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ON THE SET OF POINTS OF SMOOTHNESS FOR THE VALUE
FUNCTION OF AFFINE OPTIMAL CONTROL PROBLEMS\ast 
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Abstract. We study the regularity properties of the value function associated with an affine
optimal control problem with quadratic cost plus a potential, for a fixed final time and initial point.
Without assuming any condition on singular minimizers, we prove that the value function is contin-
uous on an open and dense subset of the interior of the attainable set. As a byproduct we obtain
that it is actually smooth on a possibly smaller set, still open and dense.
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1. Introduction. The regularity of the value function associated with an opti-
mal control problem is a classical topic of investigation in control theory and has been
deeply studied in the last decades, extensively using tools from geometric control the-
ory and nonsmooth analysis. It is well known that the value function associated with
an optimal control problem fails to be everywhere differentiable and this is typically
the case at those points where the uniqueness of minimizers is not guaranteed. Actu-
ally, it is not even continuous, in general, as soon as singular minimizers are allowed
(see, for instance, [4, 34]).

In this paper we investigate the regularity of the value function associated with
affine optimal control problems, whose cost is written as a quadratic term plus a
potential.

The key starting point of our work is the characterization of points where the
value function is continuous. As we said, in the presence of singular minimizers for
the control problem one could not expect the value function to be continuous. Indeed,
for a fixed final time T > 0 and initial point x0, the continuity of the value function
ST
x0

at a point x is strictly related to the openness of the end-point map on the optimal
controls steering the initial fixed point x0 to x in time T > 0. Here by end-point map,
we mean the map that to every control u associates the final point of the corresponding
trajectory (cf. section 2 for precise definitions).

Without assuming any condition on singular minimizers, we focus on the set of
points, that we call tame points, in the interior of the attainable set such that the
end-point map is open and a submersion at every optimal control. The main result of
this paper is that we can find a large set of tame points. Since tame points are points
of continuity for the value function, we deduce that ST

x0
is continuous on an open and

dense set of the interior of the attainable set.
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650 DAVIDE BARILARI AND FRANCESCO BOAROTTO

Adapting then the arguments of [1, 31], we prove that the value function is actually
smooth on a (possibly smaller) open dense subset of the interior of the attainable set.

The main novelty with respect to the known results, valid in the driftless case
and with zero potential, is that in the latter case the value function is everywhere
continuous as a consequence of the openness of the end-point map, even in the presence
of deep singular minimizers. The absence of such a property for affine control systems
makes the study of the continuity of the value function more delicate in our context.

Let us briefly introduce the notation and present the main results in more detail.

1.1. Setting and main results. LetM be a smooth, connected,m-dimensional
manifold, and let T > 0 be a given fixed final time. A smooth affine control system
is a dynamical system which can be written in the form

(1.1) \.x(t) = X0(x(t)) +

d\sum 

i=1

ui(t)Xi(x(t)),

where X0, X1, . . . , Xd are smooth vector fields on M , and the map t \mapsto \rightarrow u(t) =
(u1(t), . . . , ud(t)) belongs to the Hilbert space L2([0, T ],\BbbR d).

Given x0 \in M we define the following:
(i) The set of admissible controls \Omega T

x0
as the subset of u \in L2([0, T ],\BbbR d), such

that the solution xu(\cdot ) to (1.1) satisfying xu(0) = x0 is defined on the interval
[0, T ]. If u \in \Omega T

x0
, we say that xu(\cdot ) is an admissible trajectory. By classical

results of ODE theory, the set \Omega T
x0

is open.
(ii) The attainable set AT

x0
(from the point x0, in time T > 0) as the set of points

of M that can be reached from x0 by admissible trajectories in time T , i.e.,

AT
x0

= \{ xu(T ) | u \in \Omega T
x0
\} .

For a given smooth function Q : M \rightarrow \BbbR , we are interested in those trajectories
minimizing the cost given by

(1.2) CT : \Omega T
x0

\rightarrow \BbbR , CT (u) =
1

2

\int T

0

\Biggl( 
d\sum 

i=1

ui(t)
2  - Q(xu(t))

\Biggr) 
dt.

More precisely, given x0 \in M and T > 0, we are interested in the regularity properties
of the value function ST

x0
:M \rightarrow \BbbR defined as follows:

(1.3) ST
x0
(x) = inf

\bigl\{ 
CT (u) | u \in \Omega T

x0
, xu(T ) = x

\bigr\} 
,

with the understanding that ST
x0
(x) = +\infty if x cannot be attained by admissible

curves in time T . We call optimal control any control u which solves the optimal
control problem (1.3).

Main assumptions. For the rest of the paper we make the following assumptions:
(H1) The weak H\"ormander condition holds on M . Namely, we require for every

point x \in M the equality

(1.4) Liex

\Bigl\{ 
(adX0)

j
Xi | j \geq 0, i = 1, . . . , d

\Bigr\} 
= TxM,

where (adX)Y = [X,Y ], and LiexF \subset TxM denotes the evaluation at the
point x of the Lie algebra generated by a family F of vector fields.
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REGULARITY FOR AFFINE OPTIMAL CONTROL PROBLEMS 651

(H2) For every bounded family U of admissible controls, there exists a compact
subset KT \subset M such that xu(t) \in KT for every u \in U and t \in [0, T ].

(H3) The potential Q is a smooth function bounded from above.

The assumption (H1) is needed to guarantee that the attainable set has at least
nonempty interior, i.e., int

\bigl( 
AT

x0

\bigr) 
\not = \emptyset (cf. [33] or [26, Ch. 3, Thm. 3]). The second

assumption (H2) is a completeness/compactness assumption on the dynamical system
that, together with (H3), is needed to guarantee the existence of optimal controls. We
stress that (H2) and (H3) are automatically satisfied whenM is compact. WhenM is
not compact, (H2) holds true under a sublinear growth condition on the vector fields
X0, . . . , Xd. We refer the reader to section 2 for more details on the role of these
assumptions.

As already anticipated, the key starting point of our work is the characterization
of points where the value function is continuous through the study of the set of tame
points. This is the set \Sigma t \subset int

\bigl( 
AT

x0

\bigr) 
of all points x such that the end-point map is

open and a submersion at every optimal control steering x0 to x. The main result of
this paper, whose proof comprises its technical core, is that we can find a large set of
tame points.

Theorem 1. Fix x0 \in M , and let ST
x0

be the value function associated with an
optimal control problem of the form (1.1)--(1.2) satisfying assumptions (H1)--(H3).
Then the set \Sigma t of tame points is open and dense in int

\bigl( 
AT

x0

\bigr) 
and ST

x0
is continuous

on \Sigma t.

In the driftless case (more precisely, when X0 = 0 and Q = 0), the end-point
map is open at every point, even if it is not a submersion in the presence of singular
minimizers. This, however, suffices for the sub-Riemannian distance to be continuous
everywhere. Moreover, this remains true for any Lp-topology on the space of controls
for p < +\infty ; see [10]. This is no longer true if we introduce a drift field and the
characterization of the set of points where the end-point is open and the choice of the
topology in the space of controls is more delicate.

The proof of Theorem 1 is inspired by the arguments, dealing with the sub-
Riemannian case, presented among others by the first author in [2, Chapter 11], and
starts by characterizing the set of points reached by a unique minimizer trajectory
that is not strictly singular (called fair points). The classical argument proves that
this set is dense in the attainable set, but, while in the driftless case each of these
points is also a continuity point for the value function, in this setting in principle it
could likely be that the set of fair points and the set of continuity points, both dense,
may have empty intersection. Completing this gap requires ad hoc new arguments
developed in section 4.

Once Theorem 1 is proved, an adaptation of arguments from [1, 31] let us derive
the following result.

Theorem 2. Under the assumptions of Theorem 1, ST
x0

is smooth on a nonempty
open and dense subset of int

\bigl( 
AT

x0

\bigr) 
.

In [1], the author proves the analogue of Theorem 2 for the value function associ-
ated with sub-Riemannian optimal control problems, i.e., driftless systems with zero
potential. Notice that in this case (H1) reduces to the classical H\"ormander condi-
tion, and the value function (at time T ) coincides with one half of the square of the
sub-Riemannian distance (divided by T ) associated with the family of vector fields
X1, . . . , Xd.

Let us further mention that, even in the sub-Riemannian situation, it still re-
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652 DAVIDE BARILARI AND FRANCESCO BOAROTTO

mains an open question to establish whether the set of smoothness points of the value
function has full measure in int

\bigl( 
AT

x0

\bigr) 
or not.

