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a b s t r a c t 

Resilience is the capacity of complex systems to persist in the face of external perturbations and retain their 

functional properties and performance. In the present study, we investigated how individual variations in brain 

resilience, which might influence response to stress, aging and disease, are influenced by genetics and/or the 

environment, with potential implications for the implementation of resilience-boosting interventions. Resilience 

estimates were derived from in silico lesioning of either brain regions or functional connections constituting the 

connectome of healthy individuals belonging to two different large and unique datasets of twins, specifically: 463 

individual twins from the Human Connectome Project and 453 individual twins from the Colorado Longitudinal 

Twin Study. As has been reported previously, moderate heritability was found for several topological indexes of 

brain efficiency and modularity. Importantly, evidence of heritability was found for resilience measures based on 

removal of brain connections rather than specific single regions, suggesting that genetic influences on resilience 

are preferentially directed toward region-to-region communication rather than local brain activity. Specifically, 

the strongest genetic influence was observed for moderately weak, long-range connections between a specific 

subset of functional brain networks: the Default Mode, Visual and Sensorimotor networks. These findings may help 

identify a link between brain resilience and network-level alterations observed in neurological and psychiatric 

diseases, as well as inform future studies investigating brain shielding interventions against physiological and 

pathological perturbations. 
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. Introduction 

Resilience describes a capacity of complex systems to sustain dam-

ge, failure, or other external perturbations while still maintaining a

roficient level of functioning ( Gao et al., 2016 ). When applied to the

rain, resilience often describes the individual capacity to sustain a

igher degree of damage, and for a longer time, before the display of

vert symptoms, as well as the capacity to recruit additional regions

ot yet affected by the pathology to better compensate and so defer, or

ffset, cognitive consequences ( Satz, 1993 ; Stern, 2009 ). A deeper un-

erstanding of the brain’s ability to resist external perturbations comes

rom the study of its underlying topological organization. A popular

ramework for studying the topology of the brain – graph theory - treats

rain regions and their structural or functional coupling as nodes and

dges (connections) serving as paths of information flow ( Bullmore and

assett, 2011 ). We have gained insights about the strengths and weak-
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esses of many complex systems —such as the brain, the World Wide

eb, the organization of highways, and power grids — by removing

odes and edges from such networks via in silico simulations. These

imulations reveal a strong link between the organization of a system

nd its resultant degree of resilience to targeted or random attacks

 Achard et al., 2006 ; Barabasi and Bonabeau, 2003 ). In particular, net-

orks in which connections between nodes are equally probable, as in

andom graphs, have high levels of resilience but poor communication

fficiency, whereas networks whose information pathways are highly

ependent upon major hubs, such as airline systems relying on major

irports’ connectedness, are highly susceptible to the loss of central cores

 Achard et al., 2006 ; Barabasi and Bonabeau, 2003 ). Complex biologi-

al networks, such as the brain, are characterized by a trade-off between

hose properties, as they display unique organization profiles that ensure

fficient local processing and global integration between their compo-

ents ( Rubinov and Sporns, 2010 ), which in turn guarantee high levels

f resilience ( Achard et al., 2006 ; Joyce et al., 2013 ). 
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The use of topological measures not only provides insight on the

ropagation of information flow at a global level, but also allows analy-

is of the role of local brain regions and connections in complex ensem-

les. Such an approach contrasts with analyses that focus on univari-

te associations between brain activation levels and cognitive functions,

hich are more common in the cognitive neuroscience literature. Con-

idering the high potential that graph theory analysis might hold for the

tudy of aberrant or deviant topological structures in many neurological

nd psychiatric diseases, prior studies have queried the extent of genetic

nfluences in shaping network topology. Indeed, thanks to genetic imag-

ng techniques, it is now known that there is a close association between

he expression of selective genes and structural properties of the brain,

s well as their association with cognitive functions and general intel-

igence ( Giddaluru et al., 2016 ; Grasby et al., 2020 ; Toga and Thomp-

on, 2005 ). Initial studies have revealed modest heritability for several

ntegration and segregation measures derived from the individual func-

ional connectome ( Sinclair et al., 2015 ). However, studies in the past

ocused on measures representing a static picture of the network orga-

ization, instead of looking at its dynamic ability to respond to external

erturbations. In this sense, genetic and environmental influences on

esilience may be distinct from those on the static connectome because

esilience considers the brain’s ability to adaptively reconfigure. 

In the present study we assessed the extent to which variation in

rain resilience is influenced by environmental and genetic factors.

ince the degree of individual exposure to enriching environments (e.g.,

earning opportunities, access to healthy foods, opportunities for regular

xercise) has indeed long been reported to favor greater system plastic-

ty and robustness to a variety of pathological conditions ( Quach et al.,

017 ), we hypothesize that resilience might be substantially influenced

y the environment. Still, determining the heritable component of brain

esilience might provide future insights into individual differences in

onferred vulnerability to brain topology phenotypes associated with

eurological and psychiatric disorders. To our knowledge, this is the

rst paper addressing the heritability of different resilience metrics. In

his study, we first check that our samples are representative by deter-

ining whether they yield heritability estimates of global measures of

etwork topology in line with prior reports. Then we derive heritability

stimates of resilience across two large independent samples of twins.

inally due to somewhat discrepant findings across these two samples,

e consider how scanning acquisition parameters may influence heri-

ability analyses. 

. Methods 

.1. Human participants 

Two independent large datasets of young adult twins were

mployed in this study: the Human Connectome Project (HCP)

 https://www.humanconnectome.org/) , whose participants were

rawn from a large sample ( n = 1200) of healthy young adults, in-

luding twins ( Van Essen et al., 2013 ); and the Colorado Longitudinal

win Study (LTS) ( https://www.colorado.edu/ibg/research/human-

esearch-studies/specific-twin-studies/longitudinal-twin-study ), whose

articipants were recruited based on birth records between 1968 and

990 (for a reference see Corley et al., 2019 ; Rhea et al., 2013 , 2006 ).

n the present study, 463 individual twins were selected from the

CP dataset (males = 194, age: M = 29.16, SD = ± 3.45; monozygotic

MZ): n = 287, M = 29.42, SD = ± 3.39; dizygotic (DZ): n = 176,

 = 28.79, SD = 3.53) and 453 individual twins from LTS dataset

males = 189, age: M = 28.6, SD = ± 0.62; MZ: n = 229, M = 28.6,

D = ± 0.62; DZ: n = 216, M = 28.7, SD = 0.63). The racial make-up

f the HCP dataset is 83.8% White, 10.4% African-American; 3.7%

sian/Hawaiian Native or other Pacific Islander, < 1% American

ndian/ Alaskan Native, < 1% unknown and about 1% reported more

han one race. The racial make-up of the LTS sample is 92.6% White,

 1% American Indian/Alaskan Native, < 1% Pacific Islander, 1.2% un-
2 
nown and about 5% more than one race. In the HCP dataset, zygosity

as determined based on both self-report and genotyping, derived

rom either blood or saliva samples, which is made available via the

bGAP repository ( https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

in/study.cgi?study_id = phs001364.v1.p1 ); for the LTS dataset, zygosity

as determined via testers’ ratings with an at least 85% agreement, as

ell as via DNA tests following cheek swabs. 

