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Stable cohomology of the perfect cone toroidal
compactification of Ag

By Samuel Grushevsky at Stony Brook, Klaus Hulek at Hannover and
Orsola Tommasi at Darmstadt

Abstract. We show that the cohomology of the perfect cone (also called first Voronoi)
toroidal compactification APerf

g of the moduli space of complex principally polarized abelian
varieties stabilizes in close to the top degree. Moreover, we show that this stable cohomol-
ogy is purely algebraic, and we compute it in degree up to 13. Our explicit computations and
stabilization results apply in greater generality to various toroidal compactifications and partial
compactifications, and in particular we show that the cohomology of the matroidal partial com-
pactification AMatr

g stabilizes in fixed degree, and forms a polynomial algebra. For degree up
to 8, we describe explicitly the generators of the cohomology, and discuss various approaches
to computing all of the stable cohomology in general.

1. Introduction

The stabilization of cohomology is of great interest in the study of the geometry of moduli
spaces. The most notable results in this direction are the stabilization of the cohomology of
the moduli space Ag of g-dimensional complex principally polarized abelian varieties (ppav),
proved by Borel [5], and of the moduli space Mg of non-singular algebraic curves of genus g,
first proved by Harer in [31]. In both cases, the cohomology with Q coefficients is shown to
stabilize, in the sense that the degree k cohomology group of the moduli space is independent
of g when g is sufficiently large with respect to k. In both cases, stable cohomology is freely
generated by classes whose geometric meaning is well understood: it follows from the work
of Borel that the odd �-classes generate the stable cohomology Ag , while the fact that the
�-classes generate the stable cohomology of Mg is the celebrated theorem of Madsen and
Weiss [36], proven using homotopy-theoretic methods.

It is natural to wonder whether similar stability occurs also for compactifications of mod-
uli spaces. This is clearly not the case for the Deligne–Mumford compactification Mg of Mg ,
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because it is known that the rank of the Picard group of Mg , and hence its second coho-
mology, grows linearly in g. On the other hand, it was shown by Charney and Lee [7] that
the cohomology of the Satake (minimal) compactification ASat

g of Ag stabilizes in the same
range as Hk.Ag/. For questions in algebraic geometry, the toroidal compactifications of Ag

introduced in [2] are most relevant. The stabilization of cohomology for any toroidal compacti-
fication in any range is a completely open problem (see [24, Section 6]), and as we shall see the
answer also depends on the compactification chosen. Moreover, the question is also interesting
for partial compactifications of Ag such as the matroidal partial toroidal compactification.

The main purpose of this paper is to show the stabilization of cohomology in close to the
top degree for the perfect cone toroidal compactification APerf

g of Ag . Throughout the paper
we work with Q coefficients, and our main result is the following:

Theorem 1.1 (Main theorem). The cohomology and the homology of the perfect cone
compactification stabilize in close to the top degree, i.e. the groups Hg.gC1/�k.APerf

g ;Q/ and
Hg.gC1/�k.A

Perf
g ;Q/ are independent of g for k < g.

Let us recall that the map Ag ! AgC1 defined by taking the product with a fixed elliptic
curve extends to a map APerf

g ! APerf
gC1 which is a transversal embedding with well-defined

normal bundle, after passing to a suitable finite cover. This ensures the existence of Gysin maps
H.gC1/.gC2/�k.A

Perf
gC1;Q/! Hg.gC1/�k.A

Perf
g ;Q/. In the stable range, these maps induce

the stabilization isomorphisms in our theorem.
The method of our proof is by noting that APerf

g admits a stratification with strata corre-
sponding to various cones in the perfect cone or first Voronoi decomposition. First, we prove
in Theorem 8.1 that the cohomology of each stratum stabilizes. Then we use the Gysin exact
sequence to compute the cohomology of the union of all strata, using the specifics of the per-
fect fan to argue that the resulting cohomology stabilizes. This construction can be extended in
a straightforward way to homology using long exact sequences in Borel–Moore homology. In
particular, we obtain a stabilization isomorphism

H.gC1/.gC2/�k.A
Perf
gC1;Q/! Hg.gC1/�k.A

Perf
g ;Q/

in the stable range which restricts to the usual Gysin map on each toroidal stratum.
If one considers the cycle map to homology on the singular space APerf

g , the constructions
above allow us to see where the stable homology classes come from, proving the next result:

Theorem 1.2. The stable homology groupsHg.gC1/�k.APerf
g ;Q/ for k < g are gener-

ated by algebraic classes.

If Poincaré duality were to hold, one could relate the close to top degree cohomology
groupsHg.gC1/�k.APerf

g ;Q/ toHk.APerf
g ;Q/. Since, however, the perfect cone toroidal com-

pactification is singular, there is no a priori reason for Poincaré duality to hold. Indeed, our
computations in genus 4 (see [34]) show that Poincaré duality does fail, although these com-
putations still allow for the possibility for Poincaré duality to hold in the stable range. A dif-
ferent approach would be to look at the intersection cohomology of APerf

g . It was recently
shown by Dutour Sikirić, Schürmann, and the second author in [14], that for g � 4 the locus of
singular points of the stack APerf

g has codimension 10 in APerf
g (while APerf

g is smooth as a stack
for g � 3). This implies by [13, Proposition 3] that IHk.APerf

g ;Q/ D Hg.gC1/�k.APerf
g ;Q/
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for k � 10 for the middle perversity intersection cohomology of APerf
g . Moreover, by the results

in [4] algebraic cycles can always be lifted to intersection homology. Combining this with the
two theorems above, we get that the stable homology Hg.gC1/�k.APerf

g ;Q/ can be lifted to
IHg.gC1/�k.APerf

g ;Q/ Š IHk.APerf
g ;Q/. This motivates the following:

Question 1.3. Does the intersection cohomology of the perfect cone compactification
stabilize, more specifically, is it true that the homomorphism

IHk.APerf
g ;Q/ � Hg.gC1/�k.A

Perf
g ;Q/

is an isomorphism for all k < g?

As the stability map APerf
g ! APerf

gC1 is (in an orbifold sense) a transversal embedding of
pure dimension, there is a well-defined map for intersection cohomology

IHk.APerf
gC1;Q/! IHk.APerf

g ;Q/:

Combining this with the (hypothetical) isomorphism from Question 1.3 would prove that also
the intersection cohomology of APerf

g stabilizes in the range k < g.
It is, at this stage, opportune to go briefly back and consider the situation for the Satake

compactification ASat
g . Recall that the stable cohomology of the Satake compactification was

computed by Charney and Lee:

Theorem 1.4 ([7]). For k fixed and g > k the rational cohomology Hk.ASat
g ;Q/ does

not depend on g, and the stable cohomology ring is freely generated by classes �1; �3; �5; : : : ,
and ˛3; ˛5; ˛7; : : : , where both �i and ˛i are in degree 2i .

Here the �-classes are extensions of the Chern classes �i D ci .E/ 2 H 2i .Ag ;Q/ of the
Hodge bundle E. The Hodge bundle does not extend to ASat

g but by [39], [19, Section V.2] it
extends to any toroidal compactification and the pullback of the classes �i on ASat

g to a smooth
projective toroidal compactification are the Chern classes of the extended Hodge bundle.

The geometric meaning of the ˛i 2 H 2i .ASat
g ;Q/ is less clear. By the results of [29]

there is a non-algebraic class (it has a wrong Tate twist) in H 6.ASat
3 /, which is likely to be ˛3,

and it follows from the results of [34] that there is also a non-algebraic class in H 8.ASat
4 /,

which is likely to be ˛3�1. Furthermore, Chen and Looijenga [8] recently proved that all ˛i are
of Hodge type .0; 0/, which in particular implies that they are not algebraic.

On the other hand using our methods it is easy to see that the cohomology of ASat
g in

close to top degree also stabilizes, and we can compute it explicitly:

Theorem 1.5. The cohomology Hg.gC1/�k.ASat
g ;Q/ is independent of g for k < g,

and is dual to the truncated free algebra generated by the odd Hodge classes �2iC1.

We recall that the starting point for the study of the stable cohomology of Ag is the
theorem of Borel (see Theorem 3.1 below), which says that the cohomology Hk.Ag/ for
k < g is freely generated by the classes �1; �3; �5; : : : . Thus the theorem above says that the
stable cohomology in close to top degree of ASat

g is dual to this, which is expected to be the
algebraic part of the stable cohomology of ASat

g .
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We shall now return to toroidal compactifications and partial compactifications, in partic-
ular the perfect cone compactification APerf

g . As we explained, the principal ingredient of our
method is that we prove the stabilization for each of the toroidal strata, using representation
theory, and then by assembling this information using the Gysin spectral sequence. As at each
step we are doing explicit manipulations, as a result we get an effective procedure to compute
the dimensions of the stable cohomology groups (and also to say something about their gen-
erators). While this quickly becomes very involved combinatorially, for low degree we get the
following result:

Theorem 1.6. The stable Betti numbers of the perfect cone compactification (that is,
dimQH

g.gC1/�k.APerf
g ;Q/ for k < g) in even degree are as follows.

k 0 2 4 6 8 10 12

dimQH
g.gC1/�k.APerf

g ;Q/ 1 2 4 9 18 38 83

Moreover, the stable cohomology Hg.gC1/�k.APerf
g ;Q/ vanishes for odd k � 13.

Remark 1.7. We note that similar questions are also currently under investigation by
Jeffrey Giansiracusa and Gregory Sankaran [23]. Their techniques are mostly topological, and
at the moment it appears that their method would yield the stabilization of the cohomol-
ogy of the matroidal locus in low degree with ZŒ1=2� coefficients, i.e. the independence of
Hk.AMatr

g ;ZŒ1=2�/ of g for g � k. It does not at the moment appear that their method would
yield a way to explicitly identify the generators or compute the dimensions of stable cohomol-
ogy, and thus their results are in a sense rather complementary to ours.

In fact, our technique also applies to show that the cohomology of the matroidal locus
stabilizes. We recall that the matroidal locus AMatr

g is a partial toroidal compactification of Ag

obtained by taking the union of strata corresponding to all matroidal cones. Melo and Viviani
[37] showed that a cone is contained in both the perfect cone decomposition and the second
Voronoi decomposition if and only if it is a matroidal cone. In particular, the matroidal locus is
the biggest partial toroidal compactification contained in both APerf

g and AVor
g as a Zariski open

subset. Thus the results of Alexeev and Brunyate [1] imply that the Torelli map Mg ! Ag

extends to a morphism Mg ! AMatr
g from the Deligne–Mumford compactification. Our result

for the matroidal locus is the following:

Theorem 1.8. The cohomology of the matroidal partial toroidal compactification stabi-
lizes, i.e. Hk.AMatr

g ;Q/ does not depend on g for k < g. The stable cohomology is generated
by algebraic classes.

Since all matroidal cones are simplicial by [18, Theorem 4.1] and thus define rationally
smooth toric varieties, the coarse moduli space of AMatr

g is a rational homology manifold. Hence
the stability result for cohomology in Theorem 1.8 is equivalent to a stability result for coho-
mology with compact support in close to the top degree.

Similarly to the above, as a corollary of our work for the perfect cone compactification
we obtain (essentially simply by omitting all the non-matroidal strata) the dimensions of stable
cohomology of the matroidal locus in degree up to 12.
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Theorem 1.9. The stable cohomology of the matroidal locus in low degree vanishes in
odd degree and is given by the following table in even degree.

k 0 2 4 6 8 10 12

dimH k.AMatr
g ;Q/ 1 2 4 9 18 37 78

Proving stabilization in low degree has the advantage that in this case, stable cohomol-
ogy has a natural structure of a graded Hopf algebra. As was pointed out to us by Nicholas
Shepherd-Barron, when the cohomology of a (partial) compactification Ag of Ag stabilizes,
the stable cohomology can be identified with the cohomology of the inductive limit A1 of the
sequence of maps � � � ! Ag ! AgC1 ! � � �. In particular, whenever the map

Ag1 �Ag2 ! Ag1Cg2

defined by taking the product of abelian varieties extends to a map of compactifications
Ag1 �Ag2 ! Ag1Cg2 for all g1; g2 � 0, the inductive limit A1 has a natural structure as an
H-space. Then one can apply Hopf’s theorem (see e.g. [32, Theorem 3C.4]) to conclude that the
rational cohomology of A1, i.e. the stable cohomology of Ag , is a free graded-commutative
algebra, the tensor product of an exterior algebra on odd-degree generators and a polynomial
algebra on even-degree generators.

In particular, in the case of AMatr
g , the two theorems above, together with some results

from Section 12, imply the following:

Corollary 1.10. The stable cohomology of AMatr
g is a polynomial algebra generated

by algebraic classes. In low degree k � 12, a possible choice of generators is given by �1,
�3, �5, the fundamental classes of the strata of AMatr

g corresponding to the matroidal cones
of dimension smaller than or equal to 6, one additional generator in degree 10, and two in
degree 12.

In Section 12 we will also discuss two natural subrings of the cohomology ring of the par-
tial compactification consisting of all the simplicial (i.e. corresponding to stack-smooth strata)
cones of APerf

g , which includes the smooth locus and the matroidal locus AMatr
g as open subsets.

More precisely we will investigate what we call the strata algebra, which is generated by the
fundamental classes of the strata corresponding to the various simplicial cones in the decom-
position, and the boundary algebra, which is generated by polynomials in divisorial boundary
components of APerf

g .2/ invariant under the deck group action, where in each case we also add
the Hodge classes �i . This gives a supply of geometrically defined cohomology classes. It turns
out that neither of these subrings suffices to generate the entire cohomology.

Proposition 1.11. Neither the strata algebra nor the boundary algebra span the stable
cohomology of APerf

g .

This proposition is simply a numerical statement – at the end of the paper we will see
that both the boundary algebra and the strata algebra in degree 12 have dimension less than the
stable cohomology.

Indeed, one expects the geometrical interpretation of stable cohomology to be easier
when restricting to suitable open subsets of APerf

g , as also the discussion of the matroidal
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locus AMatr
g shows. One can ask this question not only for the matroidal locus, but also for other

geometrically relevant partial compactifications. A first step in this direction is Theorem 9.8,
where we prove that the stable cohomology of the union AStd

g of the strata of APerf
g correspond-

ing to the standard cones hx21 ; : : : ; x
2
ni is freely generated over the stable cohomology of Ag

by the fundamental classes of the strata.
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2. Method of proof

In this section, we review the ideas and the techniques involved in computing cohomol-
ogy of toroidal compactifications.

