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Abstract—Mobile robots path planning is a central problem
in every situation where human intervention is not desired or
not possible to accept: full automated industrial warehouses
or general stocking areas and every domestic application that
involves a mobile robot and special cases where environment
is prohibited for human accessing like toxic wastes and bombs
defusing [1]. Currently, neural networks are applied to problems
related to mobile robot navigation. However, they are not as pop-
ular as in applications like image processing, speech recognition
or machine translation, where they are commercially relevant. In
this paper we propose a Long Short-Term Memory (LSTM) neural
network as an online search agent to tackle the problem of mobile
robots path planning in unknown environments, meaning that the
agent relies only on local map awareness realized with a LRF
sensor and relative information between robot and goal position.
Specifically, a final structure of LSTM network is analyzed and its
performance is compared with the A* algorithm, a widely known
method that follows the best-first search approach. Subsequently,
an analysis of the method developed on a real robot is described.

Index Terms—Artificial Intelligence - LSTM - Path-Planning
- Mobile Robots

I. INTRODUCTION

Recently, neural networks have been successfully applied in

path planning for mobile robots [2] [3] [4] [5]. The prospect

of using recurrent neural networks increased in the last few

years, since they showed to achieve the highest performances

in various sequence processing tasks like speech recognition

and video captioning [6] [7] [8].

The hypothesis of unknown environment is taken into

account because in the real world it is hard to guarantee

prior information about the map or however a component that

updates and store the whole map during travelling could be

too much costly in terms of computational resources needed.

The method proposed in this paper aims to be a global path

planner, following the definition given in [1], it generates a

low-resolution high-level path from start to goal. On the other

hand, local path planning is a high-resolution low-level path

restricted in a near segment of the global path. In particular,

we want to realize an online search agent based on the

Long Short-Term Memory neural network with a supervised
learning approach where the ground truth is provided by the

A* algorithm [9]. Datasets are realized with the path solutions

found by the supervisor, then the neural network is trained and

eventually it is deployed as an online agent.

Supervised learning is faster and easier to perform with

respect to reinforcement learning. However, it presents an

important limit: the experienced state-action pairs during train-

ing are limited to the ones decided by the supervisor, so

it leads to a more probable wrong decision during effective

deployment when the neural network agent gets itself in a

state not experienced in the training process.

Understanding the theoretical concept of planning a path is

essential to get the reasons why a recurrent neural network

can be applied. Starting from the decision theory basics,

the agent, given a bunch of input data of different nature,

produces preferences as its outputs. So, it creates a relationship

between data describing its current environment awareness,

easily called state, and selects the next action in order to take

itself from the current state to next state supposed to be in a

better position with respect to the goal point. Considering a

single pair state and associated action not independent to their

neighbours in terms of time steps, series of states and related

series of actions can be examined at the same time. Therefore,

planning a path becomes a variable sequence to sequence

problem, the ideal target of recurrent neural networks as it

can be addressed also to the tasks mentioned at the beginning

of this section.

A* is an example of offline search agent, it gives the entire

path as output, calculated on the map stored in its memory

before starting to move. Meanwhile, an online search computes

a single decision and execute the related movement using just

the current local information [10].

This paper briefly introduces the LSTM neural network,

describes how the proposed model is designed and shows the

results achieved in a dedicated simulation environment and the

real environment.

II. LONG-SHORT TERM MEMORY NEURAL NETWORK

The Long-Short Term Memory network belongs to the

Gated Recurrent Networks (GRN) family, a variant of the basic

recurrent neural network. A specific characteristic is that, in

their atomic structure, called memory cell, there are additional
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Fig. 1: Conceptual steps on how to consider path planning

elements working as gates, the LSTM case includes gates

applied to the input, previous state and output.

From the first idea of LSTM in 1997 [11], there have been

proposed many variants of the basic cell structure, but the most

common is showed in Figure 2 [12].

