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Landslide detection by deep learning of non-nadiral
and crowdsourced optical images

Abstract The recent development of mobile surveying platforms
and crowdsourced geoinformation has produced a huge amount
of non-validated data that are now available for research and
application. In the field of risk analysis, with particular reference
to landslide hazard, images generated by autonomous platforms
(such as UAVs, ground-based acquisition systems, satellite sen-
sors) and pictures obtained from web data mining are easily
gathered and contribute to the fast surge in the amount of non-
organized information that may engulf data storage facilities.
Therefore, the high potential impact of such methods is severely
reduced by the need of a massive amount of human intelligence
tasks (HITs), which is necessary to filter and classify the data,
whatever the final purpose. In this work, we present a new set of
convolutional neural networks (CNNs) specifically designed for
the automated recognition of landslides and mass movements in
non-standard pictures that can be used in automated image clas-
sification, in supporting UAV autonomous guidance and in the
filtering of data-mined information. Computer vision can be of
great help in fostering the autonomous capability of intelligent
systems to complement, or completely substitute, HITs. Image and
object recognition are at the forefront of this research field. The
deep learning procedure has been accomplished by applying trans-
fer learning to some of the top-performer CNNs available in the
literature. Results show that the deep learning machines, calibrat-
ed on a relevant dataset of validated images of landforms, may
supply reliable predictions with computational time and resource
requirements compatible with most of the UAV platforms and web
data mining applications in landslide hazard studies. Average
accuracy achieved by the proposed methods ranges between 87
and 90% and is consistently higher than that obtained by general-
purpose state-of-the-art image recognition convolutional neural
networks. The method can be applied to early warning, vulnera-
bility assessment, residual risk estimation, model parameterisation
and landslide mapping. Specific advantages will be the reduction
of the present limitations in the intelligent guidance of landslide
mapping drones, the classification of fake news, the validation of
post-disaster information and the correct interpretation of an
impending change in the environment.

Keywords Landforms . Computer vision . Automated object
recognition . Data mining . UAV

Introduction
The science of natural hazards, including landslides, has lately
been positively impacted by the quick growth of remote sensing
and crowdsourced platforms such as satellites, UAVs, social net-
works, sensor networks and public online data storages. For ex-
ample, the usage of air- and UAV-borne sensors has gained a
notable relevance due to the concurrent effect of price-lowering
and quality gain in rotors, structure materials, power systems, on-
board computing power and sensors (Giordan et al. 2018; Rossi
et al. 2018) and to the multiplication of UAV-based applications in

most of the research and application fields of science, industry and
defence (Lee et al. 2017). An even stronger increase has been
observed in the availability of crowdsourced information generat-
ed by data mining web resources of various type, with a special
relevance of geo-tagged unclassified and potentially useful images.

In turn, this has generated an exponential surge in the amount
of available data that contain large quantities of noisy and non-
validated information. To be usable, such big data require auto-
mation and the support of machine learning methods for selec-
tion, classification and storage (Catani et al. 2013; Smith et al. 2017;
Intrieri et al. 2017; Du et al. 2019).

For the specific case of image-related data, where the informa-
tion content is carried by a multi-layered digital matrix of quan-
titative measures in n dimensions, computer vision methods may
be of great help, because they are capable of mimicking simple and
repetitive human decision tasks, if suitably trained.

With reference to the specific field of landslide hazard and risk
assessment, the usage of unmanned platforms has recently become
almost mandatory, due to the operational flexibility, high spatial
resolution, low cost, quick capability of deployment and availabil-
ity of a number of new sensors that were previously unavailable as
payload on such small aircrafts (Niethammer et al. 2012; Lucieer
et al. 2014; Turner et al. 2015; Giordan et al. 2015; Giordan et al.
2018; Allasia et al. 2019).

On a quite different path, direct surveying is being increasingly
complemented by the usage of data mining of web-related and
crowdsourced information (Battistini et al. 2013; Battistini et al.
2017; Smith et al. 2017). This indirect approach provides an alter-
native way to explore the occurrence of hazards over large areas
and backwards in time. It also allows for the collection of soft data
such as damage estimation, impacts on population, reaction time
during emergency and system resilience, which are fundamental
for the calibration and validation of risk assessment models
(Corominas et al. 2014; Uzielli et al. 2015a; Uzielli et al. 2015b).
Several text and semantic analysis methods exist that can be
fruitfully used for the selection and classification of online news
and automated positioning of events (Battistini et al. 2013; Smith
et al. 2017) even though not much exists concerning the analysis of
more complex data on landslides, such as photographs, multi-
spectral images and multi-source web graphics.

Therefore, the exploitation of digital images is at the forefront
of the research challenges and being improved at a fast rate.

Most of the advantages of both crowdsourced and UAV-
surveyed imagery derive from the easiness of use and the short
time required to gather historical, monitoring or mapping data
(Bishop et al. 2012; Corominas et al. 2014; Chae et al. 2017; Giordan
et al. 2018). However, when the sorting and classification of thou-
sands, if not hundred thousands, of completely different images
entail a repeated human intelligence task (HIT) or when an effi-
cient drone-based survey requires a direct or indirect human
control by an expert pilot, most of the advantages may be lost
and strong limitations may be introduced due to many factors,
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including time constrains, data formats, terrain configuration and
logistics, thereby reducing applicability and extent of data collec-
tion. For such reasons, recent cutting-edge research is trying to
perfect the computer vision proficiency in object recognition on
the one side and the autonomous flying capabilities of drones to
allow the execution of larger scale, all-terrain surveys, on the other
side (Niesterowicz and Stepinski 2013; Lee et al. 2017).

The autonomous recognition and guidance capabilities of ma-
chines are challenging tasks that are being tackled by the research
community in several ways (Minaeian et al. 2016; Lee et al. 2017).
All of them entail, as a basic requirement, the capability of com-
puter vision by the machine platform, for decision-making, obsta-
cle avoidance, path adjustment and object detection.

Object detection, in particular, is a very important add-on to
any autonomous system as a specific skill that supports intelligent
decisions by helping the CPU in the interpretation of complex data
extracted from the surrounding environment. Examples of such
skills are the proficiency in object recognition from simple photo-
graphs, the autonomous extraction of flying information and the
generation of additional smart data for optimizing survey opera-
tions or validating models.