Raw and preprocessed data of the HCP dataset are available at

ttps://www.humanconnectome.org/ ; de-identified functional connec-

ivity matrices are available at http://tmslab.org/netconlab.php . Heri-

ability models estimates and LTS functional connectivity matrices are

vailable at https://github.com/AReineberg/genetic _ connectome . 

.2. 2.2. Functional connectome extraction 

Procedural details on fMRI data acquisition and preprocessing steps

or both the HCP and LTS dataset are available in the Supplementary

aterials. For examining the functional connectome, changes in the

unctional activity of the brain are represented by fluctuations in the

lood Oxygen Level Dependent (BOLD) signal, whose variation over

ime was extracted from each of the 1 cm spherical regions of inter-

st (ROIs) of the Power Atlas ( Power et al., 2011 ). Furthermore, the

ower Atlas distinguishes the brain as organized into the following dis-

ernable networks: Sensorimotor (SMN), Auditory (AUD), Visual (VIS),

rontoparietal (FPN), Salience (SN), Cingulo-opercular (CING), Dorsal

ttention (DAN) and Ventral Attention (VAN), Default Mode (DMN),

emory (MEM), Subcortical (SUB) and Cerebellar (CEREB) networks

 Power et al., 2011 ). For each participant, a 264 × 264 functional con-

ectivity matrix was extracted from the Pearson’s r correlation between

ach pair of ROIs, upon which the Fischer’s z transformation was then

pplied ( Figure 1 , panels A, B, C). It is worth noting that in many rs-fMRI

tudies, the Global Signal Regression (GSR) is often employed as an addi-

ional preprocessing step to remove unspecific and globally distributed

ources of variance, which are treated as noise ( Murphy et al., 2009 ).

owever, the use of GSR has been criticized in the literature because it

elies on a mathematical approach responsible for introducing negative

ctivations in fMRI data ( Murphy et al., 2009 ), which can systematically

lter resting-state correlations and hence conclusions about brain func-

ional connectedness ( Saad et al., 2012 ). Based on these prior studies,

o GSR was applied to derive the functional connectivity matrices. 

.3. Standard brain topology measures 

A range of connection densities (top 5–25%) is usually tested to ex-

mine variation in graph theory metrics as a function of the threshold

sed. The rationale for the use of such high threshold values stems from

he fact that very high connection density (~100%) results in graph

etrics that tend to behave more similarly to that of random graphs,

hereas the use of lower connection densities ensures only the most

elevant connections are retained and allows one to clearly distinguish

he single units constructing the network ( Sinclair et al., 2015 ). 

Prior big cohort studies have indicated that genetic contributions are

etter examined at connection density around 10% and in the absence

f additional factors, such as GSR ( Sinclair et al., 2015 ). Furthermore,

0% sparsity threshold has been associated with higher test-retest re-

roducibility for global metrics ( Wang et al., 2011 ). For this reason,

e thresholded our functional matrices to retain only the 10% of the

riginal connection density (nodes surviving thresholding: M = 259.28,

D = 4.42; edges surviving thresholding: M = 6640.8, SD = 175.43;

eritability estimates at different threshold values are reported in the

upplementary Materials) ( Fig. 1 , panel C). Weighted adjacency matri-

es were then computed, where each node ( N ) represents an input in

he square matrix: 

 = |𝑁 |𝑥 |𝑁 |

https://www.humanconnectome.org/\051
https://www.colorado.edu/ibg/research/human-research-studies/specific-twin-studies/longitudinal-twin-study
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1
https://www.humanconnectome.org/
http://tmslab.org/netconlab.php
https://github.com/AReineberg/genetic_connectome
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Fig. 1. Methodological Workflow. A. Resting state functional magnetic resonance imaging (rs-fMRI) and structural (s-MRI) data underwent standard preprocessing 

steps. B. Time series extraction was performed from each of the 264 cortical and subcortical parcels of the Power’s Atlas. C. Functional connectivity matrices were 

extracted from the Pearson’s r correlation between each pair of ROIs and were normalized through Fischer’s z transformation. Matrices were then thresholded to 

retain only 10% of the overall connections’ density, from which graph theory measures and brain resilience estimates were computed. D. Resilience measures were 

extracted following the random and targeted (strongest-to-weakest) removal of nodes and edges from each individual matrix. At each iteration, nodes and edges 

order of removal was recalculated, and the order of removal adjusted based on the effect of prior lesioning. E. Heritability estimates were computed looking at 

the phenotypic similarity between each pair of twins (Falconer Formula), as well as by means of structural equation models specifically looking at the influence of 

genetics (A), unique (E) and common (C) environmental exposure. 
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nd where the assigned value to the edge A ij is equal to the Fisher’s z

alue between node i and j when the connection exists, or zero other-

ise. 

Classic graph theory measures were extracted from the in-

ividual adjacency matrix based on Brain Connectivity Toolbox

 https://sites.google.com/site/bctnet/) functions running in MATLAB

017b. A selection of ground graph theory metrics that represent the

fficiency of the information flow in the system was chosen, identifying

easures of integration : 

i) Nodal Degree: the total number of edges that are connected to a

given node; 

ii) Characteristic Path Length: the average distance between a node

and all the other nodes of the system; 

ii) Global Efficiency: the inverse of the average shortest path; 

nd also measures of segregation : 

i) Clustering Coefficient: the fraction of nodes being neighbors with

the surrounding nodes, forming triangular triplets. 

ii) Modularity: the extent for which a network can be divided into dis-

tinct units based on greater within-unit, rather than between-units,

edges; 

ii) Local Efficiency: the inverse of the average shortest path connecting

a node to all other nodes of the system. 

v) Small-Worldness: the property of a system to have concomitant high

clustering coefficient and low path length. 

For a more in-depth explanation of classic graph theory measures,

he reader is referred to Rubinov and Sporns (2010) . Mathematical for-
3 
ulas for the computation of the graph theory metrics used in this study

re available in the Supplementary Materials. 

.4. Resilience metrics 

Resilience of the brain graph was computed through the sequen-

ial removal of nodes and edges from the weighted adjacency matrix,

 procedure well established by prior studies ( Achard et al., 2006 ;

lbert et al., 2000 ; Albert and Barabási, 2002 ; Joyce et al., 2013 ). More

pecifically, nodes and edges were ordered in descending fashion based

n their nodal degree and edge strength (Fischer’s z value). One by one,

odes or edges were removed from the graph and the drop in the largest

onnected component (LCC) was recorded as a measure of the inferred

amage. In a graph, the LCC refers to the biggest set of nodes whose

airs are connected by an edge. In a completely connected graph, the

CC is the graph itself, but as we remove its nodes or edges, it partitions

nto several components. At each iteration, nodes’ degree was recalcu-

ated and the order of removal adjusted based on the effect of prior

esioning ( Fig. 1 , panel D). The study of network robustness was tackled

rom different perspectives, first focusing on the broad effects of matrix

esioning according to standard literature approaches, and then further

igging into the fine-grained mechanisms of resilience. Based on this

ationale, the following resilience metrics were computed: 

i) Random Node Removal : mean reduction necessary to bring the LCC to

a value of zero following the progressive removal of nodes in random

order; 

https://sites.google.com/site/bctnet/\051
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ii) Targeted Node Removal: mean reduction necessary to bring the LCC

to a value of zero following the progressive removal of nodes based

on their nodal degree (from highest to lowest); 

ii) Targeted Edge Removal : mean reduction necessary to bring the LCC

to a value of zero following the progressive removal of edges based

on their strength (from strongest to weakest). 

