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Abstract In this paper we analyze two different approaches for modeling depen-
dent count data with long-memory. The first model we consider explicitly takes into
account the integer nature of data and the long-range correlation, while the second
model is a count-data long-memory model where the distribution of the current ob-
servation is specified conditionally upon past observations. We compare these two
different models by looking at their estimation and forecasting performances.
Abstract In questo lavoro analizziamo due diversi approcci per modellare la dipen-
denza di lungo periodo in serie storiche di dati di conteggio. Il primo modello con-
sidera esplicitamente la natura dei dati e la correlazione di lungo periodo, mentre il
secondo è un modello a memoria lunga per dati di conteggio in cui la distribuzione
dell’osservazione attuale viene specificata condizionatamente alle osservazioni pas-
sate. Il confronto fra questi due approcci è fatto tramite uno stidio Monte Carlo che
confronta le performance di stima e previsione.
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1 Introduction

Recently, there has been a growing interest in studying nonnegative integer-valued
time series and, in particular, time series of counts. In some cases, the discrete values
of the time series are large numbers and may be analyzed using continuous-valued
models such as ARMA with Gaussian errors. However, when the values are small,
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as in the case of counting processes, the usual linear ARMA processes become
inappropriate for modeling and forecasting purposes since they would invariably
produce non-integer forecast values. One of the most common approaches to build
an integer-valued autoregressive (INAR) process is based on a probabilistic operator
called binomial thinning, as reported in Al-Osh and Alzaid (1987) and McKenzie
(1985) who first introduced INAR processes. A different approach is based on the
generalized linear models (GLM) advanced by Nelder and Wedderburn (1972) and
McCullagh and Nelder (1989). This framework generalizes the traditional ARMA
methodology allowing for more flexible dynamics also coherent with count data
time series (for details and references, see, for example, Fokianos, 2016).

Long-memory (LM) processes have proved to be useful tools in the analysis of
many empirical time series. One of the most popular processes that takes into ac-
count this particular behavior of the autocorrelation function is the AutoRegressive
Fractionally Integrated Moving Average process (ARFIMA(p,d,q)), independently
introduced by Granger and Joyeux (1980) and Hosking (1981). This process gener-
alizes the ARIMA(p,d,q) process by relaxing the assumption that d is an integer.
In particular, when d ∈ (0,0.5) the autocorrelation function of the process decays
to zero hyperbolically at a rate O(k2d−1), where k denotes the lag. If p = q = 0,
the process {Xt , t = 0,±1, . . .} is called Fractionally Integrated Noise, FI(d). In the
following we will concentrate on FI(d) processes with d ∈ (0,0.5).

Persistent count time series occur for example in finance when modeling stock
market daily trading volumes (e.g. Palma and Zevallos, 2011).
In this work, we analyze two different approaches for modeling dependent count
data with long-memory. The first model we consider takes explicitly into account
the integer nature of data and the long-range correlation, mixing the INteger Au-
toRegressive (INAR) model proposed by Al-Osh and Alzaid (1987) and McKen-
zie (1985) with the Fractionally Integrated (FI) model introduced by Granger and
Joyeux (1980) and Hosking (1981). The second model, introduced by Palma and
Zevallos (2011), builds on a conditional distribution for count data where the pa-
rameters’ dynamic is characterized by long-memory. We compare estimation and
forecasting performances of the two models by Monte Carlo simulations.

2 LM models for count time series data

2.1 GLM approach

Palma and Zevallos (2011) introduce a model for count time series characterized
by long-range dependence. They propose a new class of conditional long-memory
models (CLMs), where the conditional distribution of the data, given a data-driven
parameter, is explicitly specified. The conditional long-memory process, Xt , can be
defined as follows:
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Xt | Ft−1 ∼ G(λt ,g(λt)), with λt = µ
∞

∑
j=0

π j −
∞

∑
j=1

π jXt− j (1)

where Ft is the σ−field generated by the information up to instant t, {Xt ,Xt−1, . . .},
G(α,β ) is a distribution corresponding to a continuous or discrete nonnegative ran-
dom variable with mean α and variance β , both finite, g(·) is a positive function,
µ is a constant and {π j} j>0 is an absolutely summable sequence of real numbers
such that π0 = 1 and π j ≈ C j−d−1 for large positive j and some d < 0.5. There-
fore, given the information Ft−1, Xt has distribution G with conditional mean λt
and conditional variance g(λt). Obviously, if G is a distribution corresponding to a
discrete nonnegative random variable, we obtain a LM model for count time series
data. Even if, from a theoretical point of view, this setup is general enough to allow
for the use of different integer distributions, in practice only a Poisson has been used
by Palma and Zevallos (2011).