In the field of landslide hazard, one of the main tasks which is
devoted to drone systems is the quick survey of areas that are too
large to be inspected with ground visits, yet require a detail-scale
analysis. On the other hand, data mining systems can be used to
collect large-scale information in real-time and back-analysis
concerning cases of damage and risk assessment (Battistini et al.
2017). In both cases, the computer vision system should mostly
concentrate on the capability of correctly classifying the terrain in
terms of landforms, processes and effects due to the action of mass
movements, while being at the same time capable of detecting the
presence of elements at risk, such as buildings, structures and
infrastructures. A specific challenge is linked to the fact that most
of web-sourced and UAV-generated imagery for landslide studies
is non-nadiral and non-standard (Minaeian et al. 2016).

There aremany studies reporting on effective and accuratemethods
to map landslides from optical and non-optical imagery. An important
review work by Evans (2012) proposes a conceptual framework for the
interpretation of landforms, which is a starting point for every auto-
mated analysis to tackle multi-scale issues. Further developing the idea
of landform delineation, Jasiewicz and Stepinski (2013) propose the
operational concept of the geomorphons, as the basic landscape unit to
be classified with the help of pattern recognitionmethods. Later on, the
accuracy requirements on landform measurement needed by specific
geomorphic analysis have been classified and discussed by several
authors (Tarolli 2014; Eltner et al. 2016).

On such a basis, a relevant literature exists covering landform
recognition. Examples include methods based on classical pixel-
based satellite image classification (Liu and Wu 2016), super-pixel
segmentation (Li et al. 2018), object-based image analysis (Drăguţ
and Blaschke 2006; Lu et al. 2011; Stumpf and Kerle 2011; Drăguţ
and Eisank 2012; Hölbling et al. 2016), combination of multi-
spectral measurements with DEM-derived landform attributes
such as elevation, slope, topographic position, and contributing
area with watershed delineation (Mondini et al. 2011; Forzieri et al.
2012; Forzieri et al. 2013; Ciampalini et al. 2016; Du et al. 2019). An
overview on such studies is provided by Scaioni et al. (2014) and,
more recently, by Giordan et al. (2018). Most of the studies agree
on the fact that deep learning convolutional neural networks

(CNNs) may be an optimal solution for highly flexible and pow-
erful image classification and object recognition (Shin et al. 2016;
Du et al. 2019). In general, artificial neural networks have long
been successfully used to recognize specific landscape characters
leading to slope instability (Lee et al. 2004; Catani et al. 2005;
Ermini et al. 2005; Pradhan and Lee 2010; Yilmaz 2010; Liu and
Wu 2016; Zhou et al. 2018a) or to detect anomalous displacements
of rock and soil masses (Zhou et al. 2018b).

Almost all the published research concentrates on the post-
processing analysis of multi-source data to apply pattern recogni-
tion and object-oriented methods for landform classification, with
some of them specifically targeting mass movements. Only a few
published works (Huang et al. 2011; Niesterowicz and Stepinski
2013; Lee et al. 2017), to the best of our knowledge, focus on the
attempt of achieving real-time target detection for landforms or
landscape scenes with computer vision. And no work at all pro-
poses an operational method to give on-board detection capability
to any intelligent system as related to mass movements.

In this paper, we propose a simple, computationally compatible
deep learning classifier (LanDLC) trained for the detection and classi-
fication of specific landslide-related landforms in nadiral and non-
nadiral images. The four versions of LanDLC presented in the following
sections are based on the transfer learning of pre-trained general-
purpose image classification convolutional neural networks that have
been specifically modified towards landslide recognition.

All LanDLC versions can be fully implemented in a desktop
data mining toolbox to complement existing automated context
extraction and news classification applications (see, e.g. the sys-
tems described by Smith et al. (2017) and Battistini et al. (2013)).
Furthermore, despite being in a prototypal stage for UAVon-board
implementation, LanDLC may provide a contribution towards the
objective of building self-aware drones capable of mapping land-
form instability and geo-hydrological hazard by independently
flying over an area and targeting specific terrain features to be
surveyed, positioned and stored in digital form.

Materials and Methods

Methodology
Image analysis and classification in the Earth sciences and in the
broader field of remote sensing has a long and successful history
that has now undergone a huge step forward due to the capability
of computers to manage and process big data with artificial intel-
ligence methods. When dealing in particular with image classifi-
cation and object recognition, the highest performances, at the
present state of the art, are those provided by deep learning tools,
such as CNNs, that are capable of performing classification tasks
directly from images rather than by using pre-selected features of
them (Krizhevsky et al. 2012; He et al. 2015a; Shin et al. 2016). A
CNN combines multiple nonlinear processing layers using simple
elements working in parallel. The layers are interconnected by
nodes and each layer uses the previous layer’s output as input.
Differently from other machine learning systems, CNNs may au-
tonomously extract features from images, use them in the learning
process, select only the most useful of them (activations) and then
implement a highly accurate object recognition machine, based on
a set of training images (Russakovsky et al. 2015; Shin et al. 2016).

However, the training of a deep CNN with tens or hundreds of
layers over a large data set of images is a non-trivial task that
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requires a huge computational effort preceded by a similarly large
undertaking that is necessary for collecting and labelling hundred
thousands, if not millions, of training images (Russakovsky et al.
2015). As an example, the general-purpose image classification
CNN AlexNet (Krizhevsky et al. 2012), which is quite simple and
has only eight learnable layers, uses 61 million parameters trained
over several million labelled images. Luckily, such heavy duties
have already been accomplished by the leading computer vision
research groups for general-purpose image analysis and can be
fruitfully exploited as a starting base for a much simpler process of
specialized training called transfer learning (Shin et al. 2016).

Transfer learning consists in the specialized training of a subset of
the deepest layers of a CNN that has been already trained for similar,
but more general, classification purposes. An entire class of such
public-domain CNNs exists offering various levels of flexibility, com-
plexity and accuracy, depending on the user requirements. By picking
one of such pre-trained, non-specialized networks, it is possible to
substitute the deepest layers and retrain them to fit very specialized
tasks such as the classification of landforms characterized by mass
wasting and landslides. Because most of the classification capability
of the network has already been obtained, transfer learning can be
performedwith a relatively small number of specialized images belong-
ing to the target category. Furthermore, the usage of a general-purpose
object recognition CNN strongly enhances the capability of detecting
single objects set against a complex background which may include
other landscape features such as trees, buildings, clouds, roads, people
and animals.

In this paper, we selected four among the best performing CNN
architectures for image recognition and object detection as related to
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

(Russakovsky et al. 2015) and tested them by transfer learning on a
dataset of labelled landscape images containing verified landforms
belonging to five categories (‘landslide’, ‘scree deposit’, ‘rock cliff’,
‘alluvial fan’ and ‘slope without mass movements’).