Fig. 2: Representation of the LSTM cell

The input and output signal, and the previous state value

are multiplied by their own related gate function: input gate,

output gate and forget gate, respectively. Suppose a LSTM

network has one layer with I inputs and H cells, the internal

state s
(t)
i of the i-th cell at time step t is updated by the

following equation:
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where σ stands for the sigmoid non-linear transformation. The

forget gate can be seen as a sort of factor multiplying the

previous state just like in a running average, this allows to

have a variable weight associated to the past data, if f
(t)
i → 0

the recent states information is quickly forgotten, meanwhile

if f
(t)
i → 1 the past story has an important influence on the

next output computation.

Fig. 3: The deep LSTM neural networks considered

Now, the output of the cell h
(t)
j can be calculated as follows:

h
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where q
(t)
i represents the output gate. The network complexity,

directly proportional to the total number of weights, is strongly

increased with respect to the basic recurrent neural network,

however this leads to the main feature and benefit of the

LSTM: ensuring a continuous information flow from the first

step to the last step of the time sequence, thanks to the

variable gates behaviour, this is the reason why this recurrent

network variant is primarily known to learn better the long-

term dependencies [13].

Depth in neural networks is, in general, addressed to a se-

quential application of non linear functions in a single iteration

in order to be able to get compositional representations of the

input [8].

Given this definition, recurrent neural networks have already

this kind of structural property in the temporal dimension.

However, it is possible to define specific structures of deep

LSTM neural network, the following structures represent the

simplest deep LSTM neural network to build:

• deep input to hidden, abbreviated deep-in
• deep hidden to output, abbreviated deep-out
• stacking LSTM layers, abbreviated stack

In Figure 3 are showed the graphical representations of the

three structures mentioned above. More detailed and articu-

lated discussion about deep recurrent neural networks can be

found here [14] [15].

When applied as an online path planner, a generic neural

network configuration would be as showed in Figure 4, where

the input state is a flattened vector containing information

about the environment, like label values of a grid map or

proximity ranges, and heuristic data about the goal point.

The output is represented by a full connection layer followed

by the softmax transformation in order to create mutually

exclusive probabilities, each one associated to a particular

allowed action. Eventually, the highest value denotes the

choice selected by the agent.
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Fig. 4: Generic configuration of a neural network as a path planner

III. PROPOSED MODEL

The simulation environment consists on a large collection

of maps realized with ASCII characters and associated list of

scenarios, each one defined by start and goal coordinates and

optimal path length [16]. The simulation environment takes

into account just static maps.

At time step t, the neural network outputs eight probability

values corresponding to a preference given to each of the eight

directions allowed, cartesian and diagonal, the choice of action

a(t) is the output with highest probability as it corresponds

to the most preferred direction. Instead of using a grid map

for obstacle awareness, it was found that for this purpose

proximity ranges improves the learning performance with re-

spect to a grid map [4]. As relative information between agent

position and goal point, relative angle and euclidean distance

are included. In addition, we noted that the network predictions

benefit from adding the action decided one time step earlier.

Summarizing, consider current agent position at coordinates

(xA, yA) and goal position at coordinates (xG, yG), the input

state components are defined below and represented in Figure

5:

• di ∀ i = 1, ..., 8 := proximity ranges

• θA→G = arctan2
(

yG−yA

xG−xA

)
:= relative angle

• eA→G =

√
(yG − yA)

2
+ (xG − xA)

2
:= euclidean dis-

tance

• a(t−1) := the previous step choice of action

Fig. 5: Depiction of information included in the input state

The ground truth for the training process is provided by the

conventional A* algorithm. The training set and validation set

specifics are showed in Table I, the two sets are built with

paths randomly selected from different maps which belong to

the following categories: mazes with corridor having 4 steps

width, mazes with corridor having 2 steps width, random filled

for 25% map size, random filled for 40 % of the map size.

Furthermore, as a sort of complexity limit, the paths which

optimal length exceeds the maximum value specified are not

included. The fine tuning of the hyperparameters lead to the

final configuration described in Table II.