We start by pointing out that working in the stable range has the powerful advantage
that one can make use of Borel’s results on the stable cohomology of the group Sp.2g;Z/.
Indeed, the stable cohomology of Ag , being a K.Sp.2g;Z/; 1/, is equal to the stable coho-
mology of Sp.2g;Z/, and was computed by Borel [5, 6]. Moreover, it is also known that the
stable cohomology of all non-trivial irreducible rational local systems on Ag (equivalently, of
irreducible rational representations of the algebraic group Sp.2g/) is simply zero by a strength-
ening [28, Theorem 3.2] of Borel’s stability theorem.

We now proceed to compute the cohomology of various partial toroidal compactifica-
tions of Ag obtained by adding various boundary strata. To explain this, we first recall that
any toroidal compactification Ator

g of Ag admits a natural map ' W Ator
g ! ASat

g to the Satake
compactification. The latter is the disjoint union

(2.1) ASat
g D Ag tAg�1 t � � � tA0;

and we set ˇi WD '�1.ASat
g�i / and ˇ0i WD ˇi n ˇi�1 D '

�1.Ag�i /. Each ˇ0i in turn is stratified
by sets ˇ.�/ where � runs through all cones in the perfect cone decomposition of Sym2�0.R

i /

whose general element has rank i . We shall refer to such cones as rank i cones. The stratum
ˇ.�/ is the quotient of a torus bundle T .�/ over the i -fold fiber product

X�ig�i WD Xg�i �Ag�i � � � �Ag�i Xg�i ! Ag�i

of the universal family by a finite group G.�/, namely the stabilizer of the cone � in GL.i;Z/.
The codimension of ˇ.�/ in Ator

g equals the dimension of � .
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Throughout the present work we shall make use of the perfect cone toroidal compactifi-
cation APerf

g . Our method of computing the stable cohomology of APerf
g , and the outline of the

paper, are as follows. In Section 3 we recall the relevant results of Borel and Hain, and other
necessary background on representations of the symplectic group. At the end of that section, as
a warmup, we prove by using Gysin’s exact sequence the stabilization (in close to top degree)
of the cohomology of the Satake compactification, proving Theorem 1.5.

For the toroidal case, in Section 4 we compute the stable cohomology of the universal
family Xg . This result will be generalized later in Section 6 to a computation of the stable
cohomology of the fiber product X�ng for n fixed. Since Mumford’s partial toroidal compacti-
fication Ag t ˇ

0
1 is equal to Ag t .Xg�1=ı/, by using the Gysin exact sequence, in Section 5

we are then able to compute the stable cohomology of the partial toroidal compactification.
Note that these computations are in fact easier in the stable cohomology than similar calcula-
tions in [33, 34] for g D 3; 4, as it turns out that in the stable range only the even degree part
of cohomology is non-zero, and thus the Gysin long exact sequence breaks up into short exact
sequences.

This idea – of computing the cohomology of an individual stratum, and then gluing it
to the union of the previously considered strata – is the method that allows us to prove the
existence of the stable cohomology of the perfect cone compactification (and by restriction –
of the matroidal locus) in general. In Section 7 we review the construction of the perfect cone
toroidal compactification, and prove its various combinatorial properties. In Section 8 we then
use the Leray spectral sequence to argue that the cohomology of the torus bundles T .�/, with �
fixed, and g varying, stabilizes, and moreover (only in the stable range!) vanishes in odd degree.

This computation requires dealing with certain local systems V� corresponding to irre-
ducible representations of the algebraic group Sp.2g/ indexed by some partition �. By the
results of Borel and Hain we know the stable cohomology Hk.Ag ;V�/, for k < g, of which
we have to compute the G.�/-invariant part. We finally compute the stable cohomology (still
in low degree, as opposed to the close to top degree) of each individual stratum ˇ.�/, and
note that this computation in fact works for any cone, not necessarily just a cone in the perfect
cone decomposition.

Adding the strata one by one, we use the Gysin (excision) exact sequence for cohomology
with compact support to compute the stable cohomology of various partial toroidal compacti-
fications of Ag . For this, we need both the new stratum itself, and the total space obtained to
be smooth, so that we can use Poincaré duality to identify H top�k

c with the previously com-
puted Hk (for k < g). In Section 9 we argue that this process indeed stabilizes, thus proving
our main Theorem 1.1 on the stabilization of the cohomology of APerf

g in close to top degree;
our proof also yields the stabilization of the cohomology of AMatr

g in low degree, Theorem 1.8.
Finally, we use the same techniques to describe the stable cohomology of the open subset of
AMatr
g consisting of degenerations given by standard cones and prove that its stable cohomol-

ogy is freely generated by the odd �-classes and the fundamental classes of the boundary strata
(Theorem 9.8).

In Section 10 we demonstrate how this process works, by dealing explicitly with ˇ02 ,
which is the union of two strata corresponding to semiabelic varieties with the normalization
of the toric part being P1 � P1 and two copies of P2, respectively. Moreover, applying method-
ically the procedure described above yields in particularH top�k.APerf

g ;Q/ for k � 13, and we
give the results of these computations in Section 11, proving Theorem 1.6, from which Theo-
rem 1.9 easily follows. We note that computing the entire stable cohomology of APerf

g nAPerf
g;sing
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or of the matroidal locus by our method currently seems out of reach, as it would involve going
through all the possible combinatorics of the strata. Finally, in Section 12 we construct alge-
braic representatives for (much of) the stable cohomology in low degree. Moreover, we discuss
the strata algebra and the boundary algebra.

3. Review of stable cohomology of local systems on Ag

Symplectic local systems over Ag play a central role in our computations. Let us start by
fixing the notation. Let � D .�1 � �2 � � � � � �g/ be a Young diagram with at most g rows.
Equivalently, we can view � as an arbitrary partition of length at most g. If we denote by V
the standard rational representation of the group scheme Sp.2g/, then the representation V� of
Sp.2g/ is the irreducible representation of highest weight in the tensor product

Sym�1��2.V /˝ Sym�2��3
�^2

V
�
˝ � � � ˝ Sym�g�1��g

�^g�1
V
�
˝

�^g
V
�˝�g

:

One can generalize the definition of V� to obtain a local system over Ag , by applying
the same construction as above, but now setting V to be the local system R1��Q, where
� W Xg ! Ag is the universal family over Ag . Note that V�, defined in this way, is naturally
a Hodge module of weight equal to the weight

w.�/ D

gX
iD1

�i

of �. One can obtain more Hodge modules by taking Tate twists of V�. We will denote such
Tate twists by

V�.k/ D V� ˝Q.k/

for all Young diagrams � with at most g rows and all k 2 Z; the Hodge weight of V�.k/ is
then w.�/ � 2k. Such Tate twists can be interpreted in the context of representation theory by
working with representations of the group of symplectic similitudes

GSp.2g;Q/ D
®
M 2 Mat.2g; 2g/ WMJ tM D �J; � 2 Q�

¯
;

where J D . 0 1g
�1g 0 / denotes the symplectic matrix. The Tate Hodge module Q.�1/ is the

inverse ��1 of the multiplier representation � W GSp.2g;Q/! Q�, and V is the product of the
standard representation of GSp.2g;Q/ and ��1.

Theorem 3.1 ([5, 6], [28, Theorem 3.2]). For the group cohomology of the symplectic
group with coefficients in the rational representation V�, for all k < g we have

Hk.Sp.2g;Z/;V�/ D

´
QŒx2; x6; x10; : : : �k if � D 0;

0 otherwise,

where in the first case this is the degree k subspace of the graded ring generated by classes xi .
In particular, the stable cohomology is zero in every odd degree.

The classes xi in fact are algebraic and have a geometric meaning; the geometric content
of the above theorem is the following.

Brought to you by | Universita degli Studi di Padova
Authenticated

Download Date | 3/4/20 3:21 PM



Grushevsky, Hulek and Tommasi, Stable cohomology of Ag 219

Corollary 3.2 (Borel [5, 6]). The stable cohomology of Ag is freely generated by the
Chern classes �2iC1 WD c2iC1.E/ of the Hodge bundle, that is, for k < g the vector space
Hk.Ag ;Q/ is the vector space generated by monomials of total degree k in �1; �3; : : : (where
the degree of �2iC1 is equal to 4i C 2).

As a warmup, and to show one little step of our general machinery, we now prove Theo-
rem 1.5 on the stable cohomology of the Satake compactification, by using the Gysin sequence
(to be discussed in more detail below).

Proof of Theorem 1.5. Indeed, recall that the Satake compactification ASat
g is the union

AgtAg�1t � � � tA0, i.e. we have ASat
g D AgtàASat

g D AgtASat
g�1. Thus by the Gysin exact

sequence for a closed subvariety ASat
g�1 � ASat

g (see [42, Corollary 5.51])

� � � ! H `�1.ASat
g�1;Q/! H `

c .Ag ;Q/! H `.ASat
g ;Q/

! H `.ASat
g�1;Q/! H `C1

c .Ag ;Q/! � � � :

In the stable range g > k we have ` D g.g C 1/ � k > g.g � 1/ D 2 dimC ASat
g�1, hence the

cohomology of ASat
g�1 vanishes, so that we simply get

Hg.gC1/�k
c .ASat

g ;Q/ D H
g.gC1/�k
c .Ag ;Q/

for g > k. The latter cohomology by the Poincaré duality for the smooth (stack) Ag is dual
to Hk.Ag/, which equals QŒ�1; : : : ; �2mC1; : : : �k by Borel’s stability theorem (see Corol-
lary 3.2). This implies our claim.

Remark 3.3. We note that if trying to compute the stable cohomology of the image of
the Deligne–Mumford compactification Mg of the moduli space of curves in AVor

g ;APerf
g ; or

AMatr
g , to which the Torelli maps extends by [41], [1], [37], respectively, we would fail, i.e. the

cohomology would not stabilize. Indeed, for any i > 1 the Torelli map on the boundary divisor
�i �Mg would extend to an embedding of Mi �Mg�i into the Satake compactification
of Mg , and then to any compactification of Ag , so that we would have bg=2c � 2 loci in the
Torelli image of Mg each of codimension 3, which similarly to above would each contribute
a class to the stable cohomology in degree top�6.

Our proof of Stabilization Theorems 1.1 and 1.8 for APerf
g and AMatr

g will also use the
Gysin exact sequence to compute the cohomology step-by-step by gluing the strata together.
However, notice that the situation will be much more involved, as in both of these cases the
boundary has complex codimension 1, and its cohomology will play a role in the computation.
We will thus need to understand the stable cohomology of individual boundary strata, and will
start by investigating the first one, the boundary of the partial toroidal compactification, which
is the universal Kummer family.

4. Leray spectral sequence and the stable cohomology of
the universal family of ppav Xg ! Ag

In this section we use the Leray spectral sequence to set up the computation of the stable
cohomology of a fixed stratum in a toroidal compactification, and demonstrate how this method
works by computing the stable cohomology of the universal family of ppav.
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220 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

Indeed, let � W Xg ! Ag be the universal family of ppav, considered as a stack. In
particular, all fibers of � are abelian varieties, whereas the generic fiber of the associated
map on coarse moduli spaces is actually the Kummer variety, as any ppav has the involution
ı W z 7! �z.

Recall that the Leray spectral sequence computes the cohomology of the universal family
H �.Xg ;Q/ in terms of local systems on the base. Indeed, it has terms of the form

E
p;q
2 WD Hp.Ag ; R

q��Q/;

and converges
E
p;q
� ) HpCq.Xg ;Q/:

To understand the higher direct images under ��, recall that the cohomology of an abelian
variety is the exterior algebra over the space of one-forms, i.e.

H �.A;Q/ D
^�

H 1.A;Q/:

This description globalizes to describe the higher direct images of the constant sheaf Q on Xg .
Since globally the first cohomology gives the local system V1 on Ag (corresponding to the
standard representation of Sp.2g/ on Q2g ), we need to recall the formula for the decompo-
sition of exterior powers of the standard representation of the symplectic group into a sum of
irreducible representations, which by [21, Theorem 17.5] is

(4.1)
^i

V1 D
bi=2cM
jD0

V1i�2j .�j /

for i � g. We thus obtain:

Lemma 4.1. For the universal family � W Xg ! Ag , for any q � g

Rq��Q D
^q

V1 D V1q .0/˚ V1q�2.�1/˚ � � � ˚ Vp.q/.�bq=2c/;

with p.q/ being the remainder of q modulo 2.

Remark 4.2. The cohomology of local systems of odd weight over Ag vanishes in
odd degrees. In particular, this means that the cohomology of Rq��Q vanishes if q is odd.
This reflects the fact that the cohomology of Xg (recall that we always work with rational
coefficients) coincides with the cohomology of its coarse moduli space, the universal Kummer
family, and that the odd degree cohomology of the Kummer variety A=ı is 0 for every abelian
variety A because it is simply the subspace of the cohomology of the ppav A that is invariant
under the involution ı W z 7! �z.