The choice of the five categories is based on the following
reasons: landslides are the target object for the detection system
we want to develop; scree deposits, alluvial fans and rock cliffs are
typical landforms that can be erroneously classified as landslides
and that, therefore, have to be discriminated from them; finally,
‘slope without mass movements’ is the label assigned to any image
in the dataset where none of the previous categories is present,
according to a careful expert-based selection process. Most of the
selected ‘slope without mass movements’ images, however, pur-
posefully contain objects that can be mistaken for slope processes,
such as mid-slope roads, buildings, cultivated fields, retaining
walls and rivers. This should contribute to a more effective train-
ing of the network and decrease the degree of overfitting (Zhou
et al. 2016; Lee et al. 2017).

The four pre-trained CNNs tested in this work derive from the
successors of the AlexNet architecture (Krizhevsky et al. 2012) and
its derivations. All of them are on the Pareto frontier and Pareto-
efficient in the domain accuracy versus prediction time (Fig. 1).
Any set of non-dominated solutions, being chosen as optimal, can
be defined as Pareto-efficient if no objective can be improved
without sacrificing at least one other objective. On the other hand,
a solution ζ* is referred to as dominated by another solution ζ if,
and only if, ζ is equally good or better than ζ* with respect to all
objectives. In such terms, the chosen CNN architectures are state-
of-the-art at the present stage and excelling in the combination of
accuracy and computational efficiency.

Fig. 1 Position of some popular CNNs along the Pareto frontier (dashed line) in terms of accuracy vs prediction time with respect to the ImageNet database. The four
CNNs used in this paper are highlighted in bold red. Data from Mathworks (www.mathworks.com)
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They are as follows: GoogLeNet, compact and fast with a large
degree of flexibility and a good overall accuracy (Szegedy et al.
2015a); GoogLeNet-Places365 (Zhou et al. 2016), a modified version
of GoogLeNet specifically oriented towards the classification of the
scene rather than single objects; ResNet.101, a 101-layer CNN with
improved training curve based on residual learning (He et al.
2015a); and Inception.V3, possibly the latest state-of-the-art
open-source network for classification of multi-purpose images
in near real time (Szegedy et al. 2015b). While the two GoogLeNet-
derived CNNs are compact and fast, ResNet and Inception.v3 are
more accurate at the expenses of requiring more computing power
and being less compact in terms of potential UAV and robot
implementation. Architectures with potentially higher accuracy
than Inception.v3 require a prediction time more than double
(Fig. 1) and have not been considered in this study due to their
low suitability to operational near-real-time applications.

The transfer learning was performed by removing the classifi-
cation and SoftMax layers at the end of the network structure and
the learnable layers (convolutional or fully connected) just before
them from the pre-trained CNNs, then by replacing them with new
layers specifically designed for landform classification in five clas-
ses, as previously specified (all network architectures and specifi-
cations are provided upon request under a CC-BY-NC 3.0 licence
in ONNX format).

All transfer learning and training was done in the Matlab envi-
ronment (®Mathworks). Since performances in terms of accuracy,
flexibility and overfitting avoidance are linked not only to the net-
work architecture but also to training options, we performed a
multiple-parameter optimization procedure based on a combination
of three training regulation variables: (i) mini-batch size, that is, the
size of the subset of images used for each iteration; (ii) initial learning

rate, that is, the scale of the search lag in the error minimization
procedure; and (iii) momentum, that is, the adjustment factor for
avoiding target misdetection in the search of function minima. The
combination of all the considered parameter domains sums up to
144 different configurations for each of the four trained CNN archi-
tectures, for a total of 576 training runs for each trial. Table 1 lists the
different values used for the parameter domains as well as the main
characteristics of the network architectures.

At the end of the optimization cycle, the results were ranked
by overall accuracy to select the best method and parameter set
for the choice of the optimal CNN configuration which was
thereafter compiled and executed against an external validation
dataset made up by unlabelled images to simulate an actual
operational application. No direct comparison in classification
performances is possible between the modified CNNs here de-
veloped (LanDLC) and the original pre-trained networks
(GoogLeNet, GoogLeNet.Places365, ResNet.101 and Inception.v3)
because the latter do not include the 5 labels which are the target
of the research (landslide, stable slope, rock cliff, alluvial fan and
scree deposit). Therefore, we only compare average accuracy of
original networks as reported in the literature, as visible in the
Pareto frontier plot of Fig. 1, to the average accuracy obtained by
the LanDLC networks.

The training and testing of all the configurations during opti-
mization were performed on a multi-GPU platform (CUDA
NVIDIA GeForce RTX 2070 with 36 processing cores) by using
the Matlab Deep Learning toolbox (Mathworks) supported by the
specific packages for the four CNNs chosen for the experiment (see
Table 1). The best CNN obtained for each basic type has been
validated against an independent data set and then saved for usage
with external packages in ONNX format (https://onnx.ai) with the
name highlighted in the first column of Table 1.

Data sets
The need for parameter optimization and architecture selection
suggests that image datasets should be split in a training and a
testing subset. Moreover, since overfitting is always a critical issue
when re-training large, deep networks with a limited amount of
data, a further independent dataset is required, for external vali-
dation (Russakovsky et al. 2015).

The images for training and testing are obtained through a combi-
nation ofmethods to ensure density (frequency of label representation)
and diversity (high variability of appearances and viewpoints). Such

Table 1 CNN architecture, characteristics and parameter domains used for the training tests in the optimization procedure. For each CNN, the number of learnable layers is
shown together with the total number of layers and the number of parameters. The image input size is also reported

CNN name Original architecture Input resolution (pixels) Learnable layers Total layers Parameter no.

Go-LanDLC GoogLeNet 224x224 22 144 7.0x106

GP-LanDLC GoogLeNet.Places365 224x224 22 144 7.0x106

Re-LanDLC ResNet.101 224x224 101 347 44.6x106

In-LanDLC Inception.v3 299x299 48 315 23.9x106

Mini-batch size (−) 10, 20, 30

Initial learning rate (−) 1.0 × 10−5, 5.0 × 10−5, 1.0 × 10−4, 5.0 × 10−4, 1.0 × 10−3, 5.0 × 10−3, 1.0 × 10−2, 5.0 × 10−2

Momentum (−) 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Table 2 Numerical consistency of labelled images across the three datasets used.
Please note that figures do not consider data augmentation, adopted during trai-
ning and testing

Label Training Test Validation

Landslide 1980 495 403

Stable slope 2560 640 291

Scree 1025 256 100

Fan 1230 307 168

Cliff 1045 261 195
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datasets must be selected and supervised very carefully by an expert
geomorphologist to avoid labelling errors or multiple labelling.