1.2. Comparison with recent literature. Regularity of the value function
for these kinds of control systems with techniques of geometric control has been also
studied in [15, 34], where the authors assume that there are no abnormal optimal
controls, a condition which yields the openness of the end-point already at the first
order, while in [4] the authors obtain the openness of the end-point map on optimal
controls with second-order techniques, assuming no optimal Goh abnormal controls
exist. In fact, as one can see following the proof of Lemma 20 in the appendix,
openness of the end-point map at every optimal control is what is needed to ensure
the continuity of the value function.

For more details on Goh abnormals we refer the reader to [5, Chapter 20] (see also
[2, 30]). Let us mention that in [17] the authors prove that the system (1.1) admits
no Goh optimal trajectories for the generic choice of the (d+ 1)-tuple X0, . . . , Xd (in
the Whitney topology).

Finally, in [29] the author proves the H\"older continuity of the value function under
a strong bracket generating assumption, when one considers the L1 cost.

In the investigation of the regularity of the value function, techniques of non-
smooth analysis have been also extensively used. A complete overview of the vast
literature on this approach being not possible in this short discussion, we refer the
interested reader to the monographs [6, 18, 16, 23, 19, 36] for a general introduction,
and we discuss here some results that are more closely related to those investigated
in this paper.

In the paper [12] the authors consider an optimal control problem of Bolza type.
Their main results are analogous to that of our Theorem 2, stating that as soon as the
proximal subdifferential (cf. Definition 12) of the value function of the Bolza problem
is nonempty at a point, then the value function turns out to be of class C2 in a
neighborhood of that point.

A similar result concerning a Hamilton--Jacobi equation related to the Bolza prob-
lem of the calculus of variations was already obtained in [13], assuming coercivity of
the Hamiltonian under consideration. Combined with the fact that points where the
proximal subdifferential is nonempty are dense in the domain of the value function
(cf. Proposition 13), these results are used to derive deep regularity properties on the
optimal synthesis.

Analogous techniques have also been employed to treat an optimal control prob-
lem of Mayer type [14], in which the dynamic is given by a differential inclusion. In
this case the Hamiltonian is no longer coercive, but still the local C2 (and C2,m, for
0 < m \leq 1) smoothness of the value function is proven at points where the proximal
subdifferential is nonempty.

For a discussion on the relation between optimal control problems, Mayer-type
problems for differential inclusions, and the Bolza problem of the calculus of variations,
we refer the reader to [19, Chapter 1].

1.3. Further comments. As we have seen in the aforementioned results, the
regularity of the value function has important consequences for the structure of opti-
mal control problems. In fact, this is also the paradigm of this paper. The main issue
is that, in general, the value function does not exhibit sufficient regularity in principle
(cf. Proposition 7) and has to be analyzed using the so-called sensitivity relations. It
should be mentioned that, since the seminal papers [20, 37], sensitivity analysis has
proved itself to be successful for a wide range of optimal control problems [8, 9, 24, 25].
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REGULARITY FOR AFFINE OPTIMAL CONTROL PROBLEMS 653

The idea behind sensitivity relations is to give necessary optimality conditions (e.g.,
as in Proposition 8) in the form of inclusions into suitable generalized differentials of
the value function.

In this paper we exploit the nonemptiness of the proximal differential (cf. Propo-
sition 14), only to prove that the corresponding point is reached by a normal tra-
jectory, i.e., a trajectory that can be reconstructed from the exponential map (cf.
subsection 2.3 and Definition 9). Finer regularity properties of the corresponding
trajectory (such as absence of singular minimizer), and as a consequence of the value
function, are deduced through direct investigation.

Let us mention that, in the geometric language, the exact characterization of the
regularity of the value function at the so-called cut locus (the set of points where
trajectories satisfying first-order necessary conditions lose optimality) is not trivial.
This phenomenon is well understood in the Riemannian setting and is characterized by
the loss of semiconvexity of ST

x0
[21]. An analogous property has been recently proved

in the sub-Riemannian setting in [7], but only in the absence of singular minimizers
(cf. also the discussion in [22]).

1.4. Structure of the paper. In section 2 we recall some properties of the
end-point map and the existence of minimizers in our setting, and we recall their
characterization in terms of the Hamiltonian equation. Section 3 introduces different
sets of points that are relevant in our analysis. Section 4 is devoted to the study
of tame points and the proof of Theorem 1. In section 5 we complete the proof of
Theorem 2. Finally, in Appendix A we present for readers' convenience the proof of
a few technical facts, adapted with minor modifications to our setting.

2. Preliminaries. For a fixed admissible control u \in \Omega T
x0
, the family of diffeo-

morphisms
Pu
0,t : Ux0

\subset M \rightarrow M, t \in [0, T ],

defined by Pu
0,t(y) = xu,y(t), is well defined on some neighborhood Ux0

of x0 [11].
Here, by xu,y(t) we denote the solution to the equation (1.1) with initial condition
xu,y(0) = y. It is a classical fact that this family is absolutely continuous with respect
to t. Similarly, given u \in \Omega T

x0
it is possible to define the family of flow diffeomorphisms

Pu
s,t : Ux0

\rightarrow M by solving (1.1) with initial condition xu,y(s) = y. Notice then that
Pu
t,t = Id and that the composition formulas

Pu
s,t \circ Pu

r,s = Pu
r,t and

\bigl( 
Pu
s,t

\bigr)  - 1
= Pu

t,s

hold true (at those points where all terms are defined). Finally, the notation
\bigl( 
Pu
s,t

\bigr) 
\ast 

refers to the push-forward map defined from Txu(s)M to Txu(t)M . In particular, if X

is any vector field on M , then the push-forward
\bigl( 
Pu
s,t

\bigr) 
\ast X is defined by

\bigl( 
Pu
s,t

\bigr) 
\ast (X(y)) =

\Bigl( \bigl( 
Pu
s,t

\bigr) 
\ast X
\Bigr) 
(Pu

s,t(y)).

2.1. The end-point map. In what follows we fix x0 \in M and T > 0.

Definition 3 (end-point map). The end-point map at time T is the map

ET
x0

: \Omega T
x0

\rightarrow M, ET
x0
(u) = xu(T ),

where xu(\cdot ) is the admissible trajectory driven by the control u.

The end-point map is smooth on \Omega T
x0

\subset L2([0, T ],\BbbR d). The computation of its
Fr\'echet differential is classical and can be found, for example, in [2, 30, 34].
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654 DAVIDE BARILARI AND FRANCESCO BOAROTTO

Proposition 4. The differential duE
T
x0

: L2([0, T ],\BbbR d) \rightarrow Txu(T )M of the end-
point map at u \in \Omega T

x0
is given by the formula

(2.1) duE
T
x0
(v) =

\int T

0

d\sum 

i=1

vi(s)
\bigl( 
Pu
s,T

\bigr) 
\ast (Xi(xu(s))) ds.

Let us consider a sequence of admissible controls \{ un\} n\in \BbbN , which weakly converges
to some element u \in L2([0, T ],\BbbR d). Then the sequence \{ un\} n\in \BbbN is bounded in L2, and,
thanks to our assumption (H2), there exists a compact set KT such that xun

(t) \in KT

for all n \in \BbbN and t \in [0, T ].
This yields that the family of trajectories \{ xun(\cdot )\} n\in \BbbN is uniformly bounded, and

from here it is a classical fact to deduce that the weak limit u is an admissible control
and that xu(\cdot ) = limn\rightarrow \infty xun

(\cdot ) (in the uniform topology) is its associated trajectory
(see, for example, [35]).

This proves that the end-point map ET
x0

is weakly continuous. Indeed, one can
prove that the same holds true for its differential duE

T
x0
. More precisely, if \{ un\} n\in \BbbN is

a sequence of admissible controls which weakly converges in L2([0, T ],\BbbR d) to u (which
is admissible by the previous discussion), we have both that

lim
n\rightarrow \infty 

ET
x0
(un) = ET

x0
(u) and lim

n\rightarrow \infty 
dun

ET
x0

= duE
T
x0
,

and the last convergence is in the (strong) operator norm (see [34]).

Remark 1. There are other possible assumptions to ensure that the weak limit
of a sequence of admissible controls is again an admissible control. For example, as
suggested in [15], one could ask for a sublinear growth condition on the vector fields
X0, . . . , Xd. In this case the uniform bound on the trajectories (equivalent to (H2))
follows as a consequence of the Gronwall inequality and the observation that a weakly
convergent sequence in L2 is necessarily bounded.

Definition 5 (attainable set). For a fixed final time T > 0, we denote by AT
x0

the image of the end-point map at time T , and we call it the attainable set (from the
point x0).