It can be shown (Palma and Zevallos, 2011) that model (1) has a non-Gaussian
ARFIMA(p,d,q) representation. In particular, for the ARFIMA(0,d,0) case we
have π0 = 1 and π j = Γ ( j−d)/[Γ ( j+1)Γ (−d)], for j ≥ 1.

For further details about CLM-ARFIMA processes see Palma and Zevallos
(2011). In particular, it is shown that CLM-ARFIMA and standard ARFIMA pro-
cesses share the same correlation structure.

The CLM approach allows using all the tools available for GLM models (see, for
instance, Liboschik et al., 2017).

2.2 Models based on the thinning operator

Integer-valued autoregressive (INAR) processes, initially proposed by Al-Osh and
Alzaid (1987) and McKenzie (1985), in their most basic form follow the recursion:

Xt = α ◦Xt−1 + εt

where ‘◦’is the thinning operator, defined by α ◦X = ∑X
i=1 Yi with X ∈ N, α ∈ [0,1]

and Yi is a sequence of i.i.d. count random variables, typically Ber(α), indepen-
dent of X with common mean α . Hence, α plays the role of thinning probability.
Moreover, εt is a sequence of i.i.d. discrete random variables with mean µε and
variance σ2

ε . While the INAR(1) and INMA(1) models are defined univocally, for
the INAR(p) and INMA(q) models there are additional complexities and different
types of INAR(p) and INMA(q) processes might be considered (see Weiss, 2018 for
a recent review on this topic). Recently, Weiss (2019) developed the INARMA(p,q)
process:

Xt = α1 ◦Xt−1 + . . .+αp ◦Xt−p +β1 ◦ εt−1 + . . .+βq ◦ εt−q + εt

where, to obtain feasible stochastic properties, he assumed independence among
all thinnings, independence from the innovations, and independence from (Xs)s<t
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for the thinning at time t. Combining the ideas of the INARMA model with the
fractional integration of Granger and Joyeux (1980) and Hosking (1981), Quoreshi
(2014) introduce the INARFIMA model based on the following INMA(∞) repre-
sentation:

Xt =
∞

∑
i=0

ψi ◦ εt−i (2)

where ψ0 = 1 and ψi =Γ (i+d)/[Γ (i+1)Γ (d)], for i≥ 1, and d is the long memory
coefficient. Since the ψi in (2) are considered thinning probabilities, then d ∈ [0,1].
Quoreshi (2014) proposes different estimation methods, based on conditional least
squares, feasible generalized least squares and the generalized method of moments.
In his paper Quoreshi (2014) does not consider the problem of forecasting with the
INARFIMA model.

In the present paper, differently from Quoreshi (2014), who adopts the MA(∞)
representation, to take into account the long memory and integer nature of data, we
propose to consider the INAR(∞) recursion:

Xt =
∞

∑
i=1

πi ◦Xt−i + εt (3)

that is:
∞

∑
i=0

πi ◦Xt−i = (1−B◦)dXt = εt (4)

where π0 = 1 and π j = Γ ( j − d)/[Γ ( j + 1)Γ (−d)] for j ≥ 1, with d ∈ (0,0.5).
As in Du and Li (1991) the εt constitutes a sequence of i.i.d. discrete random vari-
ables independent of all counting series, and all thinning operations are mutually
independent. The conditional mean of process (3) is given by:

E[Xt | Xt−1, . . .] = µε +
∞

∑
i=1

πi Xt−i

and thus the autocorrelation function of Xt is the same of an I(d) process. Moreover,
the conditional variance is:

V [Xt | Xt−1, . . .] = σ2
ε +

∞

∑
i=1

πi (1−πi)Xt−i .

In practice, only X1, . . . ,Xn, are available, but Xt depends on the infinite past of the
process. Therefore, we must approximate Xt with an AR(p), taking p large enough
so that ∑∞

i=p+1 πi ◦Xt−i in (3) is negligible. In our applications, all the available past
observations are used.
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2.3 Forecasting LM models for count time series

For CLM-ARFIMA models the natural one-step predictor of λn+1 conditional on
the past information, Fn, is based on (1) and can be written as: λ̂n+1 = µ̂ ∑n

j=0 π̂ j −
∑n

j=1 π̂ jXn+1− j where each π̂ j depends on the long-memory parameter estimate, d̂
(and other parameters, if present). Hence, the predicted conditional distribution is

X̂n+1 | Fn ∼ G(λ̂n+1,g(λ̂n+1))

and the construction of conditional prediction intervals for one-step forecasts is a
simple task. For k-step forecasts, with k > 1, we have to recursively use previous
forecast values, for example: λ̂n+2 = µ̂ ∑n+1

j=0 π̂ j − π̂n+1 X̂n+1 −∑n+1
j=2 π̂ j Xn+2− j and

the predicted conditional distribution is

X̂n+2 | Fn ∼ G(λ̂n+2,g(λ̂n+2)) .