Landforms chosen for training are landslides of various types,
scales, states of activity and materials, which are representative of
a large range of physiographical settings, versus slopes without
mass movements (‘stable slopes’ in the remaining of the paper).
Furthermore, the CNNs were trained to distinguish landslides
from typical slope processes that can be mistaken for proper mass
movements, such as rocky cliffs, scree deposits and alluvial fans.

Most of the images were collected by taking UAV and ground
pictures of the relevant categories from the archives of the Civil
Protection Centre of the University of Florence (CPC-Unifi) with
manual and semi-automated selection methods. To increase the
discriminant capability of the trained networks, the dataset was
complemented by a second catalogue, generated by data mining
image search engines on the web (Google Images, Bing Images and
Flickr) on query words related to the main denominations of the
chosen landforms and by using the web news catalogue generated
by CPC-Unifi in-house system for automated search of landslide
news over the period 2010–2017 (Battistini et al. 2013; Battistini
et al. 2017). The data mining of no-landslide scenes was performed

by looking up terms such as ‘hillslope’, ‘hill’ and ‘landscape’ and
then by manually verifying them one by one, and by manually
sorting through the previously mentioned image catalogues.

The combination of the two different sources of information
ensures a higher diversity in the visual appearances within the
dataset and allows for a more comprehensive set of non-nadiral
scenes. This, in turn, should extend the capability of the trained
networks towards computer vision applications and automated
classification of images deriving from non-standard sources.
Very often, in fact, images obtained by data mining of web
resources or through automated optical camera acquisitions
(mounted on drones, fixed stands or collected from non-
professional photographers) are not object-centred nor clean in
terms of target visibility. The inclusion of such noisy data in the
training set adds more flexibility and generalization capability to
the automated classification machine. As it is not possible to
define a certain source for all images, with special reference to
those derived from undocumented web data sources, we estimate
that roughly 55% of images come from ground pictures, 35%
from aerial and drone acquisitions and the remaining 10% from
optical satellite images.

Table 3 Optimal configuration for each architecture. Overall accuracy for the combination showing best performances is also reported. Image classification time is relative
to a single processor Intel Core i7 (2.7 GHz, 4 cores)

CNN name Pre-trained
architecture

Optimal ILR
(−)

Optimal
Mom (−)

Optimal
MBS (−)

Overall
accuracy
(−)

Image
classification
time (s)

Size in
ONNX
format
(MB)

Go-LanDLC GoogLeNet 1.0 × 10−3 0.8 10 0.88 0.025 23.9

GP-LanDLC GoogLeNet-Places365 1.0 × 10−2 0.4 20 0.87 0.025 23.9

Re-LanDLC ResNet.101 5.0 × 10−3 0.4 20 0.90 0.105 170.8

In-LanDLC Inception.v3 5.0 × 10−3 0.6 20 0.90 0.030 87.5

Fig. 2 Mean overall accuracy in classification for each run over the 144 combinations of optimization parameters. Points showing zero accuracy correspond to training
options leading to networks with no classification capability with respect to the test set. This is often due to the adoption of wrong values of ILR
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In terms of pure numbers, after data augmentation, the dataset
was split in two, with 80% (about 7900 images) of the validated
images devoted to training and 20% to testing (about 2000 im-
ages). A separate validation dataset of about 1200 images was then
generated by using independent non-filtered data, to simulate
real-world cases of unlabelled web data mining and drone survey

acquisitions. This dataset was only used after training optimiza-
tion to define the actual level of reachable accuracy. In all datasets,
the number of images for each class is not perfectly balanced due
to the difficulty in finding suitable pictures for some specific
landform types, such as scree deposits and alluvial fans. This has
produced a certain degree of unbalancing in the data that has been

Fig. 3 Variation of the average classification accuracy of the different tested CNNs with increasing initial learning rate ILR. Typically, for large values of ILR the accuracy
quickly degrades

Fig. 4 Variation of the average classification accuracy of the different tested CNNs with increasing momentum
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tackled by resorting to image augmentation techniques and by
adopting suitable performance metrics (Ferri et al. 2009; Sun et al.
2009; Batuwita and Palade 2012; Branco et al. 2015). See also the
Results section for details. The distribution of the used labels
across the three datasets is shown in Table 2.

The density of images (number of data for each category, see
Table 2) is comparable to state-of-the-art benchmarks such as the
ImageNet data storage that contains over 15 million images la-
belled in 22,000 categories. In ImageNet, the average number of
samples that are available for each category is of about 680 while
in our case, each category (over the five used) has an average
number of samples of about 1570, for training only. The adopted
data density is even higher than that used for full training of CNNs
in the ILSVRC challenge that was based on a subset of ImageNet
with 1.2 million images labelled in 1000 categories, with an average
density of 1200 images per category (Russakovsky et al. 2015).

During transfer learning, training and optimization, all the images
were scaled to the required dimension by using an augmented image
data store that combines RGB bands into a [Rx Ry 3] matrix, where Rx
and Ry are, respectively, x and y image input size in pixel. During
training, the augmented image data store has also been used to generate
slight variations of the single images, to further increase sample density
and diversity (Russakovsky et al. 2015; Zhou et al. 2016).

Results
The training of the four selected CNNs during the optimization
runs shows an execution time directly proportional to the archi-
tecture complexity. For each optimization cycle, learning time was
of about 2.5 min on Go-LanDLC and GP-LanDLC, 4.5 min on In-
LanDLC and 6.2 min on Re-LanDLC, based on the hardware setup
previously described. A series of independent post-training classi-
fication trials were also carried out on a separate hardware plat-
form with basic computational capability, to simulate an actual
operational environment on a portable platform (Intel Core i7
2.7 GHz with 4 cores). Average classification time (Table 3), using

Fig. 5 Confusion matrix for classification using Go-LanDLC (GoogLeNet) on the
validation dataset. The term ‘slope’ is short for ‘stable slope’ or negative measure
with respect to positive predictionsTa
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trained CNNs on single images was of 0.025 s for both Go-LanDLC
and GP-LanDLC, 0.030 s for In-LanDLC and 0.105 s for Re-
LanDLC, within Matlab. Faster CNNs are slightly less accurate,
showing maximum accuracy of 0.88 (Go-LanDLC) and 0.87 (GP-
LanDLC) with respect to an average 0.90 shown by the more
complex Re-LanDLC and In-LanDLC. In general terms, the best
performing network seems In-LanDLC, based on the Inception.v3
architecture, that has maximum accuracy equal to Re-LanDLC
(based on ResNet.101) but is much faster (0.030 against 0.105 s).