It has generally been observed that biological networks are more

esilient to the occurrence of random errors rather than of targeted at-

acks ( Achard et al., 2006 ). Additionally, networks subserving cognitive

erformance benefit from more distributed processing which results in

igher resilience to targeted removal as well ( Santarnecchi et al., 2015 ).

The study of classic resilience measures was then further broken

own into more fine-grained mechanisms as measured by: 

i) Speed of Drop: the individual pace of matrix lesioning, computed

as the slope of decay of the LCC following the targeted removal of

edges, whereby more negative values are interpreted as an index of

faster decay; 

ii) Early Edges Drop: the overall amount of connections that needed to

be lost before the individual LCC showed a reduction in its size (i.e.

the degree of edges’ loss necessary to bring the LCC from a value of

1 to that of a value minor than 1, where 1 represents full integrity

of the component, prior to any edge removal); 

ii) Late Edges Drop: the overall amount of connections’ loss necessary to

completely deplete the LCC (i.e., the degree of edges’ loss necessary

to bring the LCC from a value of 1 to a value of 0). 

v) Critical Point: the point of maximum deflection in the lesioning curve

of the LCC, based on the removal of edges according to a strongest-

to-weakest gradient. 

Our logic is that more resilient individuals will not only show slower

aths of degradation, but will show greater robustness to the inferred

amage before any decay in their LCC becomes visible. Similarly, higher

esilience should also be expressed in the form of greater maintenance

apacity, such as that both the point of maximum deflection and the

oint of complete matrix depletion should occur at the more advances

tages, thus later, than that observed for less resilient systems. 

The code used for resilience measures extraction is available at

ttp://tmslab.org/netconlab.php . 

.5. 2.5. Statistical analyses 

.5.1. Twin models 

Measures of heritability (the proportion of variance attributable to

dditive genetic influences [A]) were computed based on the notion that

Z twins share 100% of their genes whereas DZ share on average 50%

f their segregating genes. Both types of twins are raised together, so

heir correlations are assumed to be equally influenced by the common

r shared environment (C: environmental influences that lead siblings to

orrelate on a measure of interest). Thus, the MZ twin correlation can be

stimated as A + C, and the DZ correlation as 0.5 ∗ A + C. Any difference

n their correlations are attributable to A ( Mayhew and Meyre, 2017 );

Z correlations that are greater than half the MZ correlations are indica-

ive of C; and MZ correlations that are less than unity indicate nonshared

nvironmental influences (E; environmental influences that lead siblings

o be uncorrelated, including measurement error) ( Fig. 1 , panel E). A

rst approach to estimate heritability (h 2 or A) is thus given by Falcon-

rs’ Formula ( Mayhew and Meyre, 2017Mayhew and Meyre (2017) ): 

 = 2 
(
𝑟 𝑚𝑧 − 𝑟 𝑑𝑧 

)

Estimates of the contribution of each factor and their confidence in-

ervals can also be obtained with structural equation models, which

ave the advantage of enabling model comparisons ( Mayhew and

eyre, 2017 ). We used OpenMx ( Neale et al., 2016 ) to estimate univari-

te twin models with likelihood-based confidence intervals. The bounds
4 
f a likelihood-based confidence interval are the values of the param-

ter at which significant worsening of model fit occurs; that is, the in-

erval includes all values for the parameter that would not lead to a

ignificantly lower likelihood of having observed the data. Variance

omponents were not bound at zero. Although negative variances are

onsensical, allowing estimates to be negative (which can occur due to

ampling variation when parameters are likely zero) results in unbiased

arameter estimates and confidence intervals ( Verhulst et al., 2019 ). As

s typical in the behavioral genetic literature, we have included output

rom 4 models: a model that estimated A, C, and E, a model that drops

 (providing only estimates for C and E), a model that drops C (pro-

iding only estimates for A and E) and an E-only model. If model 1 is

he best fitting model, there is evidence that that brain measure has ge-

etic, shared environmental, and non-shared environmental influences

hereas if the best fitting model is one of the other three, the data indi-

ates there is no evidence for one or more of the influences. In this study,

he Akaike Information Criterion (AIC) was used to compare model fit

hile penalizing model complexity; whereby lower values indicate bet-

er fit ( Akaike, 1973 ). 

In the present study, the degree of heritability was computed on all

he graph theory metrics (characteristic path length, global and local ef-

ciency, clustering coefficient, modularity and small-worldness) as well

s on the computed metrics of resilience (random node removal, tar-

eted node removal, targeted edge removal, speed of drop, early edges

rop, late edges drop and critical point). A brief overview of the method-

logical workflow of the study is presented in Fig. 1 . 

. Results 

.1. Heritability of the network connectome structure 

In this study, the heritability of integration and segregation patterns

f the functional brain topology were examined first to determine if

e could replicate prior published results on the heritability of network

opology ( Fornito et al., 2011 ; Sinclair et al., 2015 ; van den Heuvel et al.,

013 ). Table 1 and 2 include MZ and DZ twin correlations, which pro-

ide an initial check on genetic influences. Similarly, they also include

utputs from structural equation twin models, which enable statistical

ests of the A, C and E parameters. 

For the HCP dataset, the MZ correlation was nominally higher than

he DZ correlation in all measures except one. In particular, a genetic

nfluence appears to be present in shaping the traits of the charac-

eristic path length (r mz = 0.573; r dz = 0.393), clustering coefficient

r mz = 0.485; r dz = 0.255), modularity (r mz = 0.287; r dz = -0.045),

lobal (r mz = 0.291; r dz = 0.101) and local (r mz = 0.411; r dz = 0.151)

fficiency of the brain functional connectome. On the other hand, small-

orldness showed twin correlations close to zero (r mz = -0.095; r dz = -

.032) (see Table 1 ). Based on the structural equation model compar-

sons, the best models were the ones that considered the contribution

f A and E only (see Table 1 ). Moderate genetic effects were indeed ob-

erved in most graph theory metrics: characteristic path length (A = 0.56

0.43,0.66]), clustering coefficient (A = 0.46 [0.32,0.58]), modular-

ty (A = 0.26 [0.09,0.43]), and global (A = 0.26 [0.1,0.41]) and local

A = 0.38 [0.23,0.52]) efficiency. On the other hand, small-worldness

as best explained by the contribution of E alone. 

For the LTS dataset, heritability estimates computed on the graph

heory metrics mostly failed to show any significant evidence of a ge-

etic component. The only exception was represented by the measure of

ocal Efficiency (r mz = 0.218, r dz = 0.114; A = 0.21[0.04,0.37]), where

 moderate genetic influence could be observed ( Table 2 ). 