In general, the inclusion AT
x0

\subset M can be proper; that is, the end-point map ET
x0

may not be surjective on M . Nevertheless, the set int
\bigl( 
AT

x0

\bigr) 
is densely contained in

AT
x0

[5, 26, 33], and the weak H\"ormander condition (1.4) implies that for every initial
point x0 one has int

\bigl( 
AT

x0

\bigr) 
\not = \emptyset [33] (see also [26, Ch. 3, Thm. 3]).

2.2. Value function and optimal trajectories. Let Q :M \rightarrow \BbbR be a smooth
function, which plays in what follows the role of a potential. If we introduce the
Tonelli Lagrangian

L :M \times \BbbR d \rightarrow \BbbR , L(x, u) =
1

2

\Biggl( 
d\sum 

i=1

u2i  - Q(x)

\Biggr) 
,

then the cost CT : \Omega T
x0

\rightarrow \BbbR is written as

CT (u) =

\int T

0

L(xu(t), u(t))dt =
1

2

\int T

0

\Biggl( 
d\sum 

i=1

ui(t)
2  - Q(xu(t))

\Biggr) 
dt.
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The differential duCT of the cost can be recovered similarly as for the differential
of the end-point map, and is given, for every v \in L2([0, T ],\BbbR d), by the formula

duCT (v) =

\int T

0

\langle u(t), v(t)\rangle dt - 1

2

\int T

0

Q\prime (xu(t))

\Biggl( \int t

0

d\sum 

i=1

vi(s)(P
u
s,t)\ast (Xi(xu(s))) ds

\Biggr) 
dt,

which is obtained by writing xu(t) = Et
x0
(u) and applying (2.1).

Fix two points x0 and x in M . The problem of describing optimal trajectories
steering x0 to x in time T can be naturally reformulated in the following way: intro-
ducing the value function ST

x0
:M \rightarrow \BbbR via the position

(2.2) ST
x0
(x) := inf

\Bigl\{ 
CT (u) | u \in \Omega T

x0
\cap 
\bigl( 
ET

x0

\bigr)  - 1
(x)
\Bigr\} 
,

with the agreement that ST
x0
(x) = +\infty if the preimage

\bigl( 
ET

x0

\bigr)  - 1
(x) is empty; then the

optimal control problem consists in looking for elements u \in L2([0, T ],\BbbR d) realizing
the infimum in (2.2). Accordingly, from now on we will call optimal control any
admissible control u which solves the optimal control problem.

Existence of minimizers under our main assumptions (H1)--(H3) follows from clas-
sical arguments.

Proposition 6 (existence of minimizers). Let x \in AT
x0
. Then there exists an

optimal control u \in \Omega T
x0

satisfying

ET
x0
(u) = x and CT (u) = ST

x0
(x).

Remark 2. The assumptions (H2)--(H3) play a crucial role for the existence of
optimal controls. An equivalent approach could be to work directly inside a given
compact set (see [3]) or with M itself a compact manifold. For some specific cases,
as in the classical case of the harmonic oscillator, one is able to integrate directly
Hamilton's equations (cf. subsection 2.4), and the existence of optimal trajectories
could be proved with ad hoc arguments.

As already pointed out in the introduction, one could not expect global continuity
for the value function. Nevertheless, it is well known that under our assumptions, we
have the following.

Proposition 7. The map ST
x0

: AT
x0

\rightarrow \BbbR is lower semicontinuous.

Proofs of Proposition 6 and Proposition 7 are classical and follow from standard
arguments in the literature (see, e.g., [27, 34]); hence their proofs are omitted and left
to the reader.

2.3. Lagrange multipliers' rule. In this section we briefly recall the classical
necessary condition satisfied by optimal controls u realizing the infimum in (2.2). It
is indeed a restatement of the classical Lagrange multipliers' rule (see [5, 2, 28]).

Proposition 8. Let u \in L2([0, T ],\BbbR d) be an optimal control with x = ET
x0
(u).

Then at least one of the following statements holds:
(a) \exists \lambda T \in T \ast 

xM such that \lambda T duE
T
x0

= duCT ,
(b) \exists \lambda T \in T \ast 

xM , with \lambda T \not = 0, such that \lambda T duE
T
x0

= 0.

Here \lambda T duE
T
x0

: L2([0, T ]) \rightarrow \BbbR denotes the composition of the linear maps
duE

T
x0

: L2([0, T ]) \rightarrow TxM and \lambda T : TxM \rightarrow \BbbR .
A control u, satisfying the necessary conditions for optimality stated in Propo-

sition 8, is said to be normal in case (a) and abnormal in case (b). Notice that (b)
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656 DAVIDE BARILARI AND FRANCESCO BOAROTTO

implies that duE
T
x0

is not surjective in the abnormal case. Moreover, any covector
\lambda T , either normal or abnormal, is defined only modulo the subspace ker(duE

T
x0
)\ast .

We stress again that the two possibilities are not mutually exclusive, and we define
accordingly a control u to be strictly normal (resp., strictly abnormal) if it is normal
but not abnormal (resp., abnormal but not normal). Slightly abusing the notation,
we extend this language even to the associated optimal trajectories t \mapsto \rightarrow xu(t).

2.4. Normal extremals and exponential map. Let us denote by \pi : T \ast M \rightarrow 
M the canonical projection of the cotangent bundle, and by \langle \lambda , v\rangle the duality pairing
between a covector \lambda \in T \ast 

xM and a vector v \in TxM . In canonical coordinates (p, x)
on the cotangent space, we can express the Liouville form as s =

\sum m
i=1 pidxi, and the

standard symplectic form becomes \sigma = ds =
\sum m

i=1 dpi \wedge dxi. We denote by
 - \rightarrow 
h the

Hamiltonian vector field associated with a smooth function h : T \ast M \rightarrow \BbbR , defined by
the identity

 - \rightarrow 
h =

m\sum 

i=1

\partial h

\partial pi

\partial 

\partial xi
 - \partial h

\partial xi

\partial 

\partial pi
.

The Pontryagin Maximum Principle [28, 5] tells us that candidate optimal tra-
jectories are projections of extremals, which are integral curves of the constrained
Hamiltonian system,

\.x(t) =
\partial H

\partial p
(u(t), \nu , p(t), x(t)), \.p(t) =  - \partial H

\partial x
(u(t), \nu , p(t), x(t)), 0 =

\partial H

\partial u
(u(t), \nu , p(t), x(t)),

where the (control-dependent) Hamiltonian H : \BbbR d\times ( - \infty , 0]\times T \ast M \rightarrow \BbbR , associated
with the system (1.1), is defined by

H\nu (u, \nu , p, x) = \langle p,X0(x)\rangle +
d\sum 

i=1

ui\langle p,Xi(x)\rangle +
\nu 

2

d\sum 

i=1

u2i  - 
\nu 

2
Q(x).

In particular, the nonpositive real constant \nu remains constant along extremals. Re-
calling the result of Proposition 8, there holds either the identity (p(T ), \nu ) = (\lambda T , 0)
in the case of abnormal extremals, or (p(T ), \nu ) = (\lambda T , - 1) for the normal ones. More-
over, we see that under the previous normalizations, the optimal control u(t) along
normal extremals can be recovered using the equality

(2.3) ui(t) = \langle p(t), Xi(x(t))\rangle for i = 1, . . . , d.

Normal extremals are therefore solutions to the differential system

(2.4) \.x(t) =
\partial H

\partial p
(p(t), x(t)), \.p(t) =  - \partial H

\partial x
(p(t), x(t)),

where the Hamiltonian H has the expression

H(p, x) = \langle p,X0(x)\rangle +
1

2

d\sum 

i=1

\langle p,Xi(x)\rangle 2 +
1

2
Q(x).

In particular, being the solution to a smooth autonomous system of differential equa-
tions, the pair (x(t), p(t)) is smooth as well, which eventually implies that the control
ui(t) = \langle p(t), Xi(x(t))\rangle associated to normal trajectories is itself smooth by (2.3). It
is well known that, under our assumptions, small pieces of normal trajectories are op-
timal among all the admissible curves that connect their end-points (see, for instance,
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[5]); that is, if x1 = xu(t1) and x2 = xu(t2) are sufficiently close points on the normal
trajectory xu(\cdot ), then the cost-minimizing admissible trajectory between x1 and x2
that solves (2.2) is precisely xu(\cdot ).

Definition 9 (exponential map). The exponential map Exp with base point x0
is defined as

Expx0
(\cdot , \cdot ) : [0, T ]\times DT

x0
\rightarrow M, Expx0

(s, \lambda ) = \pi (es
 - \rightarrow 
H (\lambda )),

where DT
x0

is the open subset of covectors in T \ast 
x0
M such that the solution to (2.4)

is defined up to time T . When the first argument is fixed, we employ the notation
Expsx0

: DT
x0

\rightarrow M to denote the exponential map with base point x0 at time s, that is
to say, we set Expsx0

(\lambda ) := Expx0
(s, \lambda ).