For all the tested networks, accuracy seems strongly dependent
on the fine-tuning of training parameters, as shown in Fig. 2 where
the results of average overall accuracy are shown for each archi-
tecture and all optimization runs.

Sensitivity to the training parameters value is different for
each architecture and suggests that specific optimization is
needed case by case. Nonetheless, it is apparent that some
parameter combinations show a general high (or low) classi-
fication accuracy for all networks.

The influence of each training parameter may be better
understood by looking at the mean accuracy achieved at
varying values. Figure 3 shows the variation of accuracy with
increasing values of the initial learning rate (ILR), while Fig. 4
refers to the momentum (Mom).

In Fig. 3, for relatively simple architectures, based on
GoogLeNet (Go-LanDLC and GP-LanDLC), the accuracy increases
with ILR only up to values around 5.0 × 10−4. After that, the
accuracy diminishes with a sharp drop for ILR greater than 1.0 ×
10−3. Deeper networks, such as those based on the Inception-v3
and Resnet.101 architectures, are more robust to variations of ILR,
showing a decline in prediction accuracy for values of ILR greater
than 1.0 × 10−2. In-LanDLC, in particular, exhibits an increase in
the accuracy up to ILR equal to 5.0 × 10−3.

The sensitivity to momentum appears lower (Fig. 4). Almost all
architectures show a constant average accuracy until values of
Mom equal to 0.8, then accuracy declines. In-LanDLC, based on

Fig. 6 Confusion matrix for classification using GP-LanDLC (GoogLeNet.Places365)
on the validation dataset. The term ‘slope’ is short for ‘stable slope’ or negative
measure with respect to positive predictions
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Inception.v3, is less sensitive than other CNNs to momentum
variations. The same can be said for the Re-LanDLC even though
the fact that the curve is always the highest may be because, in
general, the residual learning architectures are less prone to
minima-seeking errors. This, however, does not mean that the
Re-LanDLC is the more efficient in terms of image object recog-
nition since computation time is much higher. Finally, the mini-
batch size (MBS) is not very relevant in the tests, showing a very
limited influence on overall accuracy.

The best parameter set and overall accuracy for each trained
CNNs are shown in Table 3.

After training and testing, the 4 optimal configurations have
been tested by running the classifier on an independent data set
(see ‘Materials and methods’). The results have been used to
estimate the classification capability of the CNNs according to
standard ranking metrics for class label data in both balanced
and unbalanced samples (Ferri et al. 2009; Sun et al. 2009;
Batuwita and Palade 2012; Branco et al. 2015). For each architecture
and for each landform type, the following metrics have been used,
where TP is the number of true positives, FP the number of false
positives, TN the number of true negatives and FN the number of
false negatives.

Precision : p ¼ TP
TPþ FPð Þ

Recall or sensitivityð Þ : r ¼ TP
TPþ FNð Þ

F−score : f ¼ 2 � p � rð Þ
pþ rð Þ

Accuracy : α ¼ TPþ TNð Þ
TPþ FPþ TNþ FNð Þ

Specificity : s ¼ TN
TNþ FPð Þ

Negative Predictive Value : npv ¼ TN
FNþ TNð Þ

Error : ϵ ¼ FPþ FNð Þ
TPþ TNð Þ

Precision (p) is a measure of the robustness towards false
positives. Recall (r or sensitivity) summarizes how well positive
cases are predicted accounting for the robustness towards false
negatives. The f-score combines p and r into a single score. Accu-
racy (α) is an overall measure of correct answers with respect to
total answers. Specificity (s) refers to the capability of predicting
negative values against false positives. The negative predictive
value (npv) measures the relative importance of false negatives.
Error (ε) is the complement of accuracy and should be minimized.

The results, highlighted in the following, clarify that, in terms of
predictive performance, the 4 CNN architectures behave quite
differently, for each separate type of landform. The simplest and
fastest CNNs, based on GoogLeNet, offer acceptable classification
capability when left with the original pre-training (Go-LanDLC)
and poor performances when pre-trained with the scene’s dataset
of Places.365 (GP-LanDLC). In Table 4, the summary statistics for
the Go-LanDLC network shows that the recognition of landslides
(i.e. the main target of the study) is acceptable compared to Pareto
frontier averages (Fig. 1) with precision of 0.82, accuracy of 0.89
and error of 0.13. Rather good is the capability to classify alluvial
fans (p = 0.93, α = 0.97) and stable slopes (p = 0.83, α = 0.93) as
well. There is, however, a poor capability in the correct
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classification of scree deposits (precision p = 0.67 and F1 score f1 =
0.77). Rock cliffs show a very low number of false positives but an
unsustainable number of false negatives (p = 0.99, r = 0.69). The
complete results of validation for Go-LanDLC are presented in the
confusion matrix of Fig. 5.

When trained on scene pictures from the Places.365 database,
GoogLeNet does not improve. In fact, in Table 5, the statistics of
validation for GP-LanDLC shows a quite poor classification power
towards landslides (p = 0.75, f-score = 0.79, ε = 0.18). Even poorer
is the performance with respect to scree deposits (p = 0.67, r =
0.76, f-score = 0.71), alluvial fans (p = 0.67, r = 0.75, f-score = 0.71)
and rock cliffs (p = 0.89, r = 0.61, f-score = 0.73).

This behaviour may appear as unexpected, due to the fact that
GoogLeNet.Places365 has been pre-trained on a dataset of images
representing places so as to be able to classify specific site typol-
ogies. A more careful analysis, however, reveals that this pre-
training is very good when the target is a set of classes representing
generic places or place names, but it may be quite inefficient if the
objective is to recognize an object inside a complex landscape. For
example, GoogLeNet.Places365 is capable of distinguishing wheth-
er a picture is representing a classroom or a library but cannot tell
whether the objects ‘book’ or ‘computer’ are present in the picture
itself. This, conversely, is typically feasible by resorting to
GoogLeNet with standard training. In our specific case, we are
training a CNN that must detect the presence of complex objects
merged in a background that is not relevant. In other words, we
want to be able to recognize a landslide (or another similar
landform) that is overlapping (or overlapped by), e.g. a road, a
series of buildings, some vineyard lines, a parking lot or a standing
passer-by. This specific task is evidently better accomplished by
Go-LanDLC rather than GP-LanDLC. The complete results of the
validation for GP-LanDLC are presented in the confusion matrix

of Fig. 6. In any case, GoogLeNet-based CNNs are compact and
fast (ONNX size of about 24 MB and average image classification
time of 0.025 s).