TABLE I: Training set and validation set specifics

Specific TRAINING SET VALIDATION SET

Size (steps) 102400 10240

Number of maps 5 3

Maximum path
length (steps)

300 300

TABLE II: Hyperparameters configuration

Hyperparameter Value

Time sequence length (steps) 512
Learning rate (fixed) 0.1
Weight decay 10−5

Regularization type L1

Momentum 0.95
Solver (updating rule) ADADELTA

The design of the model followed a minimal complexity

approach: it consists on achieving the maximum learning per-

formance with the least possible amount of internal weights.

The structure of the model proposed is showed in Figure

6, training convergence parameters are revealed in Table III

where, for a comparison purpose, also the ones referred to the

best multilayer perceptron (MLP) model are included and its

structure is showed in Figure 7.

Fig. 6: Final structure of the LSTM neural network

Fig. 7: Final structure of the MLP neural network

���

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on February 16,2021 at 12:46:00 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Training process results

Configuration Train loss Train
accuracy

Validation
accuracy

proposed

LSTM
0.3208 89.97 % 88.60 %

final
MLP

0.2276 92.08 % 88.43 %

Here the conclusion is that the best multilayer perceptron

relies on a heavier structure in terms of number of learnable

parameters:

weights final MLP model

weights proposed LSTM model
=

13768

1256
= 10.96 (6)

IV. SIMULATION IN ASCII MAPS

In order to better analyze the comparison between the

proposed LSTM model and the A* algorithm, it is useful to

recall the differences between each other. The former is an

online search agent, it can explore only nodes next to the

current position and so it is more suitable for real world path

planning since distance travelled is equal to the one explored.

It aims to solve a path by storing just the current state in its

memory, which is given as input to the neural network that

calculates a direction immediately executed with a movement

by the agent.

Meanwhile the latter is an offline search agent, it requires

an a priori map stored in its memory, containing, at least, the

supposed path from current to goal position. It is designed to

compute the whole path before effectively starting to move.

As a consequence, during the searching stage, it is allowed to

expand nodes being more than one action far from each other.

Online testing is performed on maps related to videogames,

random filled and mazes categories, the trained layers of the

configuration represented in Figure 6 are evaluated in these

tests, for each one the LSTM online agent is evaluated on

50 paths selected equally from 10 different maps. Results in

videogames maps (Dragon Age folder), mazes having corridor

8 steps long and random filled maps for 25 % of the space are

showed in Table IV, V and Table VI respectively, where the

maximum path length limit is the same used for the training

process.

For the sake of precision, here it is described what it is

meant for “expanding a node” with respect to the two agents

under comparison The A* algorithm expands a node every

time the following function is calculated for the adjacent

nodes, in ASCII maps environment a total of eight adjacent

nodes are taken into account:

f(n) = g(n) + h(n) (7)

where g(n) is the backward cost from the starting position to

node n and h(n) is the heuristic forward cost which is the

heuristic distance from node n to the goal node, meanwhile

the neural network expands a node one step at a time when a

new state is built to be the the new input.

TABLE IV: Online testing in Dragon Age maps

Agent Success Rate Average

time (s)

Average

length

Average nodes

expanded

A* 100 % 3.37 · 10−4 45.82 47.029
LSTM 68 % 1.69 · 10−3 53.39 44.41

TABLE V: Online testing in mazes with corridor 8 steps long

Agent Success Rate Average

time (s)

Average

length

Average nodes

expanded

A* 100 % 2.96 · 10−4 50.90 53.69
LSTM 26 % 1.98 · 10−3 61.71 52.92

TABLE VI: Online testing in random filled maps for 25 % of the space

Agent Success Rate Average

time (s)

Average

length

Average nodes

expanded

A* 100 % 2.84 · 10−4 61.60 49.85
LSTM 82 % 2.04 · 10−3 71.57 56.02

The success rate represents a weakness for the LSTM, while

the performance regarding the other three parameters can be

considered close to the A* algorithm, this means that the

proposed agent has been successfully trained to replicate the

supervisor behaviour when the goal is reached. In particular,

the average computation time calculation is in favor of the

A* because in a real robot it would have to include the time

spent to build the map from sensor readings, on the contrary,

the LSTM agent uses the proximity ranges which directly

generated by a LRF sensor.

