The post-norm technique is ideally suited
for hardware implementation, not requiring any division. This is clearly shown in Table 7:
the post-norm WA requires only 6% more logic gates compared to standard SNEO, while
post-norm AA requires only 4% more gates.

5. Conclusions

In this paper we have investigated the performance achievable by using spike detec-
tion algorithms for CMOS multi transistors arrays, based on some variants of smoothed
non-linear energy operator. We have shown that detection performance benefits from the
correlation of the signals detected by the MTA pixels, but degrades when a high firing
rate of neurons occurs. To solve this problem, we have presented two algorithm variants
(pre-norm and post-norm) and two noise estimation techniques. In addition, a first order
estimate of the number of logic gates required for hardware implementation of the investi-
gated peak detection algorithms has been presented, to find the most suitable technique
for an implantable on-chip implementation.

The pre-norm method shows an overall increase of 30% with respect to standard SNEO
in terms of accuracy and sensitivity even when the simple AA noise estimation technique
is employed. Unfortunately, the use of dividers makes this algorithm less amenable to
hardware implementation. Hence, pre-norm can be useful when spike detection is not per-
formed in the sensors themselves and adequate computational resources are available. The
post-norm technique, while not as accurate as the pre-norm one, provides an accuracy and
sensitivity improvement of 22% compared to the classic SNEO, with a reduced dependence
on the neuronal firing rate. For post-norm, the WA noise estimation technique is a good
choice, being simple to implement and similar in performance with the median absolute
deviation estimate. This makes post-norm with WA noise estimate a suitable candidate for
implantable MTA spike detectors.

On the basis of the obtained results, further investigation will be devoted to the VLSI
implementation of post-norm algorithms.
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