Then we see that the exponential map parametrizes normal extremals. Mimicking
the classical notion in the Riemannian setting, it permits us to define conjugate points
along these trajectories.

Definition 10. We say that a point x = Expx0
(s, \lambda ), s \in [0, T ], is conjugate to

x0 along the normal extremal t \mapsto \rightarrow Expx0
(t, \lambda ), t \in [0, T ], if (s, \lambda ) is a critical point of

Expx0
, i.e., if the differential d(s,\lambda )Expx0

is not surjective.

3. On the continuity. In this section we study fine properties of the value
function on AT

x0
. Eventually, we investigate differentiability properties of ST

x0
. It is

thus natural to restrict the analysis on the nonempty open subset int
\bigl( 
AT

x0

\bigr) 
(cf. also

the discussion at the end of subsection 2.1).

3.1. Fair points. We start by introducing the set of fair points.

Definition 11. A point x \in int
\bigl( 
AT

x0

\bigr) 
is said to be a fair point if there exists a

unique optimal trajectory steering x0 to x, and this trajectory admits a normal lift.
We call \Sigma f the set of all fair points contained in the attainable set.

Equivalently, a fair point is reached by a unique optimal trajectory, and this
trajectory is not strictly abnormal.

The lower semicontinuity of ST
x0

permits us to find a great abundance of fair
points. Their existence is related to the notion of the proximal subdifferential (see,
for instance, [18, 31] for more details).

Definition 12. Let F : int
\bigl( 
AT

x0

\bigr) 
\rightarrow \BbbR be a lower semicontinuous function. For

every x \in int
\bigl( 
AT

x0

\bigr) 
we call the proximal subdifferential at x the subset of T \ast 

xM defined
by

\partial PF (x) =
\Bigl\{ 
\lambda = dx\phi \in T \ast 

xM | \phi \in C\infty 
\Bigl( 
int

\Bigl( 
AT

x0

\Bigr) \Bigr) 
and F  - \phi attains a local minimum at x

\Bigr\} 
.

The proximal subdifferential is a convex subset of T \ast 
xM which is often nonempty

in the case of a lower semicontinuous function [18, Theorem 3.1].

Proposition 13. Let F : int
\bigl( 
AT

x0

\bigr) 
\rightarrow \BbbR be a lower semicontinuous function.

Then the proximal subdifferential \partial PF (x) is not empty for a dense set of points x \in 
int
\bigl( 
AT

x0

\bigr) 
.

We showed in Proposition 7 that the value function ST
x0

: int
\bigl( 
AT

x0

\bigr) 
\rightarrow \BbbR is lower

semicontinuous. By classical arguments, the proximal subdifferential machinery yields
the following result (cf. also [31, 1]).
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658 DAVIDE BARILARI AND FRANCESCO BOAROTTO

Proposition 14. Let x \in int
\bigl( 
AT

x0

\bigr) 
be such that \partial PS

T
x0
(x) \not = \emptyset . Then there exists

a unique optimal trajectory xu(\cdot ) : [0, T ] \rightarrow M steering x0 to x, and this trajectory
admits a normal lift. In particular x is a fair point.

Proof. Fix any \lambda \in \partial PS
T
x0
(x). Let us prove that every optimal trajectory steering

x0 to x admits a normal lift having \lambda as final covector.
Indeed, if \phi is a smooth function such that \lambda = dx\phi \in \partial PS

T
x0
(x), by definition the

map
\psi : int

\bigl( 
AT

x0

\bigr) 
\rightarrow \BbbR , \psi (y) = ST

x0
(y) - \phi (y)

has a local minimum at x; i.e., there exists an open neighborhood O \subset int
\bigl( 
AT

x0

\bigr) 
of

x such that \psi (y) \geq \psi (x) for every y \in O. Then, let t \mapsto \rightarrow xu(t), t \in [0, T ], be an
optimal trajectory from x0 to x, let u be the associated optimal control, and define
the smooth map

\Phi : \Omega T
x0

\rightarrow \BbbR , \Phi (v) = CT (v) - \phi (ET
x0
(v)).

There exists a neighborhood V \subset \Omega T
x0

of u such that ET
x0
(V) \subset O, and since CT (v) \geq 

ST
x0
(ET

x0
(v)), we have the following chain of inequalities:

\Phi (v) = CT (v) - \phi (ET
x0
(v)) \geq ST

x0
(ET

x0
(v)) - \phi (ET

x0
(v))

\geq ST
x0
(ET

x0
(u)) - \phi (ET

x0
(u)) = CT (u) - \phi (ET

x0
(u)) = \Phi (u)

\forall v \in V,

where in the second inequality we used the fact that \psi has a minimum at x = ET
x0
(u).

Then
0 = du\Phi = duCT  - (dx\phi ) duE

T
x0
,

and therefore we see that the curve \lambda (t) = e(t - T ) \vec{}H(\lambda ) is the desired normal lift of the
trajectory xu(\cdot ).

Observe that the extremal normal lift \lambda (t) is uniquely reconstructed from \lambda , and
in fact its projection onto the manifold M does not depend on u. Then there is only
one optimal trajectory between x0 and x, admitting a normal lift, which precisely
means that x \in \Sigma f is a fair point.

As a final remark, we stress that nothing prevents the optimal trajectory from
admitting also an abnormal lift. In particular, when \partial PS

T
x0
(x) \not = \emptyset , the unique normal

trajectory steering x0 to x is strictly normal if and only if \partial PS
T
x0
(x) is a singleton.

Corollary 15 (density of fair points). The set \Sigma f of fair points is dense in
int
\bigl( 
AT

x0

\bigr) 
.

Along the same lines of Proposition 14, we show that all differentiability points
of ST

x0
are fair points.

Proposition 16. Suppose that ST
x0

is differentiable at some point x \in int
\bigl( 
AT

x0

\bigr) 
.

Then x is a fair point, and its normal covector is \lambda = dxS
T
x0

\in T \ast 
xM .

Proof. Indeed, let u be any optimal control steering x0 to x. Then it is sufficient
to consider the nonnegative map

v \mapsto \rightarrow CT (v) - ST
x0
(ET

x0
(v)),

which has by definition a local minimum at u (equal to zero). Then

0 = duCT  - 
\bigl( 
dxS

T
x0

\bigr) 
duE

T
x0
,

and the uniqueness of u (hence the claim) follows as in the previous proof.
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3.2. Continuity points. We are also interested in the subset \Sigma c of the points
of continuity for the value function. It is a fact from general topology that a lower
semicontinuity function has plenty of continuity points.

Lemma 17. The set \Sigma c is a residual subset of int
\bigl( 
AT

x0

\bigr) 
.

Recall that a residual subset of a topological space X is the complement of a
union of countably many nowhere dense subsets of X. This fact is well known, but
the proof is often presented for functions defined on complete metric spaces. For the
sake of completeness, we give a proof in the appendix.

The existence of points of continuity is tightly related to the compactness of
optimal controls, as is shown in the next lemma.

Lemma 18. Let x \in int
\bigl( 
AT

x0

\bigr) 
be a continuity point of ST

x0
. Let \{ xn\} n\in \BbbN \subset 

int
\bigl( 
AT

x0

\bigr) 
be a sequence converging to x and let un be an optimal control steering

x0 to xn. Then there exists a subsequence \{ xnk
\} k\in \BbbN \subset \{ xn\} n\in \BbbN , whose associated

sequence of optimal controls \{ unk
\} k\in \BbbN strongly converges in L2([0, T ],\BbbR d) to some

optimal control u which steers x0 to x.

Proof. Let \{ xn\} n\in \BbbN \subset int
\bigl( 
AT

x0

\bigr) 
be a sequence converging to x and let \{ un\} n\in \BbbN 

be the corresponding sequence of optimal controls. Since x is a continuity point
for the value function, it is not restrictive to assume that the sequence of norms
\{ \| un\| L2\} n\in \BbbN remains uniformly bounded, and thus we can suppose to extract a sub-
sequence \{ unk

\} k\in \BbbN \subset \{ un\} n\in \BbbN such that unk
\rightharpoonup u weakly in L2([0, T ],\BbbR d), which in

turn implies

lim
k\rightarrow \infty 

\int T

0

Q(xunk
(t))dt =

\int T

0

Q(xu(t))dt.