The increase of architecture complexity in terms of number of
learnable layers appears to boost overall performances. The most
advanced CNN used, Re-LanDLC based on ResNet.101, a
convolutional neural network with 101 layers and residual learning,
improves landslide detection with p = 0.88, r = 0.88 and α = 0.92
(Table 6). Moreover, it strongly enhances the capability to classify
scree deposits (p = 0.81, r = 0.89 and α = 0.97), alluvial fans (p = 0.91,
r= 0.89 andα= 0.97) and rock cliffs (p= 0.94, r= 0.86 andα= 0.97).
This is done at the expenses of compactness (170.9 MB) and predic-
tion time (0.105 s). The complete results of validation for Re-LanDLC
are presented in the confusion matrix of Fig. 7.

The CNN based on Inception.v3 (In_LanDLC) seems to repre-
sent a good compromise in terms of cost-benefit ratio given the
fact that it is more compact (87.5 MB) and faster (average image
prediction time of 0.030 s) than Re-LanDLC. As highlighted in
Table 7, overall classification proficiency is still high, with land-
slide classification figures that are actually higher than with Re-
LanDLC (p = 0.93, r = 0.87 and α = 0.93). The same applies for
alluvial fans (p = 0.90, r = 0.92 and α = 0.97) and rock cliffs (p =
0.91, r = 0.93 and α = 0.97). The only exception is the detection of
scree deposits, with slightly lower figures, mainly concerning the
number of false positives (p = 0.74, r = 0.97 and α = 0.97). The
complete results of validation for In-LanDLC are presented in the
confusion matrix of Fig. 8.

Some examples of image classification are shown in the follow-
ing, with the purpose of visually describing results and typical
errors as compared to actual landscape components. In all figures,
the classification is reported along with the membership likelihood
in percentage. Classes are indicated by short terms where the term

Fig. 7 Confusion matrix for classification using Re-LanDLC (ResNet.101) on the validation dataset. The term ‘slope’ is short for ‘stable slope’ or negative measure with
respect to positive predictions
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‘slope’ is short for ‘stable slope’ and has, as previously mentioned,
the significance of any picture in which the CNN detector does not
recognize one of the four trained landforms (‘cliff’, ‘fan’, ‘land-
slide’ and ‘scree’).

In Fig. 9, a selected sample of images classified by the Go-
LanDLC algorithm is depicted to highlight a typical behaviour.
The CNN correctly identifies all the features with some uncer-
tainties in ascribing the coastal cliff in image (g) and the
debris-flow fan in image (h). This indecision may be due to
the ambiguities that the two images represent also to a skilled
human expert. The coastline, in fact, may equally represent a
rock cliff or a landslide scar, depending on the level of accu-
racy and classification choices. The debris flow is in effect
dominated by the alluvial fan that it generates, and the error
is understandable. On the other hand, pictures in images (e),
(f) and (i) are quite challenging but are correctly classified with
a low level of uncertainty.

The Fig. 10 illustrates some cases for GP-LanDLC. The tendency
to overestimate the class ‘landslide’, quantified by the overall
precision value p = 0.75 in Table 5, is visible in the third image
of the second row (f), where a road is flanked by an average steep
slope with vegetation and some rock outcrops. The low probability
(60.4%) for the class, however, may in part help to understand that
the attribution is uncertain. An even worst case of false positive is
the image of second column, third row (h), in which the classifi-
cation algorithm is almost certain (99.6%) that the ploughed fields
in the background are landslide scars. Even though there is a
certain probability that the slope hosts some dormant landslides,
this is not actually visible from the image and the case must be
considered a false positive. Better capability is shown by GP-
LanDLC in recognizing the absence of trained landforms in the
low-quality image (a) and the presence of a landslide in the very
confusing picture in image (g), where almost the entire image is
filled by a part of the landslide body, without context or contrast-
ing background. The capability of classifying landforms that are
only partially included in images is a very useful characteristic in
data mining applications and in the classification of low-altitude
aerial photographs.

The examples related to the ResNet.101 network (Re-LanDLC)
are reported in Fig. 11. Here, the high discriminant capability of
residual training networks is highlighted by the correct classifica-
tion of the landslides in images (a), (h) and (i) despite the sur-
rounding disturbance given by buildings, people and
infrastructures. There is, however, a quite serious error in the
central image (e) that is misclassified (even though with some
uncertainty given by the likelihood of 74.8%) as a stable slope,
possibly due to the presence of vegetation on the main landslide
body. The possible causes of such kind of false negatives will be
discussed in the next section. A typical feature of Re-LanDLC is
visible when looking at all but the central image that are classified
without any uncertainty by the algorithm. This is not necessarily
an advantage of the method and may generate false positives
especially in the crucial distinction between landslides and stable
slopes (see values of p = 0.88 and p = 0.86 in Table 6).

A similar level of detection skill is given by the In-LanDLC,
based on the state-of-the-art Inception.v3 convolutional neural
network. In Fig. 12 a high discriminant power is shown in images
(c), (f) and (h), where, again, several disturbances are present,
including internal and external factors. Quite unexpected is theTa
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false negative in image (g) where a possibly active landslide is
completely missed (likelihood for stable slope 98.9%) possibly due
to the very low colour contrast between the landside body and the
surrounding slopes.

Colour contrast is a typical source of errors in CNNs for image
classification that exploit only RGB optical bands. A possible
improvement could be obtained by adding additional bands, such
as the near infrared or the short-wave infrared, if available. This, in
turn, would force a complete redesign of the CNN structure and
prevent from the usage of most pre-trained architectures. This and
other possible error sources will be briefly discussed in the next
section.

Discussion

General considerations on CNN implementation
The results reported in the previous section seem to highlight
the fact that specialized convolutional neural networks derived
from transfer learning behave better than their original coun-
terparts. This is clearly visible by comparing average accura-
cies reported in the Pareto frontier plot of Fig. 1 with figures
of overall accuracy in Table 3. This is not unexpected and is
related to the very nature of a specialized convolutional neu-
ral network. The four original CNNs used for transfer learn-
ing are general-purpose classification algorithms, capable of
classifying with a relatively good accuracy thousands of dif-
ferent object types. This holistic aptitude is obtained at the
expenses of a lesser precision and accuracy in the classifica-
tion of specific features that are not included in the original
training database, such as geomorphic landforms. On the
contrary, the four proposed post-trained CNNs are strictly
trained on the five desired target classes; therefore, they have

higher precision and accuracy on that specific task but are
not usable for general-purpose scene or object classification.