.2. Heritability of brain resilience 

For all our resilience metrics, heritability analyses were run to deter-

ine the extent of genetic and environmental influences. For the HCP

ataset, moderately higher correlational values were observed between

http://tmslab.org/netconlab.php
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Table 1 

Heritability of Network Connectome Structure in the HCP Dataset . Twin correlations and ACE structural equation model estimates are 

displayed. For correlation analyses, heritability is suggested when the correlation between MZ twins is greater than the correlation between 

DZ twins. ACE variances were unbounded so could be negative. The upper and lower bound of the likelihood-based 95% confidence intervals 

are displayed inside the squared brackets for the A, C and E parameters. AIC = Akaike’s information criterion, a measure of model fit; lower 

AIC values indicate better fit, marked in bold in the table. 

Measure Twin correlations ACE Structural Models 

r mz r dz Diff Model A [A-,A + ] C [C-,C + ] E [E-,E + ] AIC 

Characteristic path length 0.573 0.393 0.18 ACE 0.287 [-0.15,0.83] 0.26[-0.26,0.64] 0.45[0.35,0.59] 326.274 

AE 0.56 [0.43,0.66] NA 0.44 [0.34,0.57] 325.388 

CE NA 0.5[0.39,0.6] 0.5 [0.4,0.61] 325.854 

E NA NA 1 375.020 

Clustering Coefficient 0.485 0.255 0.23 ACE 0.49[0.04,0.59] -0.03[-0.59,0.44] 0.54 [0.42,0.69] 341.632 

AE 0.46 [0.32,0.58] NA 0.54[0.41,0.68] 339.644 

CE NA 0.39[0.26,0.51] 0.61[0.49, 0.74] 342.912 

E NA NA 1 369.665 

Global efficiency 0.291 0.101 0.19 ACE 0.44 [0.16,1.06] -0.17[-0.72,0.35] 0.72[0.57,0.89] 417.56 

AE 0.26 [0.1,0.41] NA 0.74[0.59,0.9] 415.929 

CE NA 0.21[0.06,0.34] 0.79[0.66,0.94] 417.642 

E NA NA 1 423.465 

Local efficiency 0.411 0.151 0.26 ACE 0.44[0.14,1.08] -0.05[-0.64,0.45] 0.62[0.48,0.77] 375.833 

AE 0.38 [0.23,0.52] NA 0.62[0.48,0.77] 373.866 

CE NA 0.33 [0.19,0.45] 0.67[0.55,0.81] 376.0203 

E NA NA 1 393.164 

Modularity 0.287 -0.045 0.33 ACE 0.65 [0.07,1.22] -0.34[-0.83,0.14] 0.69 [0.53,0.87] 345.842 

AE 0.26[0.09,0.43] NA 0.73[O.57,0.91] 345.741 

CE NA 0.17[0.03,0.31] 0.83[0.69,0.97] 348.758 

E NA NA 1 352.092 

Small Worldness -0.095 -0.032 -0.06 ACE -0.1[-0.72,0.51] 0 [-0.51,0.51] 1.1[0.91,1.28] 437.859 

AE -0.1 [-0.27,0.08] NA 1.1[0.92,1.27] 435.859 

CE NA -0.08 [-0.23,0.07] 1.08[0.93,1.23] 435.957 

E NA NA 1 435.06 

Table 2 

Heritability of Network Connectome Structure in the LTS dataset . Twins’ correlations and ACE structural equation model estimates are 

displayed. For correlation analyses, heritability is suggested when the correlation between MZ twins is greater than the correlation between 

DZ twins. ACE variances were unbounded so could be negative. The upper and lower bound of the likelihood-based 95% confidence 

intervals are displayed inside the squared brackets for the A, C and E parameters. AIC = Akaike’s information criterion, a measure of 

model fit; lower AIC values indicate better fit, marked in bold in the table. 

Measures Twins’ Correlations ACE Structural Model 

r mz r dz Diff Model A [A-,A + ] C [C-,C + ] E [E-,E + ] AIC 

Characteristic path length 0.121 0.083 0.04 ACE 0.08[-0.5,0.67] 0.04[-0.43,0.49] 0.87[0.68,1.08] 689.168 

AE 0.13[-0.05,0.31] NA 0.87[0.69,1.05] 687.197 

CE NA 0.1[-0.04,0.25] 0.9[0.75,1.04] 687.247 

E NA NA 1 687.134 

Clustering Coefficient 0.076 0.032 0.04 ACE 0.09[-0.49,0.67] -0.01[-0.47,0.44] 0.92[0.73,1.13] 449.035 

AE 0.07[-0.11,0.25] NA 0.93[0.75,1.11] 447.039 

CE NA 0.05[-0.09,0.2] 0.95[0.8,1.09] 447.128 

E NA NA 1 445.635 

Global efficiency -0.003 0.005 -0.01 ACE -0.02[-0.61,0.58] 0.01[-0.44,0.47] 1[0.79,1.22] 361.762 

AE 0[-0.19,0.19] NA 1[0.81,1.19] 359.765 

CE NA 0[-0.15,0.15] 1[0.85,1.15] 359.765 

E NA NA 1 357.766 

Local efficiency 0.218 0.114 0.1 ACE 0.17[-0.39,0.74] 0.04[-0.44,0.48] 0.79[0.62,0.98] 591.985 

AE 0.21[0.04,0.37] NA 0.79[0.63,0.96] 590.008 

CE NA 0.17[0.03,0.3] 0.83[0.7,0.97] 590.337 

E NA NA 1 593.680 

Modularity -0.047 0.155 -0.2 ACE -0.35[-0.92,0.24] 0.31[-0.12,0.73] 1.03[0.81,1.25] 464.684 

AE 0.05[-0.14,0.24] NA 0.95[0.76,1.14] 464.719 

CE NA 0.07[-0.07,0.21] 0.93[0.79,1.07] 464.038 

E NA NA 1 463.036 

Small Worldness 0.138 -0.126 0.26 ACE 0.43[-0.16,1] -0.32[-0.75,0.13] 0.89[0.69,1.11] 469.122 

AE 0.04[-0.15,0.22] NA 0.96[0.78,1.15] 469.028 

CE NA -0.01[-0.15,0.14] 1.01[0.86,1.15] 469.167 

E NA NA 1 467.174 
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Z twins, compared to DZ twins, for the measures of Targeted Edge

emoval (r mz = 0.249; r dz = 0.061) and Critical Point (r mz = 0.362;

 dz = 0.048), suggesting moderate heritability of such traits. ACE models

onfirmed genetic influences for the Targeted Edge Removal (A = 0.22

0.06,0.37]) and Critical Point (A = 0.35 [0.18,0.49]) measures. It is
5 
orth noticing that for the measure of Random Node Removal, a rela-

ively strong influence of A was also reported (A = 0.72 [0.07,1.31]).

owever, when the same measure was tested after removing factor

, the estimate of A dropped to a nonsignificant level (A = 0.05 [-

.12,0.22]), suggesting that the aforementioned effect was driven by the
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Table 3 

Heritability of Brain Network Resilience in the HCP Dataset . Twin correlations and ACE structural equation model estimates are 

displayed. For correlation analyses, heritability is suggested when the correlation between MZ twins is greater than the correlation 

between DZ twins. ACE variances were unbounded so could be negative. The upper and lower bound of the likelihood-based 95% 

confidence intervals are displayed inside the squared brackets for the A, C and E parameters. AIC = Akaike’s information criterion, a 

measure of model fit; lower AIC values indicate better fit, marked in bold in the table. 