Using the Leray spectral sequence now allows us to compute the stable cohomology of
the universal family:

Proposition 4.3. The stable cohomology of the universal family Xg is generated over
the stable cohomology of Ag by the class ‚ of the universal theta divisor trivialized along
the zero section. More precisely, this means that for any k < g, the vector space Hk.Xg/ is
generated by degree k monomials in the classes ‚;�1; �3; : : : , where ‚ has degree 2 and
�2iC1 has degree 4i C 2. In particular, the stable cohomology in any odd degree is zero.
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Proof. Indeed, combining Lemma 4.1 above with Theorem 3.1 on the stable cohomol-
ogy of local systems on Ag , we get for p < g

E
p;q
2 D Hp.Ag ; R

q��Q/ D

´
Hp.Ag ;Q/ if p and q are even,

0 else:

From a theorem of Deligne [10] it follows that the Leray spectral sequence for the projective
map � degenerates atE2. In our case this is in fact immediate to see directly: in the stable range
p C q � g only the terms of E2 with both p and q even are non-zero, thus for any differential

dr W E
p;q
r ! EpCr;q�rC1r

either the source or the target space is zero, and therefore all differentials vanish. We thus obtain

Hk.Xg ;Q/ D
M

pCqD2k

Ep;q1 D

M
pCqD2k

E
p;q
2 D

kM
iD0

H 2i .Ag ;Q/.i � k/

for k D 2j < g even, while Hk.Xg ;Q/ D 0 for k < g odd. (Here we have a direct sum of
Hodge structures because for p C q D k < g allEp;q2 carry Tate Hodge-structures of the same
weight.) In words, the above statement says that the stable cohomology of Xg in degree 2j is
the sum of stable cohomology of Ag in all even degrees up to 2j , i.e. for each i � j we have
a copy ofH 2i .Ag/. This means that as an algebra over the stable cohomology of Ag , the stable
cohomology of Xg is generated by one element, of degree 2 and Hodge type .1; 1/. Indeed,
denote by ‚ � Xg the universal symmetric theta divisor trivialized along the zero section.
Then under the decomposition H 2.Xg ;Q/ D H 0.Ag ; R

2��Q/.�1/˚H 2.Ag ;Q/ we see
that ‚ has zero projection onto the second summand, and thus it generates the first summand,
which implies that it is a generator of the stable cohomology of Xg over the stable cohomology
of Ag , as claimed. Moreover, since the class ‚g on Xg is algebraically equivalent to gŠ times
the zero section of the universal abelian variety, see [11, 30, 46], it follows that ‚ is stably
algebraically independent with the classes pulled back from Ag .

5. Gysin exact sequence and the stable cohomology of
the partial toroidal compactification

In this section we set up the method, using the Gysin exact sequence, to compute the
cohomology of the union of some partial toroidal compactification and one more stratum, and
we demonstrate how this method works by computing the stable cohomology of Mumford’s
partial toroidal compactification A0g of Ag .

Recall that Mumford’s [40] partial toroidal compactification is A0g D Ag t .Xg�1=ı/
(where Xg�1=ı is still considered as a stack, i.e. is the universal Kummer family). The Gysin,
also sometimes called excision long exact sequence for a closed subvariety of a quasi-projective
variety is then the following:

� � � ! H `�1
c .Xg�1;Q/! H `

c .Ag ;Q/! H `
c .A

0
g ;Q/(5.1)

! H `
c .Xg�1;Q/! H `C1

c .Ag ;Q/! � � � :

We remark here that this sequence respects mixed Hodge structures (see [42, Corollary 5.51]).
Since both A0g and Xg�1 are smooth Deligne–Mumford stacks, it follows from the usual
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222 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

Poincaré duality that the cohomology H `
c is dual to H top�`, where top denotes the real dimen-

sion of the space. Noticing that the boundary Xg�1 has complex codimension 1 in A0g , from
the above we thus get the dual long exact sequence (where to keep track of things we denote
k D dimR Ag � ` D dimR Xg�1 C 2 � `)

� � � ! Hk�2.Xg�1;Q/.�1/! Hk.A0g ;Q/(5.2)

! Hk.Ag ;Q/! Hk�1.Xg�1;Q/.�1/! � � � :

In general, for k and g arbitrary, this exact sequence is non-degenerate. For instance,
the connecting homomorphisms are non-trivial already for g D 3; 4, as described in [33, 34].
However, in the stable range the situation is very simple, as all the odd cohomology of each
term turns out to be zero, and we immediately obtain the stable cohomology of Mumford’s
partial toroidal compactification.

Proposition 5.1. The stable cohomology of Mumford’s partial toroidal compactifica-
tion A0g is generated by the classes �i and by the class D of the boundary. More precisely,
for any k < g, the vector space Hk.A0g/ is generated by degree k monomials in the classes
D;�1; �3; : : : , where D has degree 2 and �2iC1 has degree 4i C 2.

Proof. We use the Gysin exact sequence (5.2) above to obtain the stable cohomology
of A0g . Recall that in the stable range the cohomology of Ag was computed by Borel, see
Corollary 3.2, and the stable cohomology of the universal Kummer family is given in Propo-
sition 4.3. In particular, both of them vanish in odd degree, and thus the long exact sequence
(5.2) splits into short exact sequences. We thus obtain

Hk.A0g/ D H
k.Ag/˚H

k�2.Xg�1/.�1/

for k D 2j , while all the odd-dimensional stable cohomology of A0g is zero. For k D 2 we
see that the two generators are �1 for the first summand, and the fundamental class of the
boundary – which we denoteD – for the second summand. It follows from [40, Proposition 1.8]
or [22, Lemma 1.1] that DjD D �2‚ . The result now follows from Proposition 4.3.

Remark 5.2. We observe that the stable cohomology of A0g is equal to that of Xg . The
above proof gives a geometric reason for this: we consider the inclusion Xg�1 ,! A0g , and
pull back cohomology under it. Then the classes �i on A0g pull back to �i on Xg�1, while the
class D pulls back to �2‚.

While the above proposition does not let us deduce anything about the stabilization of
Hk.APerf

g / for k � g, on the dual side we have computed the first few cohomology groups
with compact support:

Corollary 5.3. For g > 4 we have

Hg.gC1/.APerf
g ;Q/ D Q � 1;

Hg.gC1/�2.APerf
g ;Q/ D Q � �_1 ˚Q �D_;

Hg.gC1/�1.APerf
g ;Q/ D Hg.gC1/�3.APerf

g ;Q/ D 0;

where �_1 , D_ denote the images under H �c .A
0
g ;Q/! H �c .A

Perf
g ;Q/ D H �.APerf

g ;Q/ of the
cohomology classes in Hg.gC1/�2

c .A0g ;Q/ that are Poincaré dual to �1, D, respectively.
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Proof. Since A0g is smooth, applying Poincaré duality the above proposition yields the
statement that for k < g the groupHg.gC1/�k

c .A0g/ is generated by classes dual to �2jC1 and
to D. The complement APerf

g nA0g has real codimension 4 in APerf
g . Indeed, this is a special

case of Proposition 7.1 (we note that this is special to the perfect cone compactification, and
for example does not hold for the second Voronoi compactification, for which we thus have no
result). Hence for k < 4 we have

Hg.gC1/�k
c .APerf

g nA0g/ D 0

and thus, by the Gysin exact sequence for .APerf
g nA0g/ � APerf

g , for k < 4 we have

Hg.gC1/�k
c .APerf

g / D Hg.gC1/�k
c .A0g/:

Since APerf
g is compact, we finally have

Hg.gC1/�k
c .APerf

g / D Hg.gC1/�k.APerf
g /

and this gives the corollary.

6. Stabilization of the cohomology of X�n
g

In this section we describe the stable cohomology of the nth fiber product X�ng of the
universal family Xg ! Ag , for a fixed n. It turns out (we thank Ben Moonen for pointing this
out and explaining it to us) that the description of the subring in the cohomology of a very
general ppav generated by divisors follows from the results of Thompson [44] on invariant
theory for the symplectic group (this construction is also a special case of a much more general
deep construction of Looijenga and Lunts [35] in cohomology and of Moonen [38] in the
Chow ring). The results of Thompson [44] are formulated in terms of representations of the
symplectic group, which we think of as local systems on Ag ; we give the reformulation in
terms of cohomology classes.

Indeed, X�ng admits projection maps

pi W X
�n
g ! Xg ; i D 1; : : : ; n; and pjk W X

�n
g ! X�2g ; 1 � j < k � n:

Let ‚ � Xg be the class of the universal theta divisor trivialized along the zero section, and
let P � X�2g be the class of the universal Poincaré divisor trivialized along the zero section.
Denote then Ti WD p�i ‚, and Pjk WD p�jkP . For a very general ppav A, the restrictions of
these classes to An generate the Néron–Severi group. We will now prove that these classes
freely generate the stable cohomology of X�ng .

Theorem 6.1. The cohomology Hk.X�ng / is independent of g for k < g and, as an
algebra over the stable cohomology of Ag , is generated by the classes Ti ; Pjk . In particular,
all stable cohomology classes on X�ng are algebraic.

Proof. We want to compute the stable cohomology of the nth fiber product of the univer-
sal family using the Leray spectral sequence associated with the natural map ��n WX�ng !Ag.
Since ��n is a projective map, the Leray spectral sequence degenerates at E2, so that we have

Ep;q1 D E
p;q
2 D Hp.Ag ; R

q��n� Q/:
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Recall that the constant local system Q D V0 is the only one with non-zero stable cohomology
(from now on by abuse of language we will call V0 the trivial local system, as it corresponds
to the trivial representation). A first consequence of this is that in the stable range p < g the
E1 terms carry Tate Hodge-structures of weight p C q, and hence

(6.1) Hm.X�ng ;Q/ D
M

pCqDm

Ep;q1 D

M
pCqDm

Hp.Ag ; R
q��n� Q/

holds for m � g.
To compute the stable cohomology of X�ng , it only remains to compute the Sp.2g/-invar-

iant part ofH q.An;Q/ for an abelian g-fold A and q � g, because this is what contributes the
trivial summands (which recall, means equal to V0) in the local system Rq��n� Q. As local
systems of odd weight have zero cohomology, we only have to deal with the case q D 2l .

The cohomology ring of an abelian variety is the exterior algebra of its first cohomology
group, so that we have

H 2l.An;Q/ D
^2l

.H 1.A;Q/˝Qn/;

and by [44, Theorem 3.7], for 2l � g the Sp.2g/-invariant part of the above cohomology group
is isomorphic to Syml.Sym2Qn/.

The restriction to An of the classes Ti , Pjk lies in H 1;1.An/, and thus the action of the
symplectic group on their span is given by the symmetric square of the standard representation
of Sp.2g/ acting onH 1.An/. Therefore, for l D 1 the Sp.2g/-invariant part of the cohomology
is generated by these classes, so that we can identify Sym2Qn with the span of the classes Ti ,
Pjk and Syml.Sym2Qn/ with the space of degree l polynomials in Ti , Pjk . In view of the iso-
morphism (6.1), this implies that in the stable rangem � g the classes Ti ; Pjk 2 H 2.X�ng ;Q/
are algebraically independent generators of the cohomology of X�ng as an algebra over the
stable cohomology of Ag .

Remark 6.2. Thompson’s results allow us to describe completely the subalgebra of
the rational cohomology of X�ng generated by Ti , Pjk , also outside the stable range. Specif-
ically, [44, Theorem 3.4] corresponds to the statement that the ideal of relations among the
classes Ti and Pjk is generated by (g C 1)st powers of divisors, i.e. by relations of the form
.
P
m2i Ti C

P
mjmkPjk/

gC1 D 0, for arbitrary m1; : : : ; mn 2 Z. In fact, [44, Theorem 3.7]
describes the cohomology H �.An/ as a representation of the symplectic group.

In the following sections, we will often consider the action of GL.n;Z/ on X�ng . Indeed,
on each fiber An of the map X�ng ! Ag a matrix N 2 GL.n;Z/ acts by the corresponding
automorphismM D tN�1, adding the points together: .a1; : : : ; an/ 7!M.a1; : : : ; an/ consid-
ered as points of An. Since the classes Ti and Pij lie in H 1;1.An/, the action on them is given
by the symmetric square of the action of M on H 1.An/. To write it down explicitly, it is con-
venient to denote Pi i WD 2Ti for i D 1; : : : ; n (and also Pij WD Pj i for i > j ), and then the
action is given by the symmetric square of the standard representation of the symmetric group
(we are grateful to Ben Moonen and Dmitry Zakharov for discussions on these topics)

(6.2) M.Pij / D
X
1�a�n

X
1�b�n

MiaMjbPab:
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7. The perfect cone compactification and details of our approach

Our results are specific to the perfect cone compactification. As we shall make use of
some of the properties of the perfect cone (also known as first Voronoi) fan decomposition, we
shall review this here. For the original definition of this fan we refer the reader to [47–49], for
modern treatments and further results see [37, 41, 43].

To define the perfect cone decomposition, we consider the open cone Sym2>0.R
g/ of all

real positive definite g � g matrices and its rational closure Sym2rc.R
g/, i.e. the cone of all

semipositive definite matrices whose kernel is defined over Q. The function

� W Sym2rc.R
g/! R>0; �.Q/ WD min¹Q.�/ W � 2 Zg n 0º

defines for every Q 2 Sym2>0.R
g/ a finite and non-empty set

M.Q/ WD ¹� 2 Zg W Q.�/ D �.Q/º:

The perfect cone decomposition is then given by the union of the convex hulls

�.Q/ WD
X

�2M.Q/

R�0
t��:

The group GL.g;Z/ operates on the collection of these cones with a finite number of orbits. In
the proof that the cohomology stabilizes we use a special property of the perfect cone decom-
position, namely the fact that the number of codimension i strata stabilizes, i.e. is independent
of g if i � g. This follows easily from the above definition (see Proposition 7.1).

This is indeed a special property of the perfect cone decomposition. In particular, one
cannot expect that the second Voronoi decomposition has stable cohomology. Recall that the
boundary divisors of a toroidal compactification correspond to the set of orbits under GL.g;Z/
of one-dimensional cones in the corresponding fan. There is only one such cone in the perfect
cone decomposition, namely the square of a primitive linear form. Let l.g/ be the number of
inequivalent one-dimensional cones in the second Voronoi decomposition. Note that l.g/ is the
number of components of the boundary of AVor

g , so that l.g/ D dimHg.gC1/�2.àAVor
g / holds.

As Hg.gC1/�1
c .Ag/ vanishes (it is Poincaré dual to H 1.Ag/), the Gysin long exact sequence

associated with the inclusion of the boundary into AVor
g implies thatHg.gC1/�2.AVor

g / surjects
onto Hg.gC1/�2.àAVor

g /, so that dimHg.gC1/�2.AVor
g / � l.g/ holds. It is well known that

l.2/ D l.3/ D 1, then we have l.4/ D 2 (see [17,47]), l.5/ D 9 (see [12]), while l.6/ � 20;000
(see [12]).

In general, and this was pointed out to us by V. Alexeev, we have at least l.g/ � g � 3.
This estimate comes from the root lattices Dn. Indeed, the quadratic form associated to such
a root lattice defines a second Voronoi cone and by the results of Baranovskii and Grishukhin [3]
the barycentric rays of these cones for 4 � n � g give independent rigid forms.