Then we have

1

2
\| u\| 2L2  - 

1

2

\int T

0

Q(xu(t))dt \leq lim inf
k\rightarrow \infty 

1

2
\| unk

\| 2L2  - 
1

2

\int T

0

Q(xunk
(t))dt

= lim
k\rightarrow \infty 

ST
x0
(ET

x0
(unk

)) = lim
k\rightarrow \infty 

ST
x0
(xnk

)

= ST
x0
(x) = ST

x0
(ET

x0
(u))

\leq 1

2
\| u\| 2L2  - 

1

2

\int T

0

Q(xu(t))dt,

which readily means both that limk\rightarrow \infty \| unk
\| L2 = \| u\| L2 (from which the convergence

in L2 follows), and that CT (u) = ST
x0
(ET

x0
(u)) = ST

x0
(x).

3.3. Tame points. We have introduced so far two subsets of int
\bigl( 
AT

x0

\bigr) 
, namely

the sets \Sigma c of the continuity points of ST
x0
, and the set \Sigma f of fair points, which are

essentially points that are well parametrized by the exponential map. While both
these sets are dense in int

\bigl( 
AT

x0

\bigr) 
, their intersection can still be empty. Here we have

the main differences with respect to the arguments of [1]: indeed in that context every
fair point is a point of continuity. In our setting, to relate \Sigma c and \Sigma f , we introduce
the following set.

Definition 19 (tame points). Let x \in int
\bigl( 
AT

x0

\bigr) 
. We say that x is a tame point

if for every optimal control u steering x0 to x there holds

rank duE
T
x0

= dimM = m.

We call \Sigma t the set of tame points.
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Tame points locate open sets on which the value function ST
x0

is continuous. The
precise statement is contained in the following lemma, whose first part of the proof is
an adaptation of the arguments of [34, Theorem 4.6]. A complete proof is contained
in Appendix A.

Lemma 20. Let x \in int
\bigl( 
AT

x0

\bigr) 
be a tame point. Then the following hold:

(i) x is a point of continuity of ST
x0
.

(ii) There exists a neighborhood Ox of x such that every y \in Ox is a tame point.
In particular, the restriction ST

x0

\bigm| \bigm| 
Ox

is a continuous map.

The previous lemma can be restated as follows.

Corollary 21. The set \Sigma t of tame points is open. Moreover, \Sigma t \subset \Sigma c.

4. Density of tame points. This section is devoted to the proof that the set
of tame point is open and dense in the interior of the attainable set. We start with
the observation that the set of optimal controls reaching a fixed point x is compact
in the L2-topology.

Lemma 22. For every x \in AT
x0
, the set

Ux =
\bigl\{ 
u \in \Omega T

x0
| u is an optimal control steering x0 to x

\bigr\} 

is strongly compact in L2([0, T ],\BbbR d).

Proof. Let \{ un\} n\in \BbbN \subset Ux. Then we have ST
x0
(x) = CT (un) for every n \in \BbbN , and

consequently there exists C > 0 such that \| un\| L2 \leq C for every n \in \BbbN . Thus we may
assume that there exists a subsequence \{ unk

\} k\in \BbbN \subset \{ un\} n\in \BbbN , and a control u steering
x0 to x, such that unk

\rightharpoonup u weakly in L2([0, T ],\BbbR d). This, on the other hand, implies
that

1

2
\| u\| 2L2  - 

1

2

\int T

0

Q(xu(t))dt \leq lim inf
k\rightarrow \infty 

1

2
\| unk

\| 2L2  - 
1

2

\int T

0

Q(xunk
(t))dt

= lim inf
k\rightarrow \infty 

CT (unk
) = ST

x0
(x)

= CT (u) =
1

2
\| u\| 2L2  - 

1

2

\int T

0

Q(xu(t))dt;

therefore, \| u\| L2 = limk\rightarrow \infty \| unk
\| L2 , and the claim is proved.

We introduce now the notion of the class of a point. Heuristically, the class of
a point x \in int

\bigl( 
AT

x0

\bigr) 
measures how much that point ``fails"" to be tame (see Defini-

tion 19).

Definition 23. Let x \in AT
x0
. We define

class (x) = min
u\in Ux

rank duE
T
x0
.

Any point x \in int
\bigl( 
AT

x0

\bigr) 
satisfying class (x) = m is necessarily a tame point.

Definition 24. We also define the subset Umin
x \subset Ux as follows:

Umin
x =

\bigl\{ 
u \in Ux | rank duET

x0
= class (x)

\bigr\} 
.

By the lower semicontinuity of the rank function, the set Umin
x is closed in Ux and

hence (strongly) compact in L2([0, T ],\BbbR d).
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It turns out that the function class is locally constant around points of continuity
in the interior of the attainable set.

Lemma 25. Let O \subset int
\bigl( 
AT

x0

\bigr) 
be an open set, and let

kO = max
x\in \Sigma c\cap O

class (x).

Then there exists a neighborhood O\prime \subset O, such that class (y) = kO, for every y \in O\prime .

Proof. Let x \in \Sigma c \cap O be a point of continuity for the value function ST
x0
, having

the property that class (x) = kO. Assume by contradiction that we can find a sequence
\{ xn\} n\in \BbbN converging to x and satisfying class (xn) \leq kO  - 1 for every n \in \BbbN . Accord-
ingly, let un \in Umin

xn
be an associated sequence of optimal controls. In particular, for

every n \in \BbbN , we have by definition that class (xn) = rank dun
ET

x0
.

By Lemma 18, we can extract a subsequence \{ unk
\} k\in \BbbN \subset \{ un\} n\in \BbbN which con-

verges to some optimal control u steering x0 to x, strongly in the L2-topology, and
write

class (x) \leq rank duE
T
x0

\leq lim inf
k\rightarrow \infty 

rank dunk
ET

x0
= lim inf

k\rightarrow \infty 
class (xnk

) \leq kO  - 1,

which is absurd by construction, and the claim follows.

We can now state the main result of this section.

Theorem 26. The set \Sigma t of tame points is dense in int
\bigl( 
AT

x0

\bigr) 
.

We postpone the proof of Theorem 26 until the end of the section, since we need
first a series of preliminary results. We begin attaching to each u \in Umin

x the set of
all normal covectors \lambda satisfying condition (a) in Proposition 8.

Definition 27. Pick x in int
\bigl( 
AT

x0

\bigr) 
and let u \in Umin

x . If u is not strictly abnor-
mal, then we choose any normal covector \lambda T,x \in T \ast 

xM associated to u and satisfying
item (a) in Proposition 8, and we define

\widehat \Xi u
x =

\bigl\{ 
\lambda \in T \ast 

xM | \lambda duET
x0

= \lambda T,xduE
T
x0

\bigr\} 
= \lambda T,x + ker

\bigl( 
duE

T
x0

\bigr) \ast \subset T \ast 
xM.

If instead u is strictly abnormal, we simply set \widehat \Xi u
x = ker

\bigl( 
duE

T
x0

\bigr) \ast \subset T \ast 
xM . Notice

that whenever u is strictly abnormal, then \widehat \Xi u
x is a linear subspace, while if u ad-

mits at least one normal lift, \widehat \Xi u
x is affine. The dimension of these subspaces equals

m - class (x) \geq 0.

Fix any Riemannian metric gx0 on T \ast 
x0
M . If u is an admissible control associated

to a trajectory steering x0 to x in time T , i.e., x = Pu
0,T (x0), unless otherwise stated

we will always consider on T \ast 
xM the Riemannian metric gu

x defined as the pull-back
of gx0

by Pu
0,T ; i.e., we set

(4.1) gu
x(\xi , \eta ) := gx0

((Pu
0,T )

\ast \xi , (Pu
0,T )

\ast \eta ) \forall \xi , \eta \in T \ast 
xM.

Observe that this metric depends continuously on the control.
We call \widehat Zu \subset T \ast 

xM the orthogonal (with respect to gu
x) subspace to ker

\bigl( 
duE

T
x0

\bigr) \ast 
,

of dimension equal to class (x), so that

(4.2) T \ast 
xM = ker

\bigl( 
duE

T
x0

\bigr) \ast \oplus \widehat Zu.

Moreover, we let \pi \widehat Zu
: T \ast 

xM \rightarrow \widehat Zu be the orthogonal projection subordinated to this
splitting, that is satisfying

ker(\pi \widehat Zu
) = ker

\bigl( 
duE

T
x0

\bigr) \ast 
.
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662 DAVIDE BARILARI AND FRANCESCO BOAROTTO

Finally, by means of the adjoint map
\bigl( 
Pu
0,T

\bigr) \ast 
, we can pull the spaces \widehat \Xi u

x ``back"" to
Tx0

M and set

\Xi u
x :=

\bigl( 
Pu
0,T

\bigr) \ast \widehat \Xi u
x \subset T \ast 

x0
M.