Measure Twin Correlations ACE Structural Models 

r mz r dz Diff Model A [A-,A + ] C [C-,C + ] E [E-,E + ] AIC 

Random Node Removal 0.12 -0.238 0.36 ACE 0.72[0.07,1.31] -0.61[-1.09,0.04] 0.88[0.71,1.07] 703.093 

AE 0.05[-0.12,0.22] NA 0.95[0.78,1.12] 705.624 

CE NA 0[-0.15,0.15] 1[0.85,1.15] 705.932 

E NA NA 1 703.932 

Targeted Node Removal 0.204 0.136 0.07 ACE 0.19[-0.38,0.79] -0.004[-0.52,0.48] 0.8[0.64,0.98] 618.403 

AE 0.19[0.03,0.35] NA 0.81[0.65,0.97] 616.403 

CE NA 0.16[0.02,0.3] 0.84[0.7,0.98] 616.843 

E NA NA 1 619.664 

Targeted Edge Removal 0.249 0.061 0.19 ACE 0.39[0-0.19,1] -0.16[-0.69,0.35] 0.76[0.61,0.93] 494.201 

AE 0.22[0.06,0.37] NA 0.78[0.63,0.94] 492.568 

CE NA 0.17[0.03,0.31] 0.83[0.69,0.97] 493.902 

E NA NA 1 497.460 

Speed of Drop 0.007 -0.131 0.14 ACE 0.19[-0.42,0.79] -0.17[-0.6,0.26] 0.98[0.74,1.22] 680.745 

AE -0.04[-0.24,0.16] NA 1.04[0.84,1.24] 679.343 

CE NA -0.04[-0.19,0.1] 1.04[0.9,1.19] 679.115 

E NA NA 1 677.479 

Early Edges Drop 0.139 -0.051 0.19 ACE 0.35[-0.27,0.97] -0.22[-0.75,0.31] 0.87[0.7,1.05] 568.216 

AE 0.1[-0.07,0.27] NA 0.9[0.73,1.07] 566.879 

CE NA 0.07[-0.08,0.22] 0.93[0.78,1.08] 567.439 

E NA NA 1 566.270 

Critical Point 0.362 0.048 0.31 ACE 0.63[0.02,1.26] -0.26[-0.83,0.27] 0.63[0.48,0.8] 643.684 

AE 0.35[0.18,0.49] NA 0.65[0.51,0.82] 642.569 

CE NA 0.27[0.12,0.4] 0.73[0.6,0.88] 645.876 

E NA NA 1 655.747 

Late Edges Drop 0.225 0.246 -0.021 ACE -0.18[-0.77,0.53] 0.4[-0.26,0.89] 0.78[0.62,0.95] 713.583 

AE 0.24[0.07,0.39] NA 0.76[0.61,0.93] 713.123 

CE NA 0.24[0.09,0.38] 0.76[0.62,0.91] 711.886 

E NA NA 1 719.085 
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egative estimate of C and thus should not be considered reliable evi-

ence of heritability (see Table 3 ). For this reason, only the measures

f Targeted Edge Removal and Critical Point are discussed in terms of

eritability. 

For the LTS dataset, estimates of brain resilience to in-silico network

esioning failed to show any evidence of heritability ( Table 4 ). In the

atter, the models did not converge for the measures of Targeted Edge

emoval and Speed of Drop. 

.3. Impact of scan acquisition time in resting state data on heritability 

stimates 

As shown in Tables 2 and 4 , no evidence of heritability was found

or all measures computed on the LTS dataset, in which a shorter rest-

ng state scan (6.25 min) was collected compared to the HCP dataset

30 min). Such findings appear in line with the already expressed con-

erns in the literature, that too short acquisition times might yield unre-

iable results as they may fail to capture the slow wave dynamics of the

unctional fluctuations occurring in cycles of several minutes ( Birn et al.,

013 ) (see Fig. 2 ). 

To examine this issue, we estimated how the reliability of our mea-

ures changes as a function of analyzing short (6 min) as compared to

ong (30 min) data sets (see Table 5 ). To do so, we separated the HCP

ime series into shorter batches of 6 min of data each, from which both

raph theory and resilience metrics were computed again. The correla-

ion between the measures of the two short batches was used to deter-

ine the reliability for a 6 min section of data (comparable to the LTS

can length). The Spearman-Brown formula was then applied to esti-

ate reliability for the longer 30 min data (i.e., a scan length five times

onger). 

The reliability of a measure constrains the upper limit for its heri-

ability, and unreliability is included in the nonshared environmental
6 
ariance estimate. Given the low reliability estimates for many of the

easures based on the 6 min scans, particularly the resilience measures,

he lower heritability in the LTS is likely to be at least partially attributed

o the shorter scan length. Thus, the lack of replication across the two

atasets may be explained by this difference in length of the scan and as

uch differences in the stability and reliability of data acquired across

he two data sets. 

.4. Functional mapping of network resilience 

In the HCP dataset, of all the tested network-derived resilience es-

imates, evidence of a stable genetic involvement was found only for

esilience computed with the edge removal procedure. We explored

he anatomical properties (e.g. strength, length, anatomical location)

f those connections for which additive genetic influences on resilience

ere most prominent. This approach was possible only for the heritable

easure of Critical Point, which provides information on the exact edge

nderlying the maximum point of deflection in the lesioning curve. The

easure of Targeted Edge Removal, for which a moderate genetic com-

onent was also found, represents a general measure of the individual

onnectome robustness to lesioning and does not capitalize on the def-

nition of single edges’ role. For this reason, it could not be graphically

epresented. 

As shown in Fig. 3 , the type of edges representing the individual Crit-

cal Point consisted mainly of brain connections with a relatively weak

onnectivity value (M = 0.31 Fischer’s z value, SD = 0.03) ( Fig. 3 , panel

). Correlational values below 0.5 are indeed considered representative

f weak connections in the human brain ( Santarnecchi et al., 2014 ),

ith an important role in supporting network integrity and long-range

nformation transfer ( Granovetter, 1983 ; Santarnecchi et al., 2014 ). 

As a second characteristic, the majority of edges accounting for

he individual Critical Point present a length greater than 50 mm
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Table 4 

Heritability of Brain Network Resilience in the LTS Dataset. Twins’ correlations and ACE structural equation model estimates are 

displayed. For correlation analyses, heritability is suggested when the correlation between MZ twins is greater than the correlation 

between DZ twins. ACE variances were unbounded so could be negative. The upper and lower bound of the likelihood-based 95% 

confidence intervals are displayed inside the squared brackets for the A, C and E parameters. AIC = Akaike’s information criterion, a 

measure of model fit; lower AIC values indicate better fit, marked in bold in the table. The models did not converge for the measures 

of Targeted Edge Removal and Speed of Drop. 