We have already introduced the stratification of APerf
g into the closed subvarieties ˇi

which lie over ASat
g�i under the map ' W APerf

g ! ASat
g , see (2.1). Recall that ˇ0i D ˇi n ˇi�1.

As for any toroidal compactification, the locally closed sets ˇ0i are further stratified into strata
ˇ.�/ � ˇi , corresponding to the orbits of rank i cones � . More precisely let � � Sym2rc.R

i /

be a rank i cone in the perfect cone decomposition. Given such a cone � , one associates with
it a torus bundle q.�/ W T .�/! X�ig�i . The fiber of the torus bundle q.�/ is the torus Ti=T� ,
where Ti D Sym2.Zi /˝C� and T� � Ti is given by T� D .Span.�/ \ Sym2.Zi //˝C�.
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226 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

Denoting by pi W X�ig�i ! Ag�i the universal i -fold product, we thus have a double fibration

�.�/ D pi ı q.�/ W T .�/! Xg�i � � � � �Xg�i ! Ag�i :

The stratum associated to � is then equal to the quotient ˇ.�/ D G.�/nT .�/, where G.�/ is
the stabilizer of � in GL.i;Z/. We have

ˇ0i D
G

all � of rank i

ˇ.�/

and
ˇi D

G
all � of rank � i

ˇ.�/:

Recall that the complex codimension of ˇ.�/ in APerf
g is equal to dim � .

In the previous sections we discussed the topology of the partial compactification A0g .
We now want to add further boundary strata and at this point it becomes important to us that
we make use of specific properties of the perfect cone decomposition. The most important
property of the perfect cone decomposition for our purposes is that the stratum ˇi has complex
codimension i within APerf

g , a fact we have already used in Corollary 5.3. As we have pointed
out before, the situation is very different for example for AVor

g , where boundary divisors appear
arbitrarily deep into the boundary.

Proposition 7.1. The following holds for the perfect cone decomposition APerf
g :

(i) The codimension of ˇi is equal to i .

(ii) Let ` be an integer. If g � `, then the number of strata ˇ.�/ of codimension ` in APerf
g is

given by an integer N.`/ independent of g.

Proof. (i) We first show that the codimension of ˇi is at most i . This follows since
the standard cone hx21 ; : : : ; x

2
i i belongs to the perfect cone decomposition, has dimension i

and rank i . Conversely, consider a cone � � Sym2rc.R
i / in the perfect cone decomposition of

rank i . Since the rays of � are spanned by rank 1 matrices, there must be at least i independent
generators of � and thus the dimension of � is at least i . Therefore, the same holds for the
codimension of ˇ.�/.

(ii) Let � be a cone which gives rise to a stratum of codimension `, i.e. assume that
� is of dimension `, and rank i . Then i � `. Choose i rays in � such that the corresponding
linear forms are independent (over Q). These linear forms generate a (not necessarily saturated)
sublattice L in Zg ; let L0 be its saturation. Since the general element in � has rank i , it follows
that � � Sym2rc.L

0 ˝R/. After acting by a suitable element in GL.g;Z/ we can assume that
L0 is the sublattice of Zg spanned by the first i unit vectors and thus that ˇ.�/ � ˇ0i and in
particular ˇ.�/ � APerf

g n ˇ`C1. Hence these strata are enumerated by the GL.m;Z/-orbits of
the cones in the perfect cone decompositions of Sym2.Zm/ for all integers m � `. Clearly, the
number N.`/ of such orbits is independent of g, for g � `.

As we already said, our approach is that we use Gysin sequences to successively compute
the cohomology of APerf

g . We start with the strata ˇ.�/ associated to rank i cones � to com-
pute the cohomology of ˇ0i and then keep going deeper into the boundary to prove results about
the cohomology of APerf

g itself.
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As we have just seen,

ˇ.�/ D G.�/nT .�/

with

�.�/ D pi ı q.�/ W T .�/! X�ig�i ! Ag�i :

We will need to compute the (stable) cohomology of strata ˇ.�/ in several cases. For this we
must recall the construction of the torus bundle T .�/ in more detail. We first of all fix the cusp
U over which we work. We shall want to work with the standard cusps, i.e. we fix U as the
isotropic subspace of Q2g spanned by the first i elements of the standard basis. The parabolic
subgroup P.U / of Sp.2g;Z/ which fixes U is generated by elements of the following form:
The first set of generators is

g1 D

0BBBB@
1i 0 S 0

0 1g�i 0 0

0 0 1i 0

0 0 0 1g�i

1CCCCA ; where S D tS 2 Sym2.Zi /:

These matrices generate the center P 0.U / of the unipotent radical of P.U / and dividing out
by this (normal) subgroup gives Ti �Ci.g�i/ �Hg�i , where Ti D Sym2.Zi /˝Z C�.

The second set of generators consists of elements of the form

g2 D

0BBBB@
1i 0 0 0

0 A 0 B

0 0 1i 0

0 C 0 D

1CCCCA ; where

 
A B

C D

!
2 Sp.2.g � i/;Z/;

and

(7.1) g3 D

0BBBB@
1i M 0 N

0 1g�i tN 0

0 0 1i 0

0 0 �tM 1g�i

1CCCCA ; where M;N 2 MatZ.i; g � i/:

Note that the elements of type g2; g3 generate a Jacobi group the quotient by which is

Ti ! X�ig�i ! Ag�i ;

where the i -fold universal family X�ig�i ! Ag�i is the quotient of Ci.g�i/ �Hg�i by the
Jacobi group, and the fiber of the first projection is isomorphic to Ti . The cone � defines
a subtorus T� of Ti and correspondingly a subbundle T� of Ti , with T .�/ D Ti=T� .

For later use, it is also useful to consider the torus bundle T _i ! X�ig�i , whose fiber is
the torus

T_i D Sym2.Zi /_ ˝C�

dual to Ti .
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Proposition 7.2. For 1 � j � k � i , let us define line bundles Sjk on X�ig�i by setting
Sjk D p

�
jk
.P�1/˝ L�1=2 if j < k and Sjk D p

�
j .‚

�2/˝ L�1 if j D k, where L denotes
the pullback of the line bundle of modular forms on Ag�i . Then the torus bundle T _i ! X�ig�i
is isomorphic to the fiber product of the C�-bundles S0

jk
obtained by removing the 0-section

from the Sjk .

Proof. Let us denote by ¹�r;sº1�r�s�i the basis of Sym2.Ri /_ dual to the basis
¹xrxs C xsxrº1�r�s�i and by Mi the lattice generated by the �r;s . (We will later use the
notation M for this lattice, when there is no longer a danger that this might be confused with
the matrices M , which appear later in this proof and whose notation has also become standard
in the literature.) Then

sjk WD e
2�
p
�1�jk

define coordinates on the fiberMi˝C� Š .C�/
i.iC1/
2 of T _i . We look at the transformation law

for the sjk under the subgroup .Z2.g�i/i / Š MatZ.i; g � i/˚2 of the Jacobi group generated
by transformations (7.1) of type g3. For all 1 � j � k � i and M;N 2 MatZ.i; g � i/, one
gets

.M;N /sjk D exp

 
2�
p
�1

 
g�iX
lD1

.mjl�k;g�iCl Cmkl�j;g�iCl/(7.2)

C

g�iX
˛;ˇD1

mj˛mkˇ �g�iC˛;g�iCˇ

!!
sjk :

In particular, the matrix N acts trivially on sjk .
To prove the claim, it is sufficient to show that sjk is a local section of Sjk for all

1 � j � k � i . If j D k holds, this transformation behavior agrees with that of �.�;Z/�2

for � D .�g�iC˛;g�iCˇ / 2 Hg�i and Z D .�k;g�iC1; : : : ; �k;g/ 2 Zi , hence sjj is a local
section of the bundle p�j .‚˝ L

1=2/.
For j < k one sees from (7.2) that Sjk is the pullback of the line bundle S 012, which is

defined analogously to Sj;k; in the special case j D 1, k D 2, i D 2, over Xg�i�Ag�iXg�i .
Again, comparing with the transformation behavior of the theta function yields that the restric-
tion of S 012 to the fiber A � A of X�2g�i is the inverse of the Poincaré bundle twisted by L1=2.
Indeed, for every ŒA� 2 Ag�i , the restriction of S 012 to ¹0º�A andA�¹0º is trivial, whereas the
restriction of S 012 to the diagonal Xg�i ,! X�2g�i gives .‚˝ L1=2/�2.

Finally, the parabolic subgroup P.U / contains elements of the form

g4 D

0BBBB@
tQ�1 0 0 0

0 1g�i 0 0

0 0 Q 0

0 0 0 1g�i

1CCCCA ; where Q 2 GL.i;Z/:

In order to obtain ˇ.�/ from T .�/ we consider all Q such that the action on the space
Sym2.Zi / given by

GL.i;Z/ 3 Q W X 7! tQ�1XQ�1

maps the cone � to itself. This gives us a finite group G.�/ and ˇ.�/ D G.�/nT .�/. At
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this point we would also like to point out that the Jacobi group is a normal subgroup of
P.U /=P 0.U / and that elements of the form g2 and g4 commute. We will use these facts
without mentioning them explicitly when first dealing with the cohomology of T .�/ and only
then taking the part invariant under G.�/.

To compute the cohomology of one such stratum ˇ.�/, one uses two Leray spectral
sequences, namely those for the torus bundle q.�/ and for �.�/ W T .�/! Ag�i . Indeed, in
a first step, for ŒA� 2 Ag�i the cohomology of �.�/�1.ŒA�/ can be computed from the Leray
spectral sequence of the torus bundle restricted to the fiber p�1i .ŒA�/ Š Ai of the universal
family X�ig�i :

(7.3) E
p;q
2 .q.�// D H q.Ti=T� /˝H

p.Ai / H) HpCq
�
�.�/�1.ŒA�/

�
:

Since the groupG.�/ acts fiberwise, one can then compute theG.�/-invariant part QEp;q2 .q.�//

of the cohomology of the fibers of �.�/. Varying the fiber over Ag�i , one thus obtains a direct
sum of local systems on Ag�i . In the second step of the argument we then use the Leray spec-
tral sequence for the map �.�/. To write Ep;q2 .�.�// D H q.Ag�i ; R

p�.�/�Q/, we consider
E
p;q
2 .q.�// as giving rise to a spectral sequence of local systems converging to Rp�.�/�Q.

Provided one can control the differentials of the spectral sequence and one knows the coho-
mology of the local systems, from the G.�/-invariant terms QEp;q2 .q.�// one can thus compute
the cohomology of the stratum ˇ.�/.

Our aim is to compute stable cohomology. This simplifies the situation considerably since
stable cohomology only comes from trivial local systems. In other words we only have to take
into consideration the part OEp;q2 .q.�// of QEp;q2 .q.�// which gives rise to trivial local systems
V0 on Ag�i . This allows us to work with a smaller spectral sequence, which still converges to
the stable cohomology of ˇ.�/. Moreover, we will be able to argue that in the stable range not
only the cohomology of X�ig but also that of every open torus bundle is zero in any odd degree.
This will drastically simplify dealing with the spectral sequences.

8. Stable cohomology of strata

The aim of this section is to prove a stabilization result for the cohomology of the strata
ˇ.�/ of toroidal compactifications of Ag . This kind of stabilization occurs independently of
the choice of the compactification. To set up notation, let us assume that we have an admissible
collection† D ¹†gºg2N of admissible fans†g in Sym2rc.R

g/ or in a GL.g;Z/-invariant open
subset of Sym2rc.R

g/. This means that for all g < g0, the intersection of†g 0 with†g coincides
with †g , where we identify Rg with the subspace of Rg

0

generated by the first g coordinate
vectors. Then for each g, we define A†

g to be the (possibly partial) toroidal compactification
of Ag defined by this admissible collection of fans.

Let � be a rank i cone of dimension ` in †. Then i � ` and � defines a stratum

ˇg.�/ � A†
g

for any genus g � i . This is the quotient of a torus bundle Tg.�/ over X�ig�i by a finite
group G.�/. The rank of the torus fiber is i.i C 1/=2 � `. The group G.�/ and the fiber of
the torus bundle do not depend on g, but ˇg.�/ itself does.

In what follows we must be very careful as to which space we are working in, and will
thus keep the subscript g everywhere.
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230 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

Theorem 8.1. For a given cone � the cohomology groups Hk.Tg.�// and Hk.ˇg.�//

stabilize for k < g � i � 1. Moreover, the cohomology in this range is algebraic, and explicitly
one has

H �stable.Tg.�// Š QŒ�1; �3; : : : �˝ Sym�.Span.�/ \ Sym2.Qi //;

where the generators of Span.�/ have degree 2. The stable cohomology of ˇ.�/ is the invariant
part of the stable cohomology of Tg.�/ under the natural action of the stabilizer G.�/ of the
cone � in GL.i;Z/.

Remark 8.2. More precisely, there is an isomorphism

H �stable.Tg.�// Š QŒ�rs; �2mC1 W 1 � r � s � i; m 2 Z�=.�? \M/;

where ¹�rsº denotes the basis of M D Sym2.Zi /_ dual to ¹xrxs C xsxrº and

�? D ¹� 2 Sym2.Ri /_ W �.�/ D 0 for all � 2 �º

is the orthogonal complement of � .
One should interpret this isomorphism as a description of the stable cohomology of

Tg.�/ as a quotient of the stable cohomology of X�ig�i , by identifying �rs with the class
�2Tr 2 H

2
stable.X

�i
g�i / if r D s and with the class �Prs 2 H 2

stable.X
�i
g�i / if r ¤ s.

Proof. Let us recall that for g < g0 the stabilization map on the moduli spaces of abel-
ian varieties is induced by the map Ag ! Ag 0 given by mapping ŒA� 2 Ag to ŒA � B� 2 Ag 0 ,
where B is a fixed abelian variety of dimension g � g0. (Different choices of B lead to the
same map in cohomology.) For the universal family, the stabilization map is given by map-
ping .A; x/ 2 Xg to .A � B; x � 0B/, where 0B 2 B denotes the identity element of B . These
stability maps can be lifted to ˇg.�/ to obtain the following commutative diagram:

(8.1) Tg.�/ //

q.�/
��

�.�/

��

Tg 0.�/

q.�/
��

�.�/

��

X�ig�i
//

pi

��

X�ig 0�i

pi

��

Ag�i
// Ag 0�i ,

where the map Tg.�/! Tg 0.�/ is well defined due to the fact that the fibers of the maps q.�/
are independent of the genus g. The finite automorphism group G.�/, being the stabilizer of �
in its Q-span, which is isomorphic to Sym2�0.Q

i /, does not depend on g and acts equivariantly
on the diagram, thus defining the stabilization map ˇg.�/! ˇg 0.�/.