T ∗
x0
M

T ∗
yM

Ξv
y

Ξu
x

(P v
T,0)

∗

b λu

b
λ̂v
u

λ̂u + Ẑv

b
ξ̂v

Ξ̂v
ybξv

Fig. 1. We set y = ET
x0

(v). The subspace \widehat \Xi v
y is linear if v is strictly abnormal and affine

otherwise. \widehat Zv and ker
\bigl( 
dvET

x0

\bigr) \ast 
are orthogonal. The point \widehat \xi v belongs to T \ast 

yM and is then pulled
back on T \ast 

x0
M .

The following estimate will be crucial in what follows.

Proposition 28. Let O \subset int
\bigl( 
AT

x0

\bigr) 
be an open set, and assume that

class (z) \equiv kO < m for every z \in O.

Let x \in O and u \in Umin
x . Then there exists a neighborhood Vu \subset \Omega T

x0
of u such that,

for every \lambda u \in \Xi u
x \subset T \ast 

x0
M , there exists a constant K = K(\lambda u) > 1 such that, for

every v \in Vu \cap Umin
ET

x0
(v), there is \xi v \in \Xi v

ET
x0

(v) \subset T \ast 
x0
M satisfying1

| \lambda u  - \xi v| \leq K.

Proof. Let us choose a neighborhood Vu \subset \Omega T
x0

of u, such that all the endpoints
of admissible trajectories driven by controls in Vu belong to O.

Then, if y = ET
x0
(v) for some v \in Vu, it follows that y \in O. Moreover, if

also v \in Umin
y , we can define the (m  - kO)-dimensional subspace \Xi v

y \subset T \ast 
x0
M as in

Definition 27. Therefore, we can assume from the beginning that all such subspaces
\Xi v
y have dimension constantly equal to m - kO > 0.

Fix \lambda u \in \Xi u
x, and set

\widehat \lambda vu = (P v
T,0)

\ast \lambda u \in T \ast 
yM, v \in Vu \cap Umin

y , y = ET
x0
(v).

The intersection (\widehat \lambda vu + \widehat Zv) \cap \widehat \Xi v
y (cf. with (4.2) and Figure 1) consists of the single

point \widehat \xi v. Since both \widehat \lambda vu and \widehat \xi v belong to the affine subspace \widehat \lambda vu + \widehat Zv, in order to

estimate the norm | \widehat \lambda vu  - \widehat \xi v| it is sufficient to evaluate the norm | \pi \widehat Zv
(\widehat \lambda vu)  - \pi \widehat Zv

(\widehat \xi v)| 
of the projections onto the linear space \widehat Zv = (ker(dvE

T
x0
)\ast )\bot . The key point is the

1We omit the explicit dependence on the base point when it is clear from the context on which
fiber of T \ast M we are evaluating the norm.
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REGULARITY FOR AFFINE OPTIMAL CONTROL PROBLEMS 663

computation of the norm of | \pi \widehat Zv
(\widehat \xi v)| . In fact, since ker(dvE

T
x0
)\ast = (Im dvE

T
x0
)\bot , this

amounts to evaluating

(4.3) | \pi \widehat Zv
(\widehat \xi v)| = sup

f\in Im dvET
x0

| \langle \widehat \xi v, f\rangle | 
| f | 

.

We deduce immediately from (4.3) that, whenever v is strictly abnormal, then \pi \widehat Zv
(\widehat \xi v) =

0, while from the expression for the normal control (2.3)

vi(t) = \langle \widehat \xi v(t), Xi(xv(t))\rangle = \langle \widehat \xi v, (P v
T,t)\ast Xi(xv(t))\rangle ,

we see that \langle v, w\rangle L2 = \langle \widehat \xi v, dvET
x0
(w)\rangle , and we can continue from (4.3) as follows

(Wv denotes the kO-dimensional subspace of L2([0, T ],\BbbR d) on which the restriction
dvE

T
x0

\bigm| \bigm| 
Wv

is invertible):

| \pi \widehat Zv
(\widehat \xi v)| = sup

w\in Wv

| \langle \widehat \xi v, dvET
x0
(w)\rangle | 

| dvET
x0
(w)| 

(4.4)

\leq sup
w\in Wv

| \langle \widehat \xi v, dvET
x0
(w)\rangle | 

\| w\| L2

\| (dvET
x0

\bigm| \bigm| 
Wv

) - 1\| 

= sup
w\in Wv

| \langle v, w\rangle L2 | 
\| w\| L2

\| (dvET
x0

\bigm| \bigm| 
Wv

) - 1\| 

\leq \| v\| L2\| (dvET
x0

\bigm| \bigm| 
Wv

) - 1\| .

It is not restrictive to assume that the L2-norm of any element v \in Vu \cap Umin
y

remains bounded. Moreover, since all the subspaces have the same dimension, the
map v \mapsto \rightarrow Wv is continuous, which implies that so is the map v \mapsto \rightarrow (dvE

T
x0

\bigm| \bigm| 
Wv

) - 1.

This, on the other hand, guarantees that the operator norm \| (dvET
x0

\bigm| \bigm| 
Wv

) - 1\| remains

bounded for all v \in Vu\cap Umin
y , and then from (4.4) we conclude that for some constant

C > 0, the estimate | \pi \widehat Zv
(\widehat \xi v)| \leq C holds true, which implies as well, by the triangular

inequality, that
| \widehat \lambda vu  - \widehat \xi v| \leq | \widehat \lambda vu| + C.

Thus, setting \xi v = (P v
0,T )

\ast \widehat \xi v \in T \ast 
x0
M (cf. Figure 1) we compute thanks to (4.1)

| \lambda u  - \xi v| = | \widehat \lambda vu  - \widehat \xi v| 
\leq | \widehat \lambda vu| + C

= | \lambda u| + C

\leq 2max\{ | \lambda u| , C\} .

Setting K(\lambda u) := 2max\{ | \lambda u| , C\} the claim is proved.

Remark 3. Let us fix \lambda u \in \Xi u
x \subset T \ast 

x0
M and consider the kO-dimensional affine

subspace
(P v

0,T )
\ast (\widehat \lambda vu + \widehat Zv) = \lambda u + (P v

0,T )
\ast \widehat Zv,

with \widehat Zv defined as in (4.2). Then if we call Zv := (P v
0,T )

\ast \widehat Zv \subset T \ast 
x0
M , the map

v \mapsto \rightarrow \lambda u + Zv, v \in Vu \cap Umin
y , y = ET

x0
(v),
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664 DAVIDE BARILARI AND FRANCESCO BOAROTTO

is continuous.2 Moreover, Zv is by construction transversal to \Xi v
y, and \xi v \in (\lambda u +

Zv) \cap \Xi v
y.

Having in mind Remark 3, we deduce the following.

Corollary 29. Let O \subset int
\bigl( 
AT

x0

\bigr) 
be an open set, and assume that

class (z) \equiv kO < m for every z \in O.

Let x \in O, u \in Umin
x , and consider Vu \subset \Omega T

x0
as in Proposition 28. Then, for

every \lambda u \in \Xi u
x, there exists a kO-dimensional compact ball Au, centered at \lambda u and

transversal to \Xi u
x, such that

Au \cap \Xi v
y \not = \emptyset for every v \in Vu \cap Umin

y , where y = ET
x0
(v).

b

Ξu
x

λu

Bv
u

λu + Zu

λu + Zv

bξv

Ξv
y

Tv

b

η

T ∗
x0
M

Fig. 2. On the fiber T \ast 
x0

M , the point \eta denotes the intersection between Tv and the affine space
\lambda u + Zu.

Proof. Let \lambda u \in \Xi u
x be chosen, and assume without loss of generality that Vu is

relatively compact. For every v \in Vu, we can construct an m-dimensional ball Bv
u, of

radius Cv
0 strictly greater than K = K(\lambda u) (given by Proposition 28), and centered

at \lambda u.
Then, the existence of an element \xi v \in (\lambda u + Zv) \cap \Xi v

y satisfying | \lambda u  - \xi v| \leq K,
proved in Proposition 28, implies that the intersection of Bv

u with \Xi v
y is a compact

submanifold Tv (with boundary). Moreover, since the radius of Bv
u is strictly greater

than | \lambda u - \xi v| , it is also true that the intersection of \lambda u+Zv with int (Tv) is not empty.
Let us consider as before (cf. Remark 3) the kO-dimensional affine subspace \lambda u+

Zu, which is transversal to \Xi u
x. Possibly increasing the radius Cv

0 , the continuity of the
map w \mapsto \rightarrow \lambda u + Zw ensures that \lambda u + Zu remains transversal to Tv, and in particular
that the intersection Tv \cap (\lambda u +Zu) is not empty (see Figure 2). Moreover, it is clear
that this conclusion is local; that is, with the same choice of Cv

0 it can be drawn on
some full neighborhood Wv of v. Then, to find a ball Bu and a radius C0 uniformly
for the whole set Vu, it is sufficient to extract a finite subcover Wv1 , . . . ,Wvl of Vu

and choose C0 as the maximum between Cv1
0 , . . . , Cvl

0 .
We conclude the proof setting Au = Bu \cap (\lambda u + Zu). Indeed, Au is a compact

kO-dimensional ball by construction, and moreover if we call \eta v any element in the
intersection Tv \cap (\lambda u + Zu), for v \in Vu, then it follows that

\eta v \in \Xi v
y \cap Bu \cap (\lambda u + Zu) = \Xi v

y \cap Au,

2The continuity of the map v \mapsto \rightarrow Zv is to be intended in the Grassmannian Gr(kO, T \ast 
x0

M), of
kO-dimensional subspaces in T \ast 

x0
M . Also, continuity is not affected by the common translation

Zv \mapsto \rightarrow Zv + \lambda u.
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REGULARITY FOR AFFINE OPTIMAL CONTROL PROBLEMS 665

that is, the intersection \Xi v
y \cap Au is not empty for every v \in Vu \cap Umin

y .