Measures Twins’ Correlations ACE Structural Model 

r mz r dz Diff Model A [A-,A + ] C [C-,C + ] E [E-,E + ] AIC 

Random Node Removal 0.045 -0.007 0.05 ACE 0.14[-0.45,0.71] -0.09[-0.52,0.35] 0.95[0.74,1.17] 417.629 

AE 0.03[0.16,0.22] NA 0.97[0.78,1.16] 415.783 

CE NA 0.01[-0.13,0.15] 0.99[0.84,1.13] 415.85 

E NA NA 1 413.875 

Targeted Node Removal -0.076 0.092 -0.17 ACE -0.35[-0.93,0.27] 0.25[-0.17,0.66] 1.1[0.84,1.33] 461.323 

AE 0[-0.2,0.2] NA 1[0.8,1.2] 460.692 

CE NA 0.03[-0.11,0.16] 0.97[0.8,1.11] 460.563 

E NA NA 1 458.693 

Targeted Edge Removal 0.045 0.15 -0.1 ACE NA NA NA 

AE NA NA NA 

CE NA NA NA 

E NA NA NA 

Speed of Drop -0.069 -0.013 -0.06 ACE NA NA NA 

AE NA NA NA 

CE NA NA NA 

E NA NA NA 

Early Edges Drop -0.21 -0.004 -0.21 ACE -0.38[-0.95,0.19] 0.19[-0.29,0.66] 1.19[1.01,1.36] 368.881 

AE -0.16[0.33,0] NA 1.17[0.99,1.33] 367.452 

CE NA -0.11[-0.25,0.02] 1.12[0.98,1.26] 368.586 

E NA NA 1 369.298 

Critical Point 0.054 0.025 0.03 ACE 0.12[-0.52,0.72] -0.03[-0.47,0.41] 0.92[0.68,1.18] 324.655 

AE 0.07[0.13,0.27] NA 0.93[0.73,1.14] 322.678 

CE NA 0.41[-0.1,0.19] 0.96[0.81,1.1] 322.784 

E NA NA 1 321.1 

Late Edges Drop 0.022 0.048 -0.03 ACE 0[-0.65,0.63] 0.04[-0.39,0.48] 0.96[0.69,1.23] 317.146 

AE 0.06[-0.15,0.27] NA 0.94[0.73,1.15] 315.182 

CE NA 0.04[-0.1,0.18] 0.96[0.82,1.1] 315.146 

E NA NA 1 313.507 

Fig. 2. Dynamic Resilience Over Time. Oscillatory dynamics captured by rsfMRI occur in the scale of several minutes. The brain resilience estimates, secondarily 

computed from such measures, also shows high variability over time. Here, the measure of Critical Point dynamically computed over time is shown for 3 example 

subjects. When the average of such signal fluctuations is taken, reliable estimates are achieved for longer scanning time only (green line), whereas state-dependent 

variability is introduced for shorter scanning times (red line), resulting in over- or under-estimation of the resilience metrics. 
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 Fig. 3 , panel B) (n long = 332, n short = 131; M long = 85.42 mm,

D long = 24.02 mm; M short = 34.12 mm, SD short = 10.98 mm; t (262) = -

8.17, p < 0.01), suggesting a role in connecting distant cortical regions

ased on prior studies looking at the specific role of short and long func-

ional connections ( Alexander-Bloch et al., 2013 ; Santarnecchi et al.,

014 ). 

.5. Cortical networks underlying heritable resilience 

The functional connections underlying the resilience metric of Crit-

cal Point, which showed the highest heritability value in the HCP
7 
ataset, were mapped to determine if they belong to specific cortical

esting state networks. To do so, we first created a weighted matrix in

hich nodes were represented by the brain’s ROIs from which the Criti-

al Point’s edges originated, or from which the edges terminated. Edges

n the weighted matrix were represented by the Fisher’s z -values of the

ndividuals’ Critical Point. We then computed the nodal degree of the

eighted matrix, such as that nodes with higher nodal degree have more

ritical Point’s edges crossing them. The sum of the nodal degree of all

odes belonging to the same functional cluster was used to rank all net-

orks’ involvement. As a result, we observed that the majority ( > 75%)

f edges pertaining to the Critical Point originated from or terminated in
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Fig. 3. Critical Point Edges’ Characterization. A. Edges accounting for the most heritable trait of resilience, the Critical Point, represent generally weaker ties, 

with the mean average strength of connections around 0.3 Fischer’s z value . B. From a functional perspective, these edges represent the long-range coupling between 

distant ( > 50mm) cortical sites. In panels A and B, the thickness of the edge is representative of its weight, also shown in color-code in panel A (colder colors are 

indicative of weaker strengths). 

Table 5 

Reliability measures as a function of scan times. Reliability estimates 

were computed as the correlation for the metric computed on two separate 6 

min scans in HCP dataset. The 30 min reliability estimates were obtained by 

adjusting the 6 min reliability estimates with the Spearman-Brown prophecy 

formula. 

Measure 6min Reliability Estimated 30 min Reliability 

Resilience Metrics 

Random Node Removal 0,019 0,088 

Targeted Node Removal 0,128 0,423 

Targeted Edge Removal 0,57 0,869 

Speed of Drop -0,003 -0,015 

Early Edges Drop 0,152 0,473 

Critical Point 0,157 0,482 

Late Edges Drop 0,231 0,600 

Graph Theory Measures 

Characteristic path length 0,526 0,847 

Clustering Coefficient 0,451 0,804 

Global Efficiency 0,321 0,703 

Local Efficiency 0,496 0,831 

Modularity 0,392 0,763 

Small Worldness -0,032 -0,183 
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he Default Mode (DMN) and Visual (VIS) networks ( Fig. 4 , panel A). The

odal degree of the DMN was significantly higher than the mean nodal

egree of all the other networks in the brain (t (67) = -12.69, p < 0.01). Of

hose connections, only a small number served as links between brain

egions of the same network (intra-network connections-27%), whereas

he majority acted in bridging distant cortical sites belonging to different

etworks (inter-networks connections-73%) ( Fig. 4 , panel B and C). 

. Discussion 

In the present study, we evaluated the pattern of genetic and envi-

onmental influence on both brain topology and its degree of resilience,

 measure particularly relevant to mental health ( Davydov et al., 2010 ),

eurological diseases ( Menardi et al., 2019 ; Perneczky et al., 2019 ), and

tress ( Santarnecchi et al., 2018 ). To do so, resting state fMRI data of 463

wins from the HCP dataset ( Van Essen et al., 2013 ) and 453 twins from

he LTS dataset ( Corley et al., 2019 ; Rhea et al., 2013 , 2006 ) were ana-

yzed to exploit the underlying organization of the individual functional

onnectome and its response to the random or targeted (from strongest
8 
o weakest) removal of its nodes and edges. The progressive patterns

f disaggregation were tackled from different perspectives to reveal the

ross and fine-grained responses to simulated damage. Finally, both the

omputed ground topological measures and the resilience metrics were

ompared across pairs of MZ and DZ twins to examine genetic and envi-

onmental effects. For the HCP dataset, our results revealed, similar to

rior studies, the presence of moderate heritability of several integration

nd segregation indexes, including clustering coefficient, characteristic

ath length, modularity, local and global efficiency measures. Impor-

antly the novel finding of our study was that the brain’s resilience com-

uted through the targeted removal of connections also showed mod-

rate heritability, both in terms of the overall damage that needs to be

ustained to cause a complete destruction of the functional graph (Tar-

eted Edges Removal), as well as in terms of the point of maximum

eflection in the lesioning process (Critical Point). 