Let us consider the Leray spectral sequence associated with �.�/, with E2 term

E
p;q
2 D Hp.Ag ; R

q�.�/�Q/:

By the Stability Theorem 3.1, in the stable range p < g � i over Ag�i the cohomology of
the non-trivial symplectic local systems V� vanishes, hence Ep;q2 only depends on the trivial
summands of the local system Rq�.�/�Q, or, equivalently, by the part of the cohomology of
the fiber of �.�/ that is invariant under the action of the symplectic group. In Lemma 8.3 below
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we will show that this cohomology stabilizes in degree p < g � i and that in this range it is
isomorphic to the truncation of the symmetric algebra of a Q-vector space MQ=WQ which is
isomorphic to the Q-span of the extremal rays of the cone � .

In particular, the stabilization map induces an isomorphism between the E2 terms in the
range p; q < g � i of the Leray spectral sequences associated with �.�/ for g and for g0. Next,
we observe that the generators of MQ=WQ represent algebraic classes in the cohomology,
hence the Ep;q2 with p; q < g � i vanish if p C q is odd and carry Tate Hodge-structures of
weight .p C q/=2 if p C q is even. The vanishing for odd p C q implies that all differentials
dr W E

p;q
r ! E

pCr;q�rC1
r with pCr < g� i and q < g� i are zero, so thatE2 D E1 holds.

In particular, this is the case for p C q < g � i � 1, and therefore for k < g � i � 1 we have

Hk.Tg 0.�/;Q/ D H
k.Tg.�/;Q/ D

M
pCqDk

Hp.Ag�i ; R
q�.�/�Q/;

which in view of Lemma 8.3 is zero for odd k and isomorphic toM
p0Cq0Dk=2

H 2p0.Ag�i ;Q/˝ Symq
0

.MQ=WQ/

for even k.
This proves the claim for the cohomology of Tg.�/.
The strata ˇg.�/ and ˇg 0.�/ are the quotient of Tg.�/, respectively, of Tg 0.�/ by the

finite group G.�/. Therefore, the cohomology of ˇg.�/ (respectively, ˇg 0.�/) is the G.�/
invariant part of the cohomology of Tg.�/ (respectively, of Tg 0.�/). Since diagram (8.1) is
G.�/-equivariant, the cohomology of ˇg.�/ stabilizes in the same range as that for Tg.�/.
The explicit description of the stable cohomology and its algebraicity come from taking the
G.�/-invariant part in the description of the stable cohomology of Tg.�/. The proof is thus
completed by proving the following lemma.

Lemma 8.3. In degree less than g�i , the Sp.2g�2i/-invariant part of the cohomology
of the fiber‰g;A D �.�/�1.ŒA�/ � Tg.�/ is algebraic and independent of g. In particular, the
cohomology vanishes in odd degree.

Moreover, if we denote the basis of Sym2.Ri /_ dual to the basis ¹xrxs C xsxrº1�r�s�i
by ¹�r;sº1�r�s�i , the lattice generated by the �r;s byM and the intersection �? \M byW , in
even degree k < g � i the cohomology of ‰A is isomorphic to the degree k=2 part of the sym-
metric algebra generated by the quotient MQ=WQ with MQ DM ˝Z Q, WQ D W ˝Z Q.

Proof. To proceed, we want to describe more precisely the torus bundle Tg.�/. We
recall that its fiber is the torus Ti=T� , where Ti D Sym2.Zi /˝C� and T� � Ti is given by
T� D .Span.�/ \ Sym2.Zi //˝C�. Thus duality defines a canonical isomorphism between
the quotient Ti=T� and the torus T�? D .�

? \M/˝C�. This enables us to view Tg.�/ as
a subbundle of the dual torus bundle T _i of Proposition 7.2.

Let us choose a Z-basis �1; : : : ; �m (m D i.i C 1/=2) of W WD �? \M and write

�j D
X

1�k1�k2�i

j̨;k1;k2�k1;k2 :

Then setting
wj WD e

2�
p
�1�j D

Y
1�k1�k2�i

s
j̨;k1;k2

k1;k2
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for j D 1; : : : ; m defines a set of parameters for the fiber T�? of the torus bundle Tg.�/. Note
that by Proposition 7.2 each wj defines a local section of the bundle

Lj WD
O

S
j̨;k1;k2

k1k2

over X�ig�i . Hence, if we denote the complement of the 0-section byL0j , the torus bundle Tg.�/

is contained in the direct sum of the Lj as

Tg.�/ D L
0
1 �X�i

g�i
� � � �X�i

g�i
L0m:

Now, let us consider ‰g;A, which by definition is the restriction to A�i Š p�1i .ŒA�/ of
the torus bundle Tg.�/. The stabilization map commutes with �.�/, hence its restriction to Ai

induces a map‰g;A!‰g 0;A0 , whereA0 D A�B is given by the image of the point ŒA� 2Ag�i

under the stabilization map Ag�i ! Ag 0�i . To study the cohomology of ‰g;A and ‰g 0;A, we
use the Leray spectral sequence of the torus bundle ‰g;A ! Ai and ‰g 0;A0 ! A0

i , which we
denote by Ep;q� and E 0�

p;q , respectively. The E2 terms are of the form

E
p;q
2 D H q.T�? ;Q/˝H

p.Ai ;Q/ D
^q

WQ ˝
^p

H 1.A;Q/i ;

where we used the isomorphism

WQ Š H
1.T�? ;Q/:

Let Ep;qr;inv be the Sp.2g � 2i/-invariant part of Ep;qr , and E 0r;inv
p;q the Sp.2g0 � 2i/-invariant

part of E 0r
p;q . Then the description of E2 given above, combined with Theorem 6.1, implies

that the stabilization map‰g;A ! ‰g 0;A0 induces an isomorphismE
p;q
2;inv Š E

p;q
2;inv if p � g�i .

Furthermore, for p � g � i the term E
p;q
2;inv vanishes for p odd and is given by

E
p;q
2;inv D

^q
WQ ˝QŒTk; Pk1k2 �p=2 Š

^q
WQ ˝ Symp=2MQ

for p even. Here we identified the symmetric algebra SymrMQ with QŒTk; Pk1k2 �r using the
map �kk 7! �2Tk , �kk0 7! �Pkk0 for k < k0.

Furthermore, in view of the structure of Tg.�/ as product of C�-bundles, the Leray spec-
tral sequence of Tg.�/ degenerates at E3, and the d2-differentials are determined by the Euler
classes of the C�-bundles, i.e. by the Chern class of the line bundles L1; : : : ; Lm. By construc-
tion, and by the description of the bundles Sjk given in Proposition 7.2, one has

c1.Lj / D �
X

1�k1<k2�i

j̨;k1;k2Pk1k2 � 2
X
1�k�i

Tk;

where the coefficients of this linear combination are independent of g. In particular, in the
stable range also the differentials in the spectral sequences E�;inv and E 0

�;inv coincide.
We can rephrase the description of d2 in terms of multilinear algebra by saying that

E
2r;q
2;inv D

^q
WQ ˝ SymrMQ

d2
�! E

2rC2;q�1
2;inv D

^q�1
WQ ˝ SymrC1MQ

is the differential of the degree r C q strand of the dual Koszul complex associated to the
inclusion WQ ,!MQ of Q-vector spaces (see [15, Section A2.6.1]), provided both E2r; q2;inv
and E2rC2; q�12;inv are in the stable range. As this Koszul complex is exact, this immediately
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yields Ep;q3;inv D 0 for q � 1 in the range p C q < g � i , as well as

E
k;0
3;inv D Symk=2MQ=.�1; : : : ; �m/ D Symk=2.MQ=WQ/

for even k < g � i and the vanishing of Ek;03;inv for odd k < g � i .

8.1. Standard cones. We close this section by illustrating Theorem 8.1 in the concrete
case of the i -dimensional standard cone

� D hx21 ; x
2
2 ; : : : ; x

2
i i:

As the rank of � is equal to i , we get a commutative diagram

T .�/
.C�/m-bundle

//

�.�/

((

=G.�/

��

X�ig�i

��

ˇg.�/
�.�/G.�/

// Ag�i ,

where the rank of the torus bundle is m D
�
i
2

�
. To proceed, we describe more precisely the

torus bundle T .�/ and the group G.�/. As explained in the previous section, the fiber of
T .�/ is given by the torus W ˝Z C�, where W denotes the integral points of the orthogonal
complement of � . As �? is spanned by �jk for all 1 � j < k � i , one has

�? D Span.��12; : : : ;��i�1;i /:

From Proposition 7.2 it follows that exponentiating the coordinate ��jk gives rise to a local
section of the Poincaré bundle Pjk . Therefore, we have that T .�/ is the fiber product of the
Poincaré bundles Pjk over X�ig�i with the 0-section removed.

The stabilizer G.�/ of the standard cone in GL.i;Z/ is generated by sign changes and
permutations of the coordinates x1; : : : ; xi . In particular, its action on Span.�/ \ Sym2.Qi /

factors through the action of the symmetric group Si permuting x21 ; : : : ; x
2
i . If we identify

Span.�/ with the quotient of the dual space Sym2.Ri /_ D Span.�11; �12; : : : ; �i i / by

�? D Span.�jk W j < k/;

we get the standard representation of Si on Span.�11; : : : ; �i i /.
From this it follows that we can identify the stable cohomology of the torus bundle T .�/

with the quotient of the stable cohomology of X�ig�i by the Euler classes P12; : : : ; Pi�1;i of
the factors of T .�/, or, equivalently, with the subalgebra of the stable cohomology of X�ig�i
generated by T1; : : : ; Ti . As the stable cohomology of ˇ.�/ is the Si -invariant part of the stable
cohomology of T .�/, we get the following result:

Lemma 8.4. For the standard cone

� D hx21 ; : : : ; x
2
i i

the cohomology groups Hk.ˇg.�// stabilize for k < g � i � 1. The stable cohomology of the
stratum ˇg.�/, as an algebra over the stable cohomology of Ag�i , is freely generated by
classes �j 2 H 2j .ˇg.�// for 1 � j � i , where �j can be viewed as the degree j symmetric
polynomials in the classes T1; : : : ; Ti 2 H 2.X�ig�i /.
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9. Stabilization of cohomology of APerf
g

We can turn our attention to the (open) strata ˇ0i in the perfect cone compactifica-
tion APerf

g , which are disjoint unions of the strata described in the previous section. To compute
their cohomology, we will use the Gysin exact sequence. We note that each individual stratum
ˇ.�/ is a finite quotient of a smooth variety, namely the quotient of Tg.�/ by G.�/, and hence
Poincaré duality holds between cohomology and cohomology with compact support of com-
plementary degree. We would like to point out that this is no longer true for the strata ˇ0i
themselves as they will, in general, be singular, and thus we will now want to work with coho-
mology with compact support, in close to top degree.

In the proof of Theorem 8.1, we observed that the cohomology of ˇ.�/ stabilizes with
respect to a well-defined map ˇg.�/! ˇg 0.�/. Clearly, these maps extend to a morphism
APerf
g ! APerf

g 0 . This follows from the fact that in the toroidal construction, also the gluing of
the strata ˇ.�/ commutes with the stabilization morphisms induced by Ag ! Ag 0 . Hence, by
restriction we also get maps

APerf
g � ˇ0i;g ! ˇ0i;g 0 � APerf

g 0

which induce the pullback maps

Hk.ˇ0i;g 0/! Hk.ˇ0i;g/:

However, if ˇ0i;g is singular, there is no natural associated map

H
top�k
c .ˇ0i;g 0/! H

top�k
c .ˇ0i;g/;

due to the fact that Poincaré duality may not hold for ˇ0i;g .

Remark 9.1. As explained in the introduction, this is the first section the results of
which do not apply to an arbitrary toroidal compactification. To simplify notation and state-
ments, we will formulate everything for the perfect cone toroidal compactification, and make
use of Proposition 7.1, which is specific to the perfect cone compactification. However, we
would like to point out that in fact the results below hold in greater generality: indeed, prop-
erty (ii) of Proposition 7.1 follows from combining admissibility with property (i). Hence every
admissible collection † satisfying property (i) from the statement of Proposition 7.1 defines
a sequence of toroidal compactifications ¹A†

g º to which our stability results (Proposition 9.3
and Lemma 9.5) extend. Thus our main result, the stabilization and algebraicity given by Theo-
rems 1.1 and 1.2 apply for any such†, possibly after replacing cohomology with cohomology
with compact support in the case that A†

g is a partial compactification.
As we will see at the end of this section, some natural examples of such sequences of

partial compactifications are the matroidal partial compactification AMatr
g (and applying the

machinery below gives the stabilization results in this case), as well as the smooth locus
APerf
g;smooth or the simplicial locus APerf

g;simp within APerf
g .

Remark 9.2. Throughout this section, we prove all our results in the case of cohomol-
ogy. However, it is straightforward to adapt the proofs to work also for homology. For this
we need only to replace cohomology with compact support with Borel–Moore homology, and
the Gysin long exact sequences with their duals, the long exact sequences in Borel–Moore
homology associated with closed inclusions.
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Proposition 9.3. The strata ˇ0i;g have stable cohomology with compact support in
degree close to the top degree as g goes to infinity. More precisely, the cohomology groups
H �c .ˇ

0
i;g ;Q/ satisfy

(9.1) Hk
c .ˇ

0
i;g ;Q/ D

M
rank�Di

Hk
c .ˇg.�/;Q/

if k > top�g C i C 1. Furthermore, in this range the cohomology groups with compact sup-
port are independent of g and are all algebraic, so that in particular all odd cohomology
vanishes.