The best classification results are obtained by using In-
LanDLC, based on the Inception.v3 architecture, one of the
best open-source CNNs for image recognition in terms of
accuracy-time trade-off. The only weak point of In-LanDLC
is represented by the relatively high number of false positives
(p = 0.74) in scree deposit detection, possibly due to the
underestimation of the number of landslides and stable
slopes. Still, In-LanDLC boasts the best performances in all
the remaining classes, including landslides which are the ulti-
mate target of the present study. When the overall classifica-
tion power is compared to the parameters that constrain the
operational implementation of the algorithm, In-LanDLC is
absolutely superior to Re-LanDLC with figures that suggest
that the latter should be discarded in case of UAV or drone
applications. The ONNX-format size (Table 3) and, more im-
portantly, the image classification time for Re-LanDLC are
much higher than for In-LanDLC and not acceptable for
real-time applications. In turn, simpler architectures based
on the compact and fast GoogLeNet model may offer a better
drone implementation suitability at the expenses of larger
errors. In particular, Go-LanDLC seems the best option be-
tween the two, due to the acceptable overall accuracy that is
coupled with a small size (23.9 MB in ONNX) and a good
classification speed (about 0.025 s per image). The research of
the optimal trade-off between In-LanDLC and Go-LanDLC
depends on the scope of work, on the type of drone (or
robot) platform to be used, on the type of sensors and on a
complex set of operational parameters such as flight speed
and altitude, land cover type, target type and lighting
conditions.

Fig. 8 Confusion matrix for classification using In-LanDLC (Inception.v3) on the validation dataset. The term ‘slope’ is short for ‘stable slope’ or negative measure with
respect to positive predictions
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Landslide classification errors and possible solutions
On a different matter, we have seen in the results section that classifica-
tion errors, with particular reference to landslide false negatives (or
missed alerts in risk assessment terms), are present in all the trained
CNNs. As an example, Re-LanDLC, despite its overall accuracy, misses
the detection of a quite large landside in the central picture of Fig. 11
(image e), possibly due to the vegetation regrowth that gives a colour like
the surrounding slopes to the landslide body. The failure to detect
landforms which may appear as quite clear to an expert human eye
can be investigated by looking at the output of convolutional layers.
Each convolution produces a quasi-random set of image modifications
from which the training can extract the most relevant parameters for a
multivariate analysis. Such convolutional products of the original image
are called activations in the CNN literature and represent features that
activate exchanges of information among layers, thus enhancing the
classification power. In the following, we provide two examples of
activations that lead to a wrong classification by one of the CNNs, as a
basis for discussion.

A sample of the activations for the landslide of Fig. 11 e, as
generated by the first convolutional layer of the CNN, is depicted
in Fig. 13, along with the original image. It is clear that some of
them are filters that highlight terrain texture while others are

capable of delineating horizontal boundaries or enhancing colour
contrast. Others yet are not producing any significant pattern, at
least to the human eye.

Despite the fact that the landslide is quite discernible from the
surroundings, Re-LanDLC is not capable of classifying it correctly
(see Fig. 11e). The remaining three networks, instead, provide
correct predictions (Table 8).

This behaviour may be explained by considering that Re-
LanDLC is the only architecture, among the four chosen, that uses
residual learning. Residual learning allows for a deeper network to
be developed by reducing the impact of the vanishing gradient
problem (Hochreiter 1998). This is done by adding to each
convolutional layer’s output the original (or upper layer’s) learned
output to produce a new input data for the next layer that includes
also the source information (He et al. 2015a; He et al. 2015b). This
technique limits the information degradation which is typical of
classical CNNs by keeping the (n−1)th layer output as part of the
input for the (n+1)th layer. Consequently, it is possible to build
efficient very-deep CNNs with a low degree of horizontal complex-
ity. Such deep and narrow networks are very powerful in image
recognition (ResNet.101 has won several ILSVRC challenges) as it
is well accounted also in the performance indicators of our

Fig. 9 a–i Some examples of classification as given by the Go-LanDLC algorithm on the validation dataset. For each single image, the assigned class is indicated along
with the class membership likelihood in percentage
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modified version Re-LanDLC (Table 6). However, in some specific
cases, such as the one of Fig. 11 e, the residual learning may retain,
in the weighting scheme, a landscape feature which is confusing
rather than useful for correct classification. The same error may
not occur in non-residual networks that, on the contrary, discard
previous information before going deeper to the next
convolutional layer.

A different case is the one depicted in Fig. 14, where a stable slope
with terracing and scattered vegetation is analysed. This time, Re-
LanDLC wrongly detects the presence of a landslide, thus producing
a false positive (less dangerous in terms of risk assessment than a
false negative). The remaining CNNs, despite some uncertainty with
scree deposits and landslides, correctly identify the slope as stable
(Table 9). Image activations are again the same for each network but
the way each one processes the parameters emerging from them is

different. In this specific case, a possible explanation of the uncer-
tainties in the correct classification is the seeming bulging feature in
the mid-right of the image generated by some of the activations. It is
possible that a fine-tuning of the weighting scheme for some of the
convolutional products could enhance the final prediction, thereby
reducing false positives. In this case, as well, the residual learning
approach of Re-LanDLC could cause a wrong weighting of the
activations, by giving low scores to the most significant ones or by
keeping noisy information as relevant through the residual learning
technique, which inherits previous layer’s convolutional outputs that
may be deceiving in specific cases.

The examples reveal that a careful study of classification
errors through the analysis of activations and the way the latter
are propagating down within the neural network layers might
reveal specific insights on image filtering methods, in order to

Fig. 10 a–i Some examples of classification as given by the GP-LanDLC algorithm on the validation dataset. For each single image, the assigned class is indicated along
with the class membership likelihood in percentage
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devise a set of landform-specific image convolutions and further
improve the overall performances. This may be feasible only by
applying a full residual learning to a partially new architecture, a
task that involves a large effort in terms of image labelling and
computation. This specific task is outside the scope of this paper,
since it will require a specific activation analysis for each one of
the images used for the training and the subsequent development
of a brand-new CNN with full training. The latter, in itself, as
discussed in the methodological section, would require a much
larger set of labelled images for training and testing, in the order
of 105 or larger. Provided that a similar number of landform
images actually exists within publicly available resources and
databases (something that, so far, remains to be verified in the
first place), the correct labelling of them would only be possible
by resorting to automated human intelligence tasking (HIT),
such as the Amazon Mechanical Turk used for the development
of GoogLeNet.Places365 (Zhou et al. 2016). However, while the
human recognition of landscape scenes is a task requiring a quite
common general knowledge, the analysis of landforms is a

specialized task that requires a certain level of training of the
HIT workers. This would surely increase the effort in terms of
expected costs and time.