The heritability of resilience appears to depend more on the targeted

esioning of edges, and not on the random or targeted removal of nodes.

his pattern may be attributable to the internal organization of the brain

onnectome itself. Its topology ensures a high level of robustness to the

ccurrence of random lesions, as well as great resilience when the most

ritical hubs of the network (i.e. the central cores/regions of the sys-

em) are selectively attacked ( Achard et al., 2006 ; Joyce et al., 2013 ).

egardless of the targeted or random approach used, resilience estimates

omputed solely on the impact of node lesions might therefore not be

articularly informative, as the brain appears to be capable of profi-

iently adjusting to such events. 

On the other hand, the loss of important communication highways

ight be more detrimental to the overall network functioning. A par-

llel is seen in the impact of focal lesions versus diffuse axonal dam-

ge or functional disaggregation patterns. For instance, strokes can re-

ult in severe modular deficits, including selective attentional short-

alls (e.g. visuospatial neglect) ( Bowen et al., 2013 ), loss of speech

e.g. aphasia) ( Pedersen et al., 2004 ; Shafi and Carozza, 2018 ), sen-

ory (e.g. cortical blindness, visual alterations, anosmia or loss of smell)

 Gaber, 2010 ; Lotsch et al., 2016 ) and motor (e.g. loss of muscle control)

 Langhorne et al., 2009 ) deficits, which although severe, can have rea-

onable potential for the individual to return to a good level of indepen-

ence and life satisfaction ( Vargo, 2011 ; Wolfenden and Grace, 2009 ).

n contrast, lesions affecting structural and functional paths are asso-

iated with more widespread damage characterizing many neurological

nd psychiatric conditions. The structural connectome is responsible for
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Fig. 4. Cortical Networks Associated with Heritable Resilience Estimates. The nodal degree of the weighted matrix originating from all edges in the Critical 

Point was computed to assess the allocation of the functional connections. A . Over 75% of edges in the Critical Point originated from or terminated in nodes belonging 

to the DMN and VIS networks, followed by edges originating/ending in the SMN, FPN, and SUB networks. The SN, AUD, CING and DAN networks accounted for the 

observed probability distribution of edges between 25% and 50%. Finally, fewer than the 25% of edges were observed to fall in the VAN, CRB and MEM networks. 

Aˆ. Overall, the number of connections belonging to the DMN was significantly higher than the number of connections belonging to other resting state networks. B . 

The overall distribution of all connections (intra and inter-modules) mapped in the brain. Intra-network edges are colored with the assigned color of the network, 

whereas inter-network edges are depicted in grey. C. The distribution of all connections (intra and inter-modules) is shown in form of pie chart distribution to depict 

how the majority of brain connections in the Critical Point consists of inter-networks ties. 

[DMN = Default Mode Network, VIS = Visual Network, SMN = Sensorimotor Network, FPN = Frontoparietal Network, SUB = Subcortical Network, SN = Salience Net- 

work, AUD = Auditory Network, CING = Cingulo-Opercular Network, DAN = Dorsal Attention Network, VAN = Ventral Attention Network, CRB = Cerebellar Network, 

MEM = Memory Network] 

g  

2  

2  

s  

m  

o  

i  

s  

2  

l  

p  

A  

s  

t  

2  

o  

n  

t  

r  

l  

m  

n  

v  

o  

s  

f  

t  

F  

i  

b

 

b  

t  

w  

s  

o  

w  

i  

b  

l  

p  

c  

p  

w  

p  

u  

m  

c  

g  

b

lobal aspects of cognition, such as processing speed ( Turken et al.,

008 ), cognitive flexibility and metastable dynamics ( Hellyer et al.,

015 ). Its lesioning is a hallmark of widespread diseases like multiple

clerosis ( Griffa et al., 2013 ) and diffuse axonal tearing following trau-

atic brain injury ( Imms et al., 2019 ). The functional connectome relies

n the coupling from the synchronous activity of distant regions, result-

ng in solid, yet modifiable, connections. The functional connectome

hows strong correlation with the individual functioning ( Finn et al.,

015 ), such as that its alteration has been observed in many patho-

ogical conditions, including schizophrenia ( Garrity et al., 2007 ), de-

ression ( Wise et al., 2017 ), autism ( Hogeveen et al., 2018 ), and even

lzheimer’s disease ( Buckner, 2005 ). Furthermore, the loss of interhemi-

pheric functional connections has been shown to be strongly related to

he extent of behavioral impairment following a stroke ( Corbetta et al.,

018 ; Siegel et al., 2016 ). These pieces of evidence have led to the term

f “disconnecting syndromes ” ( Geschwind, 1970 ) to capitalize on the

otion that many symptoms arise not from the damage of selective cor-

ical nodes, but rather to abnormalities in their interactions. For this

eason, focus on the study of the individual response to the selective

esioning of edges and its degree of heritability might be highly infor-

ative in guiding our understanding of the pathophysiological mecha-

isms of many diseases and for the development of therapeutic inter-

entions, similarly to what has already been done in regard of the study

f nodes lesioning ( Aerts et al., 2016 ; Warren et al., 2014 ). Finally, le-

ioning approaches solely looking at the effects of nodes removal might
9 
ail to exploit the importance of strong and weak ties in the brain, as

hey will cause depletion of all connections regardless of their strength.

rom this perspective, edge-based lesioning approaches may be more

nformative on the fine-grained specifics of resilience in the human

rain. 

Indeed, as we further explored the anatomical characteristic of the

rain connections subserving heritable resilience traits, we observed

hat the majority of them consisted of moderately weak, long, internet-

ork ties. Interest in the role of weak edges has a long history in network

cience, starting from the definition in social networks of “the strength

f weak ties ”, reflecting the role that one common acquaintance (i.e.

eak connection) has in maintaining complex social dynamics by bind-

ng two separate groups otherwise relying on the strong connections

etween their members ( Granovetter, 1983 ). Similarly, at the neural

evel, weak brain connections have been found to play a critical role in

reserving the efficiency of the information flow with minimum wiring

osts ( Gallos et al., 2012 ). Weak ties might be the primary element ca-

able of ensuring small-world properties to neural networks, similar to

hat has been observed in social ensembles, as such ties guarantee the

assage of information between the backbones of highly knitted mod-

les ( Gallos et al., 2012 ). Not surprisingly, their role in bridging cortical

odules has been thought to be accountable for observed variations in

ognitive efficiency as well, for example in the form of higher intelli-

ence relying on more distributed communication pathways mediated

y weaker ties ( Santarnecchi et al., 2014 ). 