Proof. We first recall from Theorem 8.1 that the cohomology of the strata ˇg.�/ sta-
bilizes in degree k < g � i � 1 and is algebraic in this range. As each ˇg.�/ is the global
quotient of the smooth space Tg.�/ by a finite group, it follows that Poincaré duality holds
and the cohomology with compact support of ˇg.�/ stabilizes and is algebraic in degree
k > 2 dimC ˇg.�/ � g C i C 1 � top�g C i C 1. Hence, equality (9.1) implies the rest of
the claim.

By definition of the toroidal compactification, the locus ˇ0i;g � APerf
g is stratified by the

locally closed subvarieties ˇg.�/ defined by the rank i cones � in the perfect cone decompo-
sition. The dimension of these cones ranges from i to i.i C 1/=2. Therefore, we have

ˇ0i;g D
G

0�j�i.iC1/=2�i

Wj;g ;

where we denoted by Wj;g the (disjoint) union of all ˇg.�/ with � of rank i and dimension
i.i C 1/=2 � j . Note that the closuresW j;g define a filtration on ˇ0i;g and that the Gysin spec-
tral sequence associated with this filtration has E1 term

E
p;q
1 D HpCq

c .Wp;g ;Q/;

where we setWp;g to be empty if no cone of rank i and dimension i.i C 1/=2 � p exists. As the
cohomology with compact support of Wp;g is the direct sum of the cohomology with compact
support of its locally closed strata ˇg.�/, to show claim (9.1) it suffices to show that the spectral
sequence associated with ¹W j;gº degenerates at E1 in the range p C q > top�g C i C 1.

To this end, let us note that Theorem 8.1 implies that Ep;q1 vanishes if p C q is odd and
pCq > 2 dimC Wp;g�gCiC1, i.e. for q > g2�i2�2iCpC1. In particular, in the non-trivial
columns, where i.i C 1/=2 � i � p � i.i C 1/=2 holds, all differentials of the form

Ep;qr ! EpCr;q�rC1r

or
Ep�r;qCr�1r ! Ep;qr

with pC q > 2 dimC ˇ
0
i;g �gC i C 1 D g

2� i C 1 are in this range. Hence, either the source
or the target space of the differential vanishes. From this it follows that Ep;q1 D E

p;q
1 holds for

p C q > top�g C i C 1.

Remark 9.4. The proposition above holds for any admissible collection †. The proof
can be easily extended to this more general case. This only requires us to keep track of the fact
that the top degree may be larger than g.g C 1/ � 2i .
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236 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

Lemma 9.5. The cohomology of the open subset APerf
g n ˇiC1;g stabilizes in close to the

top degree, i.e. the cohomology group Hg.gC1/�k
c .APerf

g n ˇiC1;g ;Q/ is independent of g
for k < g. Furthermore, in this range the cohomology groups with compact support are all
algebraic, so that in particular all odd cohomology vanishes.

Proof. The main idea of the proof is the same as in the previous proposition: we consider
an appropriate stratification of ˇiC1;g into locally closed subsets, we prove that theEp;q1 terms
of the associated Gysin spectral sequence stabilize for p C q < 2 dimC APerf

g � g D g2 and
that moreover all differentials with either source or target in this stable range vanish, so that
they stabilize as well. In this case, the natural approach is to stratify APerf

g n ˇiC1;g as the
union of the strata ˇ0i�j;g for j D 0; : : : ; i . Then the associated Gysin spectral sequence in
cohomology with compact support has E1 term

E
p;q
1 D HpCq

c .ˇ0i�p;g ;Q/;

which in view of Proposition 9.3 stabilizes and is algebraic for

p C q > 2 dimC ˇ
0
i�p;g � g C i � p C 1 D g

2
� i C p C 1:

In the case of the strata ˇ0 D Ag and ˇ1 D Xg , however, the bound given in Theorem 3.1 and
Proposition 4.3 is slightly better, so that we have

p C q > 2 dimC ˇ
0
i�p;g � g C i � p D g

2
� i C p

as stability range for p 2 ¹i � 1; iº. At this point, we observe that all Ep;q1 terms with either
p C q > g2 or p C q > g2 � 1 and p < i lie in the stable range, and that they vanish if p C q
is odd. This implies that Ep;q1 D E

p;q
1 stabilizes for p C q > g2, so that we have

Hk
c .A

Perf
g n ˇiC1;g ;Q/ D

M
0�j�i

Hk
c .ˇ

0
j;g ;Q/

for k > g2. This is enough to prove the stability of cohomology with compact support for
k > g2. The fact that the classes are algebraic follows from the corresponding results for
the ˇ0j;g .

We can now finally prove that the cohomology of APerf
g with compact support, in degree

close to top, stabilizes. The method is similar to the one developed in the previous sections:
to compute H top�k

c .APerf
g ;Q/, we need to analyze all the strata of complex codimension up to

bk=2c in APerf
g . As we have pointed out before, the mere fact that for g � k there is a finite

fixed collection of such cones, which was shown in Proposition 7.1, is special to the perfect
cone decomposition. We are now ready to prove our main result, the stabilization of cohomol-
ogy Hg.gC1/�k.APerf

g ;Q/ for k < g.

Proof of the main theorem, Theorem 1.1. As each stratum ˇi has codimension i in APerf
g

and APerf
g is compact, the cohomology of APerf

g 0 in degree g0.g0 C 1/ � k coincides with the
cohomology with compact support of APerf

g 0 n ˇdg=2eC1;g 0 for k < g � g0. Then the claim fol-
lows from the isomorphism

Hg.gC1/�k
c .APerf

g n ˇdg=2eC1;g ;Q/ Š H
g 0.g 0C1/�k
c .APerf

g n ˇdg=2eC1;g 0 ;Q/

described in Lemma 9.5 for k < g < g0.
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The singularities of the space APerf
g and the ensuing failure of Poincaré duality have

forced us to switch to cohomology with compact support. We will now discuss open subsets
of APerf

g where this problem does not arise. The first question is to understand the singularities
of the space APerf

g better. To be precise, we are interested in those singularities which come
from the perfect cone compactification itself, rather than those that arise from the non-neatness
of the group Sp.2g;Z/, which do not give singular points of the stack APerf

g but only of its
coarse moduli space. As the latter singularities do not occur on suitable level covers they are
no obstruction to Poincaré duality as long as one works with rational coefficients. We shall
denote the locus of these singularities that are not resolved by going to a level cover by APerf

g;sing.
Indeed, this is the singular locus of the stack APerf

g . We have the following recent result of
Dutour Sikirić, Schürmann, and the second author:

Proposition 9.6 (see [14]). The stack APerf
g is smooth for g � 3 and the (complex) codi-

mension of its singular locus APerf
g;sing is equal to 10 for any g � 4.

We denote the underlying variety of the smooth locus of the stack APerf
g by

APerf
g;smooth WD APerf

g nAPerf
g;sing:

From the toroidal point of view, we can view APerf
g;smooth as the partial toroidal compactification

of Ag defined by the cone decomposition one obtains by considering only those perfect cones
that are basic. We recall that a cone is called basic if its generators form a Z-basis of Sym2.Zg/.
In fact, recall more generally that a cone is called simplicial if its generators form an R-basis
of Sym2.Rg/, and in this case the toric variety is locally the quotient of a smooth space by
a finite abelian group.

The union of all simplicial cones defines an open subset APerf
g;simp of APerf

g . Since the
singularities of APerf

g in codimension 10 arise from the non-simplicial cone D4 (see [14, The-
orem 1 (ii)]), it follows that the codimension of the complement of APerf

g;simp in APerf
g is also 10.

The main advantage of working with the simplicial locus (and suitable open subsets) is that
all its points are rationally smooth. This follows from rational smoothness of simplicial toric
varieties, see e.g. [9, Theorem 11.4.8]. Note that rational smoothness ensures that rational coho-
mology coincides with the middle perversity intersection cohomology. In our case, this implies
that the cohomology of the simplicial locus satisfies Poincaré duality and that we have a cycle
map to cohomology which is a ring homomorphism, i.e. we can interpret algebraic cycles of
(complex) codimension k as cohomology classes in degree 2k.

Proposition 9.7. The following statements hold.

(i) The cohomology stabilizes for the smooth and for the simplicial locus within APerf
g ,

i.e. the cohomology groups Hk.APerf
g;smooth/ and Hk.APerf

g;simp/ are both independent of g
for k < g.

(ii) For k < 19 there are isomorphisms

H top�k.APerf
g ;Q/ Š Hk.APerf

g;smooth;Q/ Š H
k.APerf

g;simp;Q/

induced by the Poincaré duality on APerf
g;smooth and APerf

g;simp, respectively.

Proof. (i) As explained in Remark 9.1, the proof of the main result above also serves to
show that Hg.gC1/�k

c .APerf
g;simp n ˇiC1;g ;Q/ is independent of g for k < g. In particular, this
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238 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

holds for i D dg=2e C 1. As the codimension of ˇi is i , one gets

Hg.gC1/�k
c .APerf

g;simp n ˇiC1;g ;Q/ Š H
g.gC1/�k
c .APerf

g;simp;Q/ Š H
k
c .A

Perf
g;simp;Q/;

where the last isomorphism is Poincaré duality for the rationally smooth APerf
g;simp. This shows

the stabilization of the cohomology of APerf
g;simp. The proof for APerf

g;smooth is completely analo-
gous.

(ii) We first note that

H top�k.APerf
g ;Q/ Š H top�k

c .APerf
g ;Q/

holds since APerf
g is compact. By the Gysin sequence applied to the inclusion of APerf

g;sing into
APerf
g we obtain an isomorphism

H
top�k
c .APerf

g ;Q/ Š H top�k
c .APerf

g;smooth;Q/

for k < 2 � codimCAPerf
g;sing � 1 D 19. Finally, we have by Poincaré duality

H
top�k
c .APerf

g;smooth;Q/ Š H
k.APerf

g;smooth;Q/:

The same proof applies to the simplicial locus since Poincaré duality also holds there.

The third open locus of APerf
g which is of interest to us is the matroidal locus AMatr

g . The
importance of this locus was pointed out by Melo and Viviani [37], who identified it as the
biggest partial compactification of Ag contained in both the second Voronoi and the perfect
cone compactification. This means that we can think of AMatr

g as the “intersection” of AVor
g

and APerf
g . The matroidal locus is defined as the partial compactification obtained by taking

all matroidal cones. Recall that a matrix A 2 MatZ.g; n/ is called totally unimodular if every
square submatrix has determinant �1, 0 or 1. A matrix A 2 MatZ.g; n/ is called unimodular if
there exists a matrix B 2 GL.g;Z/ such that BA is totally unimodular. A cone in Sym2rc.R

g/

is called matroidal if it is spanned by the rank 1 forms defined by the columns of a unimod-
ular matrix. It is known that all matroidal cones are simplicial [18, Theorem 4.1] and thus
AMatr
g � APerf

g;simp. We also know that the codimension of the complement of AMatr
g in APerf

g is 5,
due to the existence of a non-matroidal dimension 5 cone in genus 5 (namely the cone �NS

discussed below among the codimension 5 strata).
As matroidal cones are simplicial, we have that AMatr

g is again rationally smooth. In
particularly it satisfies Poincaré duality (with rational coefficients), so that the same argument
as in the proof of part (i) of Proposition 9.7 applies to AMatr

g , thus providing a proof of the
stabilization of the rational cohomology of AMatr

g in degree k < g (Theorem 1.8).
Finally, the considerations above also apply to even smaller open loci of APerf

g;simp. For
instance, one can take the partial compactification of Ag given by taking the union of all strata
associated with standard cones, i.e. of all ˇg.�/with � a cone of the form � D hx21 ; x

2
2 ; : : : ; x

2
i i

for 0 � i � g (see Section 8.1). We will denote this union of the standard strata by AStd
g . As

there is just one standard cone in each dimension, and standard cones are always basic, it is
easy to adapt the proof of part (i) of Proposition 9.7 to prove that the rational cohomology of
AStd
g stabilizes in degree k < g and is generated by algebraic classes. However, as the stable

cohomology of strata associated with standard cones is known by Lemma 8.4, in this case we
can compute this stable cohomology explicitly.
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Theorem 9.8. The cohomology of the partial toroidal compactification defined by the
standard cones stabilizes, i.e. Hk.AStd

g ;Q/ does not depend on g for k < g. The stable coho-
mology is the polynomial algebra generated by the odd �-classes and the fundamental classes
Œˇi � 2 H

2i .AStd
g ;Q/ of the boundary strata.

Proof. As remarked in the introduction, the stable cohomology of AStd
g coincides with

the cohomology of the inductive limit AStd
1 of the sequence AStd

g ! AStd
gC1 defined by taking

products with a fixed element of A1. Let us observe that there is a well-defined product
AStd
g1
�AStd

g2
!AStd

g1Cg2
for all g1; g2 � 0. These products define a structure of H-space on AStd

1 ,
so in particular its cohomology is a commutative and associative graded Hopf algebra over Q.
Hence, by Hopf’s theorem, the stable cohomology of AStd

g is a free graded-commutative alge-
bra. However, in the case of AStd

g we know that the stable cohomology is concentrated in even
degree, so that the stable cohomology is a polynomial algebra. At this point, it only remains to
identify the generators.

Let us recall from Lemma 8.4 that the stable cohomology of the stratum ˇ0i \AStd
g is

isomorphic to the polynomial algebra QŒ�j ; �2kC1 W 1 � j � i; k � 0� generated by the odd
�-classes and by i other classes �j 2 H 2j .ˇ0i \AStd

g ;Q/. By the Gysin exact sequence asso-
ciated with the stratification ¹ˇ0i \AStd

g º of AStd
g we have

(9.2) Hk.AStd
g ;Q/ Š

M
i�0

Hk�2i .ˇ0i \AStd
g ;Q/.�i/

in the stable range k < g.
Combining this with Lemma 8.4 we obtain that the rank of the stable cohomology in

degree k coincides with the rank of the polynomial algebra QŒ�j ; �2kC1 W j; k � 0� with
deg �j D 2j , deg�2kC1 D 4k C 2. Therefore, to prove the claim it suffices to notice that for
all i � 1, the fundamental class of Œˇi � is not a product of classes Œ ǰ �with j < i and �-classes.
This is indeed the case, as Œ ǰ � 2 H 2j .AStd

g ;Q/ vanishes under the pullback of the open inclu-
sion AStd

g n ˇi ,! AStd
g . Note that Œˇi � ¤ 0 follows from (9.2) and the degeneration at E1 of

the Gysin exact sequence associated with the stratification of AStd
g by boundary strata.