A focus on the success rate is necessary, it was found,

easily expected, that it increases as the maximum path length

limit reduces, the trend is showed in Figure 8 and 9 referring,

respectively, to mazes and random filled maps, while in

Dragon Age maps it is almost equal to the one related to

random filled maps. Furthermore, this analysis includes a

comparison with the online agent using the MLP model of

Figure 7. This last comparison states that the LSTM sets an

absolutely higher success rate with respect to the MLP.
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Fig. 8: Success rate trend in mazes maps
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Fig. 9: Success rate trend in random filled maps

V. EXPERIMENT ON A REAL ROBOT

This section deals about the evaluation of the proposed

method on a real mobile robot platform which is the iRobot

Create 2. The proximity ranges are produced with a Hokuyo

UTM-30-LX-EW, the ROS framework is utilized to develop

the proposed method. Also the real environment is considered

static.

Regarding the input state, the differences with respect to

the definition in Section III is that the ranges considered

are comprised in [−90°,+90°] and the absolute orientation is

added. A total amount of 720 proximity ranges are generated

by the LRF sensor and divided into eight sections (Figure 10),

then the average value of each section is taken as an input

of the network. The output directions allowed are delimited

in the same angle span related to the proximity ranges, a

single direction is 45° distant to its adjacent, an example of a

sequence of actions is showed in Figure 11.

Fig. 10: Angular sections

Fig. 11: Example of sequence of actions

Our laboratory is used for the tests as a good example of indoor

map. Referring to its representation in Figure 12 where lighter

gray means free space, a single path included in a dataset is

defined by two red marks randomly selected and representing

the start and goal point.

TABLE VII: Training set and validation set specifics

Specific TRAINING SET VALIDATION SET

Size (steps) 3000 1000

Time required ≈ 1.5 h ≈ 40 min

The robot travelled following the traces represented at a

constant translational speed equal to 0.5 m/s and a rotational

speed ranging from 1 rad/s to 1.5 rad/s. Hence, every 0.5 s data

are collected to build a sample composed by the input state

and the corresponding label represented with θi in Figure 11.

Fig. 12: Traces considered for the datasets

In Table VII, the few important details about the datasets

collected for the training process are showed, hyperparameters

configuration is almost equal to Table II, here the time

sequence length is reduced to 30 time steps. The training

process produced a validation accuracy equal to ≈ 94% using

the same LSTM network structure of Figure 6.

However, online testing gave acceptable results just for simple

targets, meaning goal points no farther than 3 m from the

starting position and including one turn at most. Figures 13 and

14 represent good examples of solved cases, the green arrow

is the goal point while the red ones stand for the trace marked

by the robot and the purple points denote the averaged ranges

of each sections in Figure 10 related to the robot position

showed.

Fig. 13: Example 1 of solved case
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Fig. 14: Example 2 of solved case

VI. CONCLUSION AND FUTURE WORKS

In the simulation environment used, the proposed LSTM

neural network model has been successfully trained to solve

online path planning problems, but with limited distance from

start to goal point position, otherwise a low success rate

is attained. In particular, the failure attempts consisted on

inability of getting away from blind spots, this could be due to

the fact that these situations were not experienced during the

training process. A reinforcement learning (RL) stage could

be the best solution. We would think about an initial stage of

supervised training then a second stage based on RL online

training in order to have the chance to adjust the learnable

parameters every time the agent gets in ambiguous positions

like blind spots.

On the real robot, the method solved just very simple tasks

and so the implementation has to be enhanced: datasets need

to be enlarged as much as possible, at least including hundreds

of thousands samples like in the simulation environment, in

this way it may be also possible to achieve acceptable learning

performance using more angular sections of proximity ranges

and a more resolute output direction set in order to be able to

generate a smoother path. However, using the same strategy

of building a dataset here presented could easily lead to a

required time too high and maybe not affordable.
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