A. Menardi, A.E. Reineberg, A. Vallesi et al. NeuroImage 235 (2021) 118013 

 

t  

s  

f  

a  

o  

w  

(  

e  

i  

s  

H  

a  

b  

(

 

e  

m  

l  

i  

(  

h  

s  

f  

m  

c  

q  

d  

i  

b  

t  

m  

s  

o  

e  

i  

(  

t  

p  

s  

c  

e  

T  

f  

d

 

a  

(  

c  

d  

o  

o  

t  

h  

o  

g  

c  

t  

b  

b  

o  

H  

a  

a  

a  

t

 

t  

r  

t  

t  

S  

s  

t  

n  

s  

p  

S

 

g  

v  

r  

t  

t  

s  

s  

t  

1  

s  

w  

(  

e  

a  

a  

p

5

 

g  

t  

h  

f  

c  

t  

m  

t  

h  

v  

f  

m  

s  

i  

s  

p  

f  

o  

a

A

 

c  

d  

E  

m  

a

D

The role of weak connections in inter-network binding is in line with

he results observed in the present study, where the majority of the edges

ubserving the individual Critical Point to the lesioning process was

ound to occur mainly at inter-modular connections. Indeed, network

nalyses revealed that most of those heritable edges originated from

r terminated in nodes of the DMN (followed by the VIS and SMN),

ith the other end linking to nodes belonging to a different network

 Fig. 4 ). Notably, prior work has detailed the mapping of genetic and

nvironmental influences on the human functional connectome, describ-

ng the genetic profile underpinning the synchronous activity of resting

tate networks ( Richiardi et al., 2015 ). Based in part on data from the

CP, differences in the degree of heritability across brain networks have

lso been demonstrated, showing higher heritability for the connections

etween DMN and sensory-related clusters, especially the VIS network

 Reineberg et al., 2019 ). 

However, none of these results were replicated in the LTS dataset,

xcept for the graph theory measure of Local Efficiency, which showed

ild evidence of heritability. Resting state measurements reflect the

ow-frequency ( < 0.1 Hz) synchronization of spontaneous neural activ-

ty underlying the functional coupling of distant regions in the brain

 Fox and Raichle, 2007 ). As those fluctuations oscillate slowly, concerns

ave been raised regarding the minimum scan length necessary to mea-

ure them with sufficient quality to reliably detect interindividual dif-

erences ( Anderson et al., 2011 ; Birn et al., 2013 ). Indeed, although the

ajority of studies use acquisition lengths around 5–7 min, Birn and

olleagues ( Birn et al., 2013 ) have demonstrated how doubling the ac-

uisition time (12 min) leads to substantially increased reliability of the

erived functional connectivity. As graph theory metrics are secondar-

ly computed from the functional connectome, major concerns have also

een raised regarding the possibility that insufficiently long acquisition

imes might be under-powered for statistical tests performed upon those

easures ( Sinclair et al., 2015 ). In this sense, the HCP dataset has been

pecifically designed to optimize all acquisition parameters, with not

nly longer acquisition runs (30 min) ( Glasser et al., 2013 ; Van Essen

t al., 2012 ), but also fast TRs with multiband pulse sequences, allow-

ng higher spatial resolution and greater number of scans to be acquired

 Glasser et al., 2013 ). Since the LTS Dataset uses even higher TR than

he HCP, this does not seem the reason of the difference, but it may ap-

ly for other rs-fMRI data with no multiband acquisition. Indeed, as no

lice time correction is needed for those data, robustness against noise

onfounds (e.g., rapid head movement) are also highly increased, again

nsuring a more stable signal ( Glasser et al., 2013 ). The effect of shorter

R is therefore an adjunctive factor in favor of measure reliability in

unctional connectivity studies, improving the sensitivity of connections’

etection ( Birn et al., 2013 ). 

From a neurologic perspective, the concept of resilience has been

ddressed by two main independent theories: the Brain Reserve

 Satz, 1993 ) and the Cognitive Reserve ( Stern, 2009 ) hypotheses. Ac-

ording to the former, the amount of individual cerebral substrate is

etermined by a genetic predisposition and acts as a passive thresh-

ld, such that the greater the neural redundancy (e.g., higher number

f neurons and synapses, larger brain and overall abundancy of brain

issue) the greater the damage it can sustain ( Satz, 1993 ). On the other

and, the Cognitive Reserve hypothesis recognizes a more active role

f the environment to which the individual is exposed, such as that the

reater the life involvement in cognitive demanding jobs and activities,

ombined with a healthy diet and regular physical activity, the greater

he individual potential to significantly counteract damage to vulnera-

le regions ( Stern, 2002 ). These hypotheses are not mutually exclusive

ut rather see resilience as determined by the combined contribution

f both genetic predisposition and favorable environmental influences.

owever, our results remain too preliminary to draw any conclusion

bout the relationship between in silico derived measures of resilience

nd what has been reported in clinical human studies in terms of brain

nd cognitive reserve. It would be desirable for future studies to address

his possible association. 
10 
The present study is not free of other limitations. The first is that

he unique environmental estimate, or “E ”, includes measurement er-

or. Moreover, E is an estimate of variance, so the specific environmen-

al influences that it captures are not detailed. They most likely reflect

he accumulation of many small environmental effects ( Plomin, 2011 ).

econd, it was beyond the scope of the present paper to test the as-

ociation between resilience estimates and cognitive performance in

his sample. Still, prior work has emphasized the link between cog-

ition and resilience for both in-silico network lesioning and real life

cenarios, revealing a positive association between higher cognitive

erformance and higher resilience ( Deary, 2008 ; Deary et al., 2004 ;

antarnecchi et al., 2015 ; Simeon et al., 2007 ). 

A final limitation to this study is represented by the sensitivity of

raph theory metrics to a variety of data acquisition and preprocessing

ariables, including the length of scanning and the use of global signal

egression, whereby the mean activity of the brain is regressed with

he scope of further reducing noise confounds. Prior work has covered

hese issues, for example showing that the use of global signal regression

ubstantially decreases the heritability of graph theory metrics and that

hort scans times (5-7min) also negatively impact the reproducibility of

he results, which tend instead to stabilize with longer scans times (8-

2min) ( Birn et al., 2013 ; Sinclair et al., 2015 ). In line with these prior

tudies, we failed to fully replicate our findings in the LTS dataset, in

hich acquisition times were significantly reduced compared to the HCP

6min versus 30min). We believe these pieces of evidence should guide

xtra care in the acquisition parameters of future studies using similar

pproaches. Due to the high dynamicity of the brain, future studies could

lso address how topology and resilience estimates vary in time and are

aralleled by the occurrence of specific brain states’ transitions. 

. Conclusions 

Accurate understanding of brain topological properties and the de-

ree to which genetic and environmental influences shape its resilience

o external perturbation is of major interest for the understanding of

ealthy and pathological brain functioning. In the present study, we

ound mild-to-moderate heritability of resilience traits; still, the biggest

ontribution to those traits appears to be driven by environmental fac-

ors. From this evidence, future therapies aiming at increasing resilience

ight advocate in favor of interventions based on individual exposure

o favorable environmental conditions. Evidence from both animal and

uman studies have indeed highlighted the importance of enriched en-

ironments for neural development and subsequent neuroprotective ef-

ects ( Pham et al., 2002 ; Tost et al., 2015 ). For instance, future studies

ight compare the positive impact of such environmental factors (both

ocially and naturally driven) to more experimentally controlled scenar-

os, such as those based on the exposure of the brain to repetitive brain

timulation sessions. In this regard, knowledge of the neuroanatomical

aths upon which brain resilience mechanisms preferentially load is of

oremost importance. Hence, future scenarios might consider the devel-

pment of interventions aimed at boosting individual strength in face of

 variety or psychiatric and neurological disorders. 
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