10. Automorphisms and the stable cohomology of the next stratum

To further demonstrate that our method can give explicit results, in this section we will
compute the stable cohomology of the “second partial” compactification of Ag obtained by
adding to A0g the locus of semiabelic varieties of torus rank 2 (which now come in two flavors,
depending on whether the toric part is P1 � P1 or two copies of P2, so that we have two
strata to deal with). Note that this part is still the same for the perfect cone, matroidal, second
Voronoi, and central cone toroidal compactifications.

More precisely, the perfect cone decomposition of Sym2�0Rg contains exactly two
GL.g;Z/-orbits of cones whose general element is a form of rank 2, namely the orbits of
the cones

�1C1 WD hx
2
1 ; x

2
2i and �K3 WD hx

2
1 ; x

2
2 ; .x1 � x2/

2
i:

This implies that the locus within APerf
g of semiabelic varieties of torus rank 2 is the union of

an open stratum ˇ.�1C1/, where the normalization of the corresponding semiabelic variety is
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240 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

an irreducible P1 � P1 bundle, and a closed stratum � WD ˇ.�K3/. In the following, we will
determine the stable cohomology of these strata and of their union using Theorem 8.1 and
the Gysin exact sequence. Both these strata are fibrations over Xg�2 �Ag�2 Xg�2. By Theo-
rem 6.1 the stable cohomology Hk.X�2g�2/ for k < g � 2 is generated by the classes T1; T2 of
the two pullbacks of the theta divisor, and the class P WD P12 of the universal Poincaré divisor,
all trivialized along the zero section.

For the open stratum ˇ.�1C1/ we know from [40, p. 356], see also [34, Section 5], that
it is the quotient by automorphisms of the total space of the universal Poincaré line bundle
P ! X�2g�2, with its zero section removed (where the Poincaré bundle is trivialized along the
zero section Ag�2 ! X�2g�2). This description indeed agrees with that given in Section 8.1 for
the i -dimensional standard cone, in the case i D 2. Lemma 8.4 gives us the following result:

Lemma 10.1. The cohomology of ˇ.�1C1/ stabilizes in degree k < g � 3. More pre-
cisely, in this range Hk.ˇ.�1C1/;Q/, as an algebra over the stable cohomology of Ag�2, is
isomorphic to the polynomial algebra QŒT1 C T2; T1T2� on two generators, of degrees 2 and 4,
respectively.

Our approach to the locally closed stratum � D ˇ.�K3/ is analogous. In this case, the
toroidal description yields that � is the quotient of X�2g�2 by the group G.�K3/ generated by
the following three involutions:

.x1; x2/$ .�x1;�x2/;(10.1)

.x1; x2/$ .x2; x1/;(10.2)

.x1; x2/$ .x1; x1 � x2/:(10.3)

Note that the involution (10.1) acts trivially on Sym2.R2/, whereas (10.2) can be viewed
as the involution x21 $ x22 and (10.3) as x22 $ .x1 � x2/

2. From this it follows that the action
ofG.�K3/ on Span.�K3/ factors through the standard representation of the symmetric group S3
on the generators of �K3 . Let us recall from Theorem 8.1 that the stable cohomology of the
stratum ˇ.�K3/ is theG.�K3/-invariant part of the symmetric algebra on the generators of �K3 ,
tensored with H �stable.Ag�2/. If we denote by .˛1; ˛2; ˛3/ D .x21 ; x

2
2 ; .x1 � x2/

2/ the Z-basis
given by the generators of �K3 and by

.1; 2; 3/ D .�11 C �12; �12 C �22;��12/

the dual basis, we have

H �stable.ˇ.�K3// Š H
�
stable.Ag�2/˝

�
Sym�.Q1 CQ2 CQ3/

�S3 ;
so that by the theory of symmetric functions the stable cohomology of ˇ.�K3/ is freely gen-
erated by the elementary symmetric functions in the j . The geometric meaning of these
generators can be made more explicit by using the correspondence between the exponentials
of the coordinates �jk and the classes Tj ; Pjk 2 H 2

stable.X
�2
g�2/ coming from Remark 8.2 and

Proposition 7.2. This yields the following description of the three generators �; �; �:

�1 � 2 � 3 D ��11 � �12 � �22 7! � D 2.T1 C T2/C P;

12 C 23 C 31 D �11�22 � �
2
12 7! � D 4T1T2 � P

2;

�123 D .�11 C �12/.�12 C �22/�12 7! � D P.2T1 C P /.2T2 C P /:
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This proves the following result:

Lemma 10.2. The cohomology of � D ˇ.�K3/ stabilizes in degree < g � 3, and in
this range is generated over the stable cohomology of Ag by the classes � , � and � that have
degrees 2, 4 and 6, respectively.

Since each of the two substrata of ˇ02 are smooth, we can translate our results into
cohomology with compact support, and using the Gysin spectral sequence we can thus compute
the cohomology H top�k

c .ˇ02 ;Q/ with compact support in the stable range k < g � 3 (where
top WD g.g C 1/ � 4 is the (real) dimension of ˇ02 . Recall that the stratum ˇ02 is smooth, as all
rank 2 cones are basic. In particular, Poincaré duality gives an isomorphism

Hk.ˇ02 ;Q/ Š H
top�k
c .ˇ02 ;Q/;

so that we can state stability results for ˇ02 directly in terms of cohomology.
For later use we notice in particular that:

Corollary 10.3. For g > 11, the Betti numbers of ˇ02 in even degree are as follows.

k 0 2 4 6 8

dimH k.ˇ0
2
;Q/ 1 3 6 11 19

Moreover, the stable cohomology vanishes in odd degree k � 8.

11. Further computations: Stable cohomology of APerf
g in degree up to 12

In this section we outline the technical difficulties encountered in extending the explicit
computations of stable cohomology to higher degree, and list the results of this computation
for the next couple of cases. As a result, we compute H top�k.APerf

g ;Q/ for k � 12, proving
Theorem 1.6 (and then from the computations also easily deduce H top�k

c .AMatr
g ;Q/, proving

Theorem 1.9). To do this, for each of the (many) cones, we will list the rank 1 forms generating
it (as in [45, Chapter 4]) and the automorphism group preserving the cone (for most cases these
have been computed by the second and third authors in [33] and [34], we provide the couple
extra computations necessary). We then describe the action of the automorphism groups on the
cohomology of the torus fiber.

We also recall that from Lemma 8.3 and Proposition 9.3 and their proofs we know that
the cohomology of each stratum is purely algebraic, all odd cohomology vanishes, that Ep;q

vanishes for p odd, and that the Leray spectral sequence for the map to Ag�k degenerates
at E2. Thus our job amounts to computing the invariant part of the cohomology of each toric
fiber, and then following the method of Lemma 8.3 and Proposition 9.3.

11.1. Strata of codimension 3. There is only one stratum of APerf
g of (complex) codi-

mension 3 that we have not considered yet; it is the standard degeneration of torus rank 3, given
by the cone

�1C1C1 D hx
2
1 ; x

2
2 ; x

2
3i:
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In this case, we can apply Lemma 8.4 for rank i D 3, which gives us that the stable
cohomology of ˇ.�1C1C1/ is freely generated by the elementary symmetric polynomials in
the T -classes

T1 C T2 C T3; T1T2 C T2T3 C T3T1; T1T2T3

and the odd �-classes. Recall that to compute H�g.gC1/�12.APerf
g / D H�12.APerf

g / (see Pro-
position 9.7), we will only needH�6 of this stratum. The dimensions of the stable cohomology
are thus given as follows.

k 0 2 4 6

dimH k
stable.ˇ.�1C1C1/;Q/ 1 2 4 8

11.2. Strata of codimension 4. We have three strata of codimension 4, of which one
(the standard cone) has torus rank 4, and two others correspond to torus rank 3 degenerations,
i.e. define strata in ˇ03 (we refer to [25] for the detailed description of all strata of codimension
up to 5, and of course to [34] for more details). The standard torus rank 4 cone is

�1C1C1C1 D hx
2
1 ; x

2
2 ; x

2
3 ; x

2
4i:

As above, we can apply Lemma 8.4 to ˇ.�1C1C1C1/, which yields the following values for the
dimension of the stable cohomology in degree k � 4.

k 0 2 4

dimH k
stable.ˇ.�1C1C1C1/;Q/ 1 2 4

The other two cones of codimension 4 have torus rank 3. One is

�K3C1 D hx
2
1 ; x

2
2 ; .x1 � x2/

2; x23i:

In this case T .�K3C1/ is a torus bundle of rank 2, with parameters s�11;3; s
�1
2;3. Thus T .�K3C1/ is

isomorphic to a product of the Poincaré bundles .P1;3 ˝ L1=2/0 and .P2;3 ˝ L1=2/0 with the
0-section removed. The reduced automorphism group of �K3C1, i.e. the automorphism group
divided by ˙1, was computed in [33, Lemma 6], and is equal to S3 � .Z=2Z/. Its action on
Span.�/ factors through the action of S3 permuting the first three generators of � and fixing
the last one. Then Theorem 8.1 implies that the stable cohomology of ˇ.�K3C1/ is isomorphic
to an algebra H �stable.Ag/˝QŒf2; g2; g4; g6� where the subscript identifies the degree of the
free generators. The generator f2 can be identified with x23 , whereas g2i corresponds to the
degree i elementary polynomial in x21 ; x

2
2 ; .x1 � x2/

2. Using the same approach and notation
as in Lemma 10.2, this yields the isomorphism

H �stable.ˇ.�K3C1// D QŒT3; �; �; �; �2mC1 W m 2 Z� � H �stable.X
�3
g /

for the classes � D 2.T1CT2/CP , � D 4T1T2�P 2, � D P.2T1CP /.2T2CP /. This yields
the following formula.

k 0 2 4

dimH k
stable.ˇ.�K3C1/;Q/ 1 3 7

Finally, we have the last codimension 4 cone given by

�C4 D hx
2
1 ; x

2
2 ; .x1 � x3/

2; .x2 � x3/
2
i:
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This cone was studied in [33, Section 5.4]: a natural choice of parameters for T .�C4/ is given
by s�112 ; s13s23s33; the automorphism group of �C4 is S4, and it is generated by the three invo-
lutions sending the point .x1; x2; x3/ 2 R3 to

.x2; x1; x1 C x2 � x3/; .x1 � x3;�x2;�x3/; .x3 � x2;�x2; x1 � x2/;

respectively. As S4 permutes the generators of �C4 , the stable cohomology of ˇ.�C4/ is freely
generated over the stable cohomology of Ag by four classes of degree 2; 4; 6; 8, respectively,
corresponding to the elementary symmetric functions in the generators of �C4 . To identify
them as elements of the stable cohomology of X�3g , we need to extend the generators of �C4
to a basis of Sym2.R3/ in such a way that the span of the two additional generators f; g is
a subrepresentation of S4, e.g. by setting

f D �x21 C 6x1x2 � x
2
2 � 2x1x3 � 2x2x3 C 2x

2
3 ;

g D 2x21 C 2x
2
2 � 2x1x3 � 2x2x3 � x

2
3 :

Then dualizing gives the following description of the dual elements 1; : : : ; 4 (multiplied by 3
by convenience) of the generators ˛1; : : : ; ˛4 of �C4 :

1 D 3�11 C �33 C 2�12 C 4�13 C �23 7! �6T1 � 2T3 � 2P12 � 4P13 � P23;

2 D 3�22 C �33 C 2�12 C �13 C 4�23 7! �6T2 � 2T3 � 2P12 � P13 � 4P23;

3 D �33 � �12 � 2�13 C �23 7! �T3 C P12 C 2P13 � P23;

4 D �33 � �12 C �13 � 2�23 7! �T3 C P12 � P13 C 2P23:

From this it follows that the stable cohomology of ˇ.�C4/ is generated by the elementary
symmetric functions in the i . In particular, the degree 2 generator is

� 0 D 3T1 C 3T2 C 4T3 C 2P23 C 2P13 C P12 (degree 2);

and the degree 4 generator is

�0 D �P 212 � P12P13 � P
2
13 � P12P23 � P

2
23 C 12T1T2 C 12T1T3 C 12T2T3

C 6P13T2 C 6T1P23 C 4P13P23 C 4P12T3 C 8P13T3 C 8P23T3 C 8T
2
3 :

11.3. Strata of codimension 5. For the codimension 5 strata the full computation of
automorphism groups and of invariant classes becomes more elaborate. Note, however, that for
our purposes we are only interested in the cohomology in degrees up to 2. Since each of these
strata ˇ.�/ is connected, the H 0 is always one-dimensional, and generated by the Poincaré
dual of the fundamental class. By Theorem 8.1, the H 1 vanishes and the H 2 is generated by
�1 and by classes coming from the G.�/-invariant subspace of Span.�/.

The first stratum of codimension 5 corresponds to semiabelic varieties of torus rank 3,
and was also treated in [33] and in [34], where it is denoted simply by � .5/. It is given by

�K4�1 D hx
2
1 ; x

2
2 ; x

2
3 ; .x1 � x3/

2; .x2 � x3/
2
i;

and the full automorphism group was computed in [34, Section 6.5], and it coincides with the
subgroup of the automorphism group of the cone C4 fixing x23 . From this it follows that the
G.�K4�1/-invariant part of Span.�K4�1/ is two-dimensional, generated by x23 and by the sum
of the other generators. Dually, this can be viewed inside the stable cohomology of X�3g as
the span of the two invariants i1 D T1 C T2 and i2 D 4T3 C P12 C 2P13 C 2P23 computed
in [34].
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Next, there are three strata in torus rank 4, namely those corresponding to the cones

�K3C1C1 D hx
2
1 ; x

2
2 ; .x1 � x2/

2; x23 ; x
2
4i;

�C4C1 D hx
2
1 ; x

2
2 ; .x1 � x3/

2; .x2 � x3/
2; x24i;

�C5 D hx
2
1 ; x

2
2 ; .x1 � x4/

2; .x2 � x3/
2; .x3 � x4/

2
i:

In the case of �K3C1C1 the automorphism acts on Span.�K3C1C1/ as the product S3�S2,
where the first factor permutes the first three generators of �K3C1C1 (as in the case of �K3) and
the second factor interchanges the last two generators. Therefore, the invariant subspace of
Span.�K3C1C1/ is two-dimensional, generated by x21 C x

2
2 C .x1 � x2/

2 and x23 C x
2
4 .