Collecting all the results, we can now prove Theorem 26.

Proof of Theorem 26. Let O be an open set in int
\bigl( 
AT

x0

\bigr) 
, and define

kO = max
x\in \Sigma c\cap O

class (x).

Notice that this definition makes sense, since points of continuity are dense in int
\bigl( 
AT

x0

\bigr) 

by Lemma 17. Then we may suppose that kO is strictly less than m, for otherwise
there would be nothing to prove. Moreover, by Lemma 25 it is not restrictive to
assume that class (y) = kO for every y \in O.

Fix then a point x \in \Sigma c\cap O. Since the hypotheses of Proposition 28 are satisfied,
for every u \in Umin

x we can find a neighborhood Vu \subset \Omega T
x0

of u, fix \lambda u \in \Xi u
x, and con-

struct accordingly a compact kO-dimensional ball Au, centered at \lambda u and transversal
to \Xi u

x, such that (Corollary 29)

Au \cap \Xi v
y \not = \emptyset for every v \in Vu, and with y = ET

x0
(v).

Since Umin
x is compact (Definition 24), we can choose finitely many elements

u1, . . . , ul in Umin
x such that

Umin
x \subset 

l\bigcup 

i=1

Vui
.

The union Au1
\cup \cdot \cdot \cdot \cup Aul

is again of positive codimension. Now we claim that there
exists an open neighborhood Ox \subset O of x such that, for every y \in Ox and for every
v \in Umin

y , there exists i \in \{ 1, . . . , l\} such that Aui \cap \Xi v
y \not = 0. Indeed, assume by

contradiction that this is not true. Then there exists a sequence of points \{ xn\} n\in \BbbN 
converging to x, and a sequence of optimal controls vn \in Umin

xn
such that vn /\in 

\bigcup l
i=1 Vui .

This, however, is in contradiction with Lemma 18 and we get the absurd.
On the other hand, for any fair point z \in \Sigma f \cap Ox, its (unique) optimal control v

admits a normal lift, and we have the equality

ExpTx0
(\Xi v

z) = z,

where ExpTx0
is the exponential map with base point x0 at time T of Definition 9.

Eventually, we deduce the inclusion

(4.5) \Sigma f \cap Ox \subset ExpTx0
(Au1

\cup \cdot \cdot \cdot \cup Aul
) .

The set on the right-hand side is closed, being the continuous image of a compact set.
Moreover, it is of measure zero by the classical Sard lemma [32], as it is the image of
a set of positive codimension by construction. Since the set \Sigma f \cap Ox is dense in Ox by
Corollary 15, passing to the closures in (4.5) we conclude that meas(Ox) = 0, which
is impossible.

Combining now Lemma 20 and Theorem 26, we obtain the following (cf. Theo-
rem 1).

Corollary 30. The set \Sigma t of tame points is open and dense in int
\bigl( 
AT

x0

\bigr) 
.

5. On the smoothness. In this section we deduce smoothness of the value
function ST

x0
in the presence of tame points. Since tame points are in particular

points of continuity for ST
x0
, the arguments of Lemma 18, with minor changes, prove

the following result.
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666 DAVIDE BARILARI AND FRANCESCO BOAROTTO

Lemma 31. Let K \subset \Sigma t be a compact subset of tame points. Then the set of
optimal controls reaching points of K

MK =
\bigl\{ 
u \in \Omega T

x0
| ET

x0
(u) \in K and CT (u) = ST

x0
(ET

x0
(u))

\bigr\} 

is strongly compact in the L2-topology.

The first result of this section, which is an adaptation of an argument of [31, 1],
is as follows.

Proposition 32. Let K \subset \Sigma t be a compact subset of tame points. Then ST
x0

is
Lipschitz continuous on K.

Proof. By compactness, it is sufficient to show that ST
x0

is locally Lipschitz con-
tinuous on K.

Fix a point x \in K, and let u be associated with an optimal trajectory joining x0
and x. By assumption, duE

T
x0

is surjective, so that there are neighborhoods Vu \subset \Omega T
x0

of u and Ox \subset int
\bigl( 
AT

x0

\bigr) 
of x such that

ET
x0

\bigm| \bigm| 
Vu

: Vu \rightarrow Ox

is surjective, and there exists a smooth right inverse \Phi : Ox \rightarrow Vu such that ET
x0
(\Phi (y)) =

y for every y \in Ox.
Fix local coordinates around x, and let Bx(r) \subset M and Bu(r) \subset \Omega T

x0
denote some

balls of radius r > 0 centered at x and u, respectively. As \Phi is smooth, there exists
R > 0 and C0 > 0 such that

(5.1) Bx(C0r) \subset ET
x0
(Bu(r)) for every 0 \leq r \leq R.

Observe that there also exists C1 > 0 such that, for every v, w \in Bu(R), we have

(5.2) | CT (v) - CT (w)| \leq C1\| v  - w\| L2 .

Indeed our main assumption implies that the subset \{ xv(t) | t \in [0, T ], v \in 
Bu(R)\} is contained in a compact set K of M , on which the smooth function Q,
together with its differential Q\prime , attains both a maximum and a minimum. Then,
using the mean value theorem and [34, Proposition 3.5], we deduce that

\int T

0

| Q(xv(t)) - Q(xw(t))| dt \leq sup
y\in K

| Q\prime (y)| 
\int T

0

| xv(t) - xw(t)| dt \leq C\| v  - w\| L2 ,

and by means of the triangular inequality, (5.2) is proved.
Pick any point y \in K such that | y  - x| = C0r, with 0 \leq r \leq R. Then by (5.1)

there exists v \in Bu(r) satisfying \| u  - v\| L2 \leq r and such that ET
x0
(v) = y. Since

CT (u) = ST
x0
(x) and ST

x0
(y) \leq CT (v), we have

ST
x0
(y) - ST

x0
(x) \leq CT (v) - CT (u) \leq C1\| v  - u\| L2 \leq C1

C0
| y  - x| .

Using the compactness of both K and MK (cf. Lemma 31), all the constants can be
made uniform, and the role of x and y can be exchanged, so that we have indeed

| ST
x0
(x) - ST

x0
(y)| \leq C1

C0
| x - y| 

for every pair of points x and y such that | x - y| \leq C0R.
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Definition 33. We define the set \Sigma \subset int
\bigl( 
AT

x0

\bigr) 
of the smooth points as the set

of points x such that
(a) there exists a unique optimal trajectory t \mapsto \rightarrow xu(t) steering x0 to x in time T ,

which is strictly normal, and
(b) x is not conjugate to x0 along xu(\cdot ) (cf. Definition 10).

Item (a) in Definition 33 is equivalent to requiring that x is in fact a point that
is at the same time fair and tame. Notice that as a consequence of the results of
section 3, and in particular of Corollary 30, the set \Sigma f \cap \Sigma t is dense in int

\bigl( 
AT

x0

\bigr) 
.

The following result finally proves Theorem 2.

Theorem 34 (density of smooth points). \Sigma is open and dense in int
\bigl( 
AT

x0

\bigr) 
.

Moreover, ST
x0

is smooth on \Sigma .

Proof. (i.a) Let us show that \Sigma is dense. First we prove that, for any open set O,
we have \Sigma \cap O \not = \emptyset . Since the set \Sigma t of tame points is open and dense in int

\bigl( 
AT

x0

\bigr) 
, we

can choose a subset O\prime \subset O \cap \Sigma t relatively compact, and assume by Proposition 32
that ST

x0
is Lipschitz on O\prime . Thanks to the classical Rademacher theorem we know

that ST
x0

is differentiable almost everywhere on O\prime , and therefore, since any point
of differentiability is a fair point by Proposition 16, meas(\Sigma f \cap O\prime ) = meas(O\prime ).
Moreover, any point in \Sigma f \cap O\prime is also contained in the image of the exponential map

ExpTx0
, and the Sard lemma implies that the set of regular points is of full measure

in \Sigma f \cap O\prime . By definition any such point is in \Sigma , that is, we have meas(\Sigma \cap O\prime ) =
meas(\Sigma f \cap O\prime ) = meas(O\prime ), which implies that \Sigma \cap O\prime \not = \emptyset , and this concludes the
proof.