Automated landform detection in optical satellite images
One of the main constrains of the proposed algorithms is the
small image size, which is implicit in the transfer learning
technique that has been adopted to exploit pre-trained high-
performance image recognition CNNs (Table 1). This limita-
tion, however, is not relevant for the implementation of robot
guidance and scene recognition and is also well compatible
with frame-by-frame video analysis and crowdsourced data
mining since most of the available imagery is low resolution
and of limited areal coverage. Even in the case of targets with
dimension much larger than the camera footprint, a simple
solution is to increase flight altitude. Another, more elaborat-
ed, solution may be the automated mosaicking and resam-
pling of drone acquisitions until a CNN-compatible scaling is
obtained.

Fig. 11 a–i Some examples of classification as given by the Re-LanDLC algorithm on the validation dataset. For each single image, the assigned class is indicated along
with the class membership likelihood in percentage
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The limited image size becomes an important drawback when
the image to be analysed is very large with respect to the average
dimension of the target. In such a case, a downsampling of the
image, to fit the required size, would completely filter out the
target landforms. In the case of landslides, this may happen when
trying to apply computer vision techniques to satellite optical data
that cover tens of squared kilometres with a resolution of metres
or tens of metres, such as Landsat 8 and Sentinel-2. On such
images, having size in the order of 104 × 104 pixels and resolution
of 101 m, a landslide will occupy a few pixels. Therefore, a complete
image resizing to 102 × 102 pixels, required by the typical CNN, will
definitely wipe out most of them blurring any interesting feature
with the background.

A possible solution may exist, even though only in a post-
processing perspective, as exemplified by some previous applica-
tions (Liu and Wu 2016). The LanDLC algorithms could be
applied over a moving window, with dimensions exactly matching
the required size for each adopted CNN, either in overlapping or

in non-overlapping mode. For example, in Sentinel-2 optical
images, multi-spectral (RGB and NIR) information is measured
at a ground resolution of 10 m. That, in case of a scan size of 224
× 224 pixels (required by Go-LanDLC, GP-LanDLC and Re-
LanDLC), would mean that each moving window will cover an
area of 2240 × 2240 m, a dimension quite matching most of
landslides, inclusive of runout. The operation should be repeated
all over the satellite image for about 103 times in average in non-
overlapping mode. That would mean, based on the classification
time figures and hardware setup reported in Table 3, a total scan
time in the order of 102 s by using the slow but powerful Re-
LanDLC and of 101 s when using the faster and more compact
Go-LanDLC. Given the fact that in post-processing operations
much larger computational power can be used, such as the CUDA
NVIDIA GeForce RTX 2070 with 36 processing cores used for the
training or similar GPU processing units, we may expect that
batch classification process chains might be implemented for
large image datasets quite easily.

Fig. 12 a–i Some examples of classification as given by the In-LanDLC algorithm on the validation dataset. For each single image, the assigned class is indicated along
with the class membership likelihood in percentage

Original Paper

Landslides 18 & (2021)1040



Conclusions
A set of powerful convolutional neural networks publicly available
have been adapted to recognize typical mass movement landforms
within non-nadiral and non-standard pictures by transfer learn-
ing. The best parameter sets for the four tested algorithms have
been determined by an iterative optimization procedure covering
576 different configurations. The accuracy and error analysis of
such training runs shows that classification performances of such
post-trained CNNs are consistently higher than those of the

general-purpose original architectures and suitable for the usage
in automated data mining of crowdsourced images. Furthermore,
preliminary tests with basic and more advanced hardware config-
urations show that at least two of the optimal CNNs developed
(Go-LanDLC and In-LanDLC) are compatible with usage in UAV
and generic robot applications for automated survey and guid-
ance, provided that some technical adjustments on image acqui-
sition and pre-processing are made. A slight modification of the
way the algorithm is applied may also allow for a quasi-real-time

Table 8 Degree of likelihood of class membership for the image in Fig. 13 for the four trained convolutional neural networks

Cliff Alluvial fan Landslide Scree deposit Stable slope

Go-LanDLC 0.000 0.003 0.997 0.000 0.000

GP-LanDLC 0.008 0.008 0.878 0.003 0.103

Re-LanDLC 0.060 0.022 0.149 0.021 0.748

In-LanDLC 0.003 0.002 0.711 0.001 0.283

Fig. 13 Some activation of the image discussed in the text, generated by the first convolutional layer. The first image in the upper left corner is the original image passed
to the network as input. It is clear that some activations are more relevant than others due to the fact that they are able to extract specific important features of the
landform
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scan of satellite VHR optical RGB images in a moving-window
mode, thus potentially improving the capability of existing auto-
mated mapping tools. The four different versions of LanDLC are
freely available for research purposes in the ONNX format under a
CC BY NC 3.0 licence, as electronic supplementary material.

Further research is needed to work out the best trade-off
between computational power on the one side and speed and
compactness on the other, before developing actually
implementable machine intelligence for automated landslide
and landform detection. Among the priorities in future research

on this direction, we believe two will be essential: (i) a detailed
analysis of a large number of convolutional schemes for the
extraction of significant parameters for object recognition to
reduce false negatives and false positives and (ii) the develop-
ment of brand new CNNs specifically suited for landform recog-
nition through full training with suitably large datasets
(inexistent at present) of correctly labelled images. According to
the present experience and to the work carried out for similar
networks, we expect that such databases should have dimension
in the order of 105–106 images.

Fig. 14 Example activations of a stable slope characterized by terracing and scattered vegetation that may render landform classification difficult. The activations have
been generated by the first convolutional layer of the CNNs

Table 9 Degree of likelihood of class membership for the image in Fig. 14 for the four trained convolutional neural networks

Cliff Alluvial fan Landslide Scree deposit Stable slope

Go-LanDLC 0.014 0.003 0.076 0.185 0.722

GP-LanDLC 0.028 0.006 0.158 0.026 0.782

Re-LanDLC 0.001 0.000 0.987 0.004 0.008

In-LanDLC 0.001 0.001 0.229 0.028 0.741
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