In this case, the construction of conditional prediction intervals is not immediate
and we obtain prediction intervals via computational methods. Forecasting with
INARFIMA models is very simple too. Using (3), we have:

X̂n+k =
∞

∑
i=1

π̂i ◦ X̂n+k−i ,

with X̂ j = Xj for j ≤ n. Also in this case, prediction intervals cannot be directly
recovered and we must resort to computational methods.

3 Some simulation results

In this section we provide the results of some Monte Carlo experiments we carried
out to asses the estimation performance of different long-memory parameter esti-
mators. Count time series of lengths n = 500 and n = 1000 were generated from
models (1) and (3). The Poisson and Negative Binomial distributions were used for
the conditional distribution G in (1) (models CP and CNB) and for εt in the INAR
model (3) (models PI and NBI). The distribution parameters were chosen so that the
amount of over-dispersion in the different cases is comparable. The functions we
use are written in the R language and are available upon request from the authors.
Table 1 shows the average estimates (and their standard deviations, in parentheses)
over 1000 Monte Carlo replications. The estimation methods considered are maxi-
mum likelihood (ML), Geweke and Porter-Hudak (GPH) and Whittle (WH). Sim-
ulation results show how the long memory parameter d is, for all models, correctly
estimated on average, with the ML and WH methods yielding comparable standard
deviations, while the GPH method performs considerably worse.
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NBI CNB
d n OD ML GPH WH OD ML GPH WH

0.15 500 1.5 0.14 (0.035) 0.16 (0.169) 0.14 (0.036) 1.1 0.14 (0.036) 0.16 (0.165) 0.14 (0.037)
1000 0.15 (0.026) 0.15 (0.136) 0.15 (0.026) 0.14 (0.026) 0.15 (0.132) 0.15 (0.026)

0.35 500 1.4 0.34 (0.037) 0.36 (0.168) 0.34 (0.039) 1.5 0.34 (0.037) 0.36 (0.168) 0.34 (0.039)
1000 0.35 (0.025) 0.39 (0.141) 0.35 (0.026) 0.34 (0.026) 0.35 (0.141) 0.35 (0.027)

0.45 500 2.9 0.43 (0.030) 0.47 (0.181) 0.44 (0.034) 2.2 0.43 (0.033) 0.46 (0.169) 0.44 (0.036)
1000 0.44 (0.024) 0.48 (0.141) 0.45 (0.027) 0.44 (0.024) 0.46 (0.144) 0.45 (0.027)

PI CP
d n OD ML GPH WH OD ML GPH WH

0.15 500 5.5 0.14 (0.038) 0.15 (0.165) 0.14 (0.038) 1.1 0.14 (0.037) 0.15 (0.169) 0.14 (0.038)
1000 0.15 (0.026) 0.16 (0.137) 0.15 (0.026) 0.15 (0.025) 0.15 (0.135) 0.15 (0.025)

0.35 500 2.5 0.34 (0.035) 0.37 (0.166) 0.35 (0.036) 1.4 0.34 (0.036) 0.35 (0.182) 0.34 (0.038)
1000 0.35 (0.026) 0.38 (0.146) 0.35 (0.027) 0.34 (0.025) 0.35 (0.138) 0.35 (0.026)

0.45 500 3.8 0.43 (0.030) 0.48 (0.166) 0.45 (0.034) 2.7 0.43 (0.031) 0.47 (0.175) 0.44 (0.035)
1000 0.44 (0.022) 0.48 (0.145) 0.45 (0.025) 0.44 (0.023) 0.47 (0.131) 0.45 (0.025)

Table 1 Estimation of the long memory parameter d for series generated from different models,
having comparable over-dispersions (OD). The considered models are the Poisson INAR (PI),
Conditional Poisson (CP), Negative Binomial INAR (NBI) and Conditional Negative Binomial
(CNB). The estimation methods are maximum likelihood (ML), the Geweke and Porter-Hudak
estimator (GPH) and the Whittle estimator (WH). Results show the average estimates and their
standard deviations (in parentheses) over 1000 Monte Carlo replications.
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