(i.b) Let us prove that \Sigma is open. Fix as before an open set O having compact
closure in int

\bigl( 
AT

x0

\bigr) 
. Assume by contradiction that there exists a sequence of points

xn \in O converging to x \in \Sigma and such that there are (at least) two optimal trajectories
connecting them with x0. Call \{ un\} n\in \BbbN and \{ vn\} n\in \BbbN the corresponding sequences of
optimal controls associated with such trajectories. Lemma 18 then guarantees that,
up to considering subsequences, it is not restrictive to assume the existence of both
u = limn\rightarrow \infty un and v = limn\rightarrow \infty vn in L2([0, T ],\BbbR d). However, the uniqueness of the
minimizer steering x0 to x implies that u = v.

Then both dunE
T
x0

and dvnE
T
x0

have maximal rank for n large enough (u is strictly
normal because x is a smooth point), and we can define the families of covectors \lambda n
and \xi n, as elements of T \ast 

xn
M , satisfying the identities

\lambda ndunE
T
x0

= dunCT , \xi ndvnE
T
x0

= dvnCT .

Taking the limit on these two equations we see that limn\rightarrow \infty \lambda n = limn\rightarrow \infty \xi n = \lambda ,
where \lambda is the covector associated with the unique optimal control u steering x0 to
x. If, for any s \in [0, T ], we let \lambda sn = (Pun

s,T )
\ast \lambda n and \xi sn = (P vn

s,T )
\ast \xi n, then we see that

even the ``initial covectors"" \lambda 0n and \xi 0n converge to the same element \lambda 0.
On the other hand, since by the point (b) of Definition 33 x is not conjugate

to x0 along the unique optimal trajectory xu(\cdot ), we have that \lambda 0 is a regular point
for the exponential map ExpTx0

. Then there exist full neighborhoods V \subset T \ast 
x0
M of

\lambda 0 and Ox \subset int
\bigl( 
AT

x0

\bigr) 
of x such that the exponential map ExpTx0

\bigm| \bigm| 
V

: V \rightarrow Ox is a
diffeomorphism. In particular, if we pick some point y \in Ox, there is a unique optimal
trajectory xu(\cdot ) steering x0 to y. Moreover, the covector \lambda y associated with xu(\cdot ) is
a regular point for ExpTx0

, and from the equality ET
x0
(u) = ExpTx0

(\lambda y), we see that u
has to be strictly normal. This shows that Ox \subset \Sigma , which in the end is an open set.
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(ii) Next we prove the smoothness of ST
x0

on \Sigma . Let us consider a covector \lambda \in 
T \ast 
x0
M associated with the unique optimal trajectory connecting x0 and x. By the

arguments of the previous point, there are neighborhoods V\lambda \subset T \ast 
x0
M of \lambda and Ox \subset 

int
\bigl( 
AT

x0

\bigr) 
of x such that ExpTx0

\bigm| \bigm| 
V\lambda 

: V\lambda \rightarrow Ox is a diffeomorphism.

It is then possible to define a smooth inverse \Phi : Ox \rightarrow V\lambda sending y to the
corresponding ``initial"" covector \lambda y. Along (strictly normal) trajectories associated
with covectors \lambda y in V\lambda we have therefore (compare with (2.3))

uyi (t) = \langle \Phi (y), Xi(x
y
u(t))\rangle ,

which means that the control uy \in \Omega T
x0

and, in turn, the cost CT (u) itself are smooth
on Ox.

Appendix A. A few technical results. We give here the proof of Lemma 17
and Lemma 20.

Lemma. The set \Sigma c is a residual subset of int
\bigl( 
AT

x0

\bigr) 
.

Proof. We will show that the complement of \Sigma c is a meager set; i.e., it can be
included into a countable union of closed, nowhere dense subsets of int

\bigl( 
AT

x0

\bigr) 
. Then

the claim will follow from the classical Baire category theorem, which holds on smooth
manifolds.

Let then x be a discontinuity point of ST
x0
. This implies that ST

x0
is not upper

semicontinuous at x; i.e., there exist \varepsilon > 0 and a sequence xn \rightarrow x such that for all n

ST
x0
(x) + \varepsilon \leq ST

x0
(xn).

For any q \in \BbbQ define the set

Kq =
\bigl\{ 
x \in int

\bigl( 
AT

x0

\bigr) 
| ST

x0
(x) \leq q

\bigr\} 
.

The lower semicontinuity of ST
x0

implies that Kq is closed. Moreover, let us choose
r \in \BbbQ such that ST

x0
(x) < r < ST

x0
(x) + \varepsilon . By construction x \in Kr \setminus int (Kr), which

means that
int
\bigl( 
AT

x0

\bigr) 
\setminus \Sigma c \subset 

\bigcup 

r\in \BbbQ 
(Kr \setminus int (Kr)) .

Lemma. Let x \in int
\bigl( 
AT

x0

\bigr) 
be a tame point. Then the following hold:

(i) x is a point of continuity of ST
x0
.

(ii) There exists a neighborhood Ox of x such that every y \in Ox is a tame point.
In particular, the restriction ST

x0

\bigm| \bigm| 
Ox

is a continuous map.

Proof. To prove (i) we will show that, for every sequence \{ xn\} n\in \BbbN converging to
x, there holds limn\rightarrow +\infty ST

x0
(xn) = ST

x0
(x). In particular, we will prove the latter

equality by showing that ST
x0
(x) is the unique cluster point for all such sequences

\{ ST
x0
(xn)\} n\in \BbbN .
Let u be any optimal control steering x0 to x. By hypothesis duE

T
x0

is surjective,
and therefore ET

x0
is locally open at u, which means that there exists a neighborhood

Vu \subset \Omega T
x0

of u such that the image ET
x0
(Vu) covers a full neighborhood of x in

int
\bigl( 
AT

x0

\bigr) 
. This implies that, for n large enough, the L2-norms \{ \| un\| L2\} n\in \BbbN of optimal

controls steering x0 to xn remain uniformly bounded by some positive constant C.
Let now a be a cluster point for the sequence \{ ST

x0
(xn)\} n\in \BbbN . Then, it is not re-

strictive to assume that limn\rightarrow \infty ST
x0
(xn) = a. Moreover, our previous point implies
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that we can find a subsequence \{ xnk
\} k\in \BbbN , whose associated sequence of optimal con-

trols \{ unk
\} k\in \BbbN weakly converges in L2([0, T ],\BbbR d) to some admissible control \widehat u steering

x0 to x, which in turn yields the inequality

ST
x0
(x) \leq CT (\widehat u) \leq lim inf

k\rightarrow \infty 
CT (unk

) = lim inf
k\rightarrow \infty 

ST
x0
(xnk

) = a.

Let us assume by contradiction that ST
x0
(x) = b < a, and let \varepsilon > 0 be such

that b + \varepsilon < a. Moreover, let v be an optimal control attaining that cost. By the
tameness assumption, the end-point map ET

x0
is open in a (strong) neighborhood

Vv \subset \Omega T
x0

of v, which means that all points y sufficiently close to x can be reached
by admissible (but not necessarily optimal) trajectories, driven by controls w \in Vv

satisfying CT (w) \leq b + \varepsilon < a. But this gives a contradiction since ST
x0
(xnk

) must
become arbitrarily close to a, as k goes to infinity.

To prove (ii), assume by contradiction that such a neighborhood Ox does not
exist. Then we can find a sequence \{ xn\} n\in \BbbN convergent to x, and such that for every
n \in \BbbN there exists a choice of an abnormal optimal control un steering x0 to xn; that
is, for every n \in \BbbN there exists a norm-one covector \lambda n such that

(A.1) \lambda ndunE
T
x0

= 0.

By Lemma 18, there exists a subsequence unk
which converges strongly in L2([0, T ],\BbbR d)

to some optimal control u reaching x. Moreover, since we assumed | \lambda n| = 1 for all
n \in \BbbN , it is not restrictive to suppose that \lambda = limk\rightarrow \infty \lambda nk

exists. Thus, passing
to the limit as k tends to infinity in (A.1), we see that u is forced to be abnormal,
and thus we have a contradiction, as x is tame. It follows then from point (i) that
ST
x0

\bigm| \bigm| 
Ox

is indeed a continuous map.
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