For �C4C1 the automorphism group coincides with that of �C4 and acts trivially on x24 .
Therefore, the invariant subspace of Span.�C4C1/ is again two-dimensional, generated by
x21 C x

2
2 C .x1 � x3/

2 C .x2 � x3/
2 and x24 .

Finally, the automorphism group G.�C5/ acts on Span.�C5/ by permuting the 5 genera-
tors. Therefore the invariant part of Span.�C5/ is one-dimensional.

We now encounter a new feature: indeed, as explained in [27], correcting [25], there exist
two cones in the perfect cone decomposition of codimension 5 and torus rank 5. The first one
is the standard cone given by

�1C1C1C1C1 D hx
2
1 ; x

2
2 ; x

2
3 ; x

2
4 ; x

2
5i;

for which Lemma 8.4 implies that the invariant part of Span.�1C1C1C1C1/ is one-dimensional.
The other case corresponds to the non-standard five-dimensional cone given by

�NS WD hx
2
1 ; : : : ; x

2
4 ; .2x5 � x1 � x2 � x3 � x4/

2
i:

Its reduced automorphism group is generated by the group S5 permutating the five generators
of �NS. Therefore, the invariant part of Span.�NS/ is generated by the sum

x21 C � � � C x
2
4 C .2x5 � x1 � x2 � x3 � x4/

2:

11.4. Strata of codimension 6. For the strata of (complex) codimension 6, note that
by the Gysin spectral sequence their only cohomology that matters for the computation of
H�12.APerf

g / is the H 0. Since each such stratum is connected, its H 0 is one-dimensional, and
we simply note that there are in total thirteen strata. These correspond to the non-degenerate
six-dimensional cones of which there are 1, 4, 5 and 3 in genus 3, 4, 5 and 6, respectively,
see [16]. Note that the six-dimensional cones in genus 3 and 4 are all matroidal. In genus 5,
four of them – the cones associated with the graphical lattices C6, C5 C 1, C4 C 1C 1 and
C3C1C1C1 – are matroidal; the remaining cone contains �NS and is therefore non-matroidal.

From the definition of matroidal cones, it follows that the standard cone (up to the
GL.g;Z/-action) is the only g-dimensional matroidal cone of rank g. Hence, of the three
six-dimensional perfect cones of genus 6 one is matroidal and the other two are not.

Finally, we are ready to compute the cohomology of APerf
g in degree up to 12.

Proof of Theorem 1.6. From the proof of Theorem 1.1 it follows that for k < g, the
cohomology of APerf

g in degree � top�k is the direct sum of the stable cohomology with
compact support of the strata ˇ.�/ of codimension� dg=2e. This means that for g � 13we can
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Degree 0 2 4 6 8 10 12

Ag 1 1 1 2 2 3 4

ˇ0
1

1 2 3 5 7 10

ˇ0
2

1 3 6 11 18

ˇ.�1C1C1/ 1 2 4 8

Codimension 4 strata 3 7 15

Codimension 5 strata 6 15

Codimension 6 strata 13

Total 1 2 4 9 18 38 83

Table 1. Betti numbers of stable cohomology.

calculate the cohomology of APerf
g in degree larger than or equal to top�12 by collecting the

stable Betti numbers calculated in the previous sections and adding them as shown in Table 1.
From this the claim follows.

The cohomology of AMatr
g in low degree is computed analogously:

Proof of Theorem 1.9. To compute the stable cohomology of AMatr
g we simply need to

subtract from Table 1 the contribution of the non-matroidal cones and then use Poincaré duality
to pass from cohomology with compact support in degree top�k to cohomology in degree
k. The only changes occur in dimensions 10 and 12. In dimension 10 we lose one generator,
corresponding to the fundamental class of the non-standard torus rank 5 codimension 5 cone. In
dimension 12, we lose one generator for each of the three non-matroidal cones of dimension 6,
and two generators for the H 2 of the non-matroidal dimension 5 cone.

12. Algebraic generators for cohomology

Above we have computed the dimensions of the stable cohomology groups

H top�k.APerf
g ;Q/ Š Hk.APerf

g;smooth;Q/ Š H
k.APerf

g;simp;Q/

for k � 12. We will now identify geometrically generators for the cohomology groups for
k � 8 and for most of H 10, and then discuss the phenomena present for H 12. To be more
precise, we shall construct certain geometric cycles on the open part APerf

g;simp of APerf
g where

the cycle map

cl W A�Q.A
Perf
g;simp/! H �.APerf

g;simp;Q/

is well defined and a ring homomorphism, see [20, Corollary 19.2]. Naturally, this approach
also works for the open sets APerf

g;smooth and AMatr
g which are (proper) subsets of APerf

g;simp.
We will use two methods for constructing cohomology classes, the strata algebra – gen-

erated by the fundamental classes of the strata in APerf
g corresponding to various perfect cone

cones – and the boundary algebra – generated by suitable polynomials in irreducible divisorial

Brought to you by | Universita degli Studi di Padova
Authenticated

Download Date | 3/4/20 3:21 PM



246 Grushevsky, Hulek and Tommasi, Stable cohomology of Ag

components of the boundary of the level cover APerf
g .2/ – both taken together with the algebra

generated by the Hodge classes �2iC1.
More precisely, for the first construction, we consider the algebra generated by the fun-

damental classes of the closures of the strata ˇ.�/, where � is a simplicial cone – we call this
the strata algebra by analogy with the subalgebra of the cohomology of the moduli space of
curves generated by the fundamental classes of the strata of stable curves of fixed topological
type. From now on when we speak about the class of the stratum, we mean the cohomology
class of its closure. In order to keep the notation manageable, in this section we will denote the
corresponding cohomology class also by � .

The second construction is by going to a level cover APerf
g .2/, where the boundary be-

comes a reducible divisor, with its irreducible componentsDm labeled bym 2 .Z=2Z/2g n¹0º.
The boundary components in APerf

g .2/ corresponding to a basic cone intersect generically
transversally. By writing polynomials in the classes of Dm invariant under the action of the
deck group Sp.2g;Z=2Z/ of the cover APerf

g .2/! APerf
g we obtain classes in suitable open

subsets of APerf
g .2/ (such as the simplicial locus) which descend to APerf

g . To avoid unnec-
essary multiplicities in our notation we normalize the pushforward by dividing by the order
of the deck group, as was also done in [26, Section 4]. This construction provides us with
well-defined cohomology classes on the simplicial locus APerf

g;simp. It was used in [26], where
especially in Sections 8 and 9 similar constructions were performed, and we freely use the nota-
tion and results from there. We recall that the intersection of two different boundary divisors
Dm1\Dm2 � APerf

g .2/ is non-empty if and only ifm1 andm2 span an isotropic subspace, i.e. if
and only if the scalar productm1 �m2 D 0 2 Z=2Z. We note that the orbit under Sp.2g;Z=2Z/
of a k-tuplem1; : : : ; mk 2 .Z=2Z/2gn¹0º such that each pairmi ; mj is isotropic consists of all
k-tuples of vectors satisfying the same set of linear relations over Z=2Z (in particular, if some
mi are the same, then in the orbit some of the elements must also be the same). Thus the gen-
erators for the vector space of polynomials in Dm invariant under the action of Sp.2g;Z=2Z/
are given by sums of products of the boundary divisors of the form

P
Dm1 : : :Dmk subject

to a fixed set of linear relations of the form mi1 C � � � Cmi` D 0. We will thus proceed by
enumerating all such polynomials in Dm of degree up to 6 (calling such polynomial a pure
boundary class), and multiplying them by suitable polynomials in the Chern classes �2iC1 of
the Hodge bundle. To prove that one obtains the entire stable cohomology in a given degree,
one then has to compare these classes to the ones which we used to prove stability in Sections 9
and 10 and to compute the explicit numbers in Theorem 1.6.

We will see that in degree up to 8 the strata algebra and the boundary algebra are equal,
and both are equal to the stable cohomology. On the other hand in degree 10 neither of them
generates the entire stable cohomology H 10.APerf

g;smooth;Q/, and it appears that they give diffe-
rent codimension 1 subspaces of it. In degree 12 it appears likely that the strata algebra, bound-
ary algebra, H 12.APerf

g;smooth;Q/, and H 12.AMatr
g ;Q/ are all different.

Case k D 0. Here we of course have one class, which is simply 1.

Case k D 2. We have already treated this in Corollary 5.3. Here we have one class �1,
which already exists on Ag , and one class ˇ1, which on the one hand is the closure of the
stratum given by the unique rank 1 cone �1 and on the other hand is nothing but the boundary
D and can in the spirit of the above discussion be identified with the sum

P
Dm. Thus we have

identified both generators of the stable cohomology H 2.APerf
g /.
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Case k D 4. In our previous discussion we saw that the stable cohomology in degree 4
has rank 4. The only degree 4 class which already lives on Ag is �21. The boundary is the closure
of the stratum �1C1, which contributes the classes �1ˇ1 and ˇ21 . Here we note that ˇ21 equals
the class given by T on �1 (and the latter is nothing but the universal abelian variety in genus
g � 1). Finally, the class of the closure of the stratum �K3 also lies inH 4. In terms of boundary
components of APerf

g .2/ the first of these classes is �1.
P
Dm/, whereas the last is given byP

m¤m0 DmDm0 . Finally, ˇ21 corresponds to .
P
Dm/

2 D
P
D2m C

P
m¤m0 DmDm0 .

Case k D 6. Here we need to be a bit more methodical. By Theorem 1.6 the stable
H 6.APerf

g;smooth/ has dimension 9. There are five classes which are products of classes of degree
at most 4 (which we have already identified) with �-classes. These are the two classes from Ag ,
namely �31 and �3, then the degree 2 classes supported on the boundary multiplied with �21,
i.e. �21ˇ1, and finally from the degree 4 classes supported on the boundary we obtain �1ˇ21
and �1ˇ2. So far we have thus constructed five classes that are not obtained as cubic expressions
in Dm.

We will now enumerate cubic expressions in D; this has actually been studied in detail
in [26]. However, to set up the more methodical search below, we review how this can be done.
Indeed, first of all in a cubic expression some indices mi may coincide (equivalently, this is
a linear relation mi Cmj D 0). The expressions where there are some coincidences are thusP
D3m and

P
D2m1Dm2 , where from now on we use the convention that each such sum is over

all possible m1; : : : ; mk satisfying no additional relations in addition to the ones stated – so in
particular in the second sum m1 and m2 are assumed to be distinct.

If we have a cubic expression with no mi coinciding, there are actually two cases, corre-
sponding to whether the sum of the three indices is zero or not (these are the so-called local and
global, corresponding to whether the three divisors intersect within ˇ02 or ˇ03). We thus have
the two expressions

P
m1Cm2Cm3D0

Dm1Dm2Dm3 and
P
Dm1Dm2Dm3 (where recall in the

second sum we enforce m1 Cm2 Cm3 ¤ 0). Also, from now on, when writing such sums,
we will implicitly divide by the suitable product of factorials so that each summand appears
only once, that is, both of these cubics should be divided by 6, while say

P
D2m1D

2
m2

would
be divided by 4.

Thus we have a total of four classes that are cubics in Dm. Indeed, these four classes,
together with the five classes described above generate the stable cohomology in degree 6.
To see this we note that the condition m1 Cm2 Cm3 D 0 means that the three boundary
divisors Dmi intersect locally, i.e. the generic point of this intersection is contained in ˇ02
and this intersection is the closure of the stratum ˇ.�K3/. On the other hand the condition
m1 Cm2 Cm3 ¤ 0 means that the three divisors intersect “globally”, i.e. their intersection
is contained in ˇ3. In fact, this intersection is irreducible and equals ˇ3, which in turn is the
closure of the stratum �1C1C1 .

For what follows it is useful to use a better formalism for describing homogeneous poly-
nomials in theDm. To make the formulas readable, we write ¹mi11 : : : m

il
l
º for

P
D
il
m1 : : :D

il
ml ,

where we order the powers so that i1 � i2 � � � � � il , and furthermore we order the indices so
that if ia�1 > ia D � � � D ib > ibC1, then ma > � � � > mb . We further note the linear relations
in parenthesis, so that e.g. .123/ means m1 Cm2 Cm3 D 0. Thus for example we have

¹1º D
X

Dm; ¹12º D
X
i<j

DiDj D ˇ2; ¹1
22º D

X
i¤j

D2i Dj :
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In degree 3we thus have the four possibilities ¹13º, ¹122º, ¹123º, ¹123.123/º. They relate
to the fundamental classes of strata of APerf

g as follows:

ˇ31 D ¹1
3
º C 3¹122º C 6¹123º C 6¹123.123/º;

ˇ1ˇ2 D ¹1
22º C 3¹123º C 3¹123.123/º;

�K3 D ¹123.123/º;

�1C1C1 D ¹123º:

Hence the space of classes spanned by the four possible cubic polynomials in the Dm equals
the span of ˇ31 , ˇ1ˇ2, �K3 , �1C1C1. We note that ˇ31 is the class T 2 on ˇ.�1/ and ˇ1ˇ2 is the
class of T1 C T2 on �1C1, see the proof of Lemma 10.1. Thus it follows from Section 11 that
the classes obtained as polynomials in the Dm together with the �-classes generate the stable
cohomology in degree 6.

Case k D 8. From Theorem 1.6 we know that the rank of the stable cohomology in
degree 8 is 18. Above we have described 9 classes in degree 6. Multiplying these with �1 and
also taking �3ˇ1 we obtain 10 independent classes. The remaining stable cohomology can be
generated by classes which do not contain a factor which is a �-class and, according to Sec-
tions 10 and 11, is generated by the image of the classes T 3�1, .T1C T2/2�1C1, .T1T2/�1C1,
.T1C T2C T3/�1C1C1, .2.T1 C T2/ � P /�K3 ; �1C1C1C1; �K3C1; �C4 in H top�8.APerf

g ;Q/.
We will now show how to obtain (the span of) these classes by the quartic polynomials

in D. For this we first have to enumerate these. This situation was studied in detail in [26, Pro-
position 8.4]. The possibilities are

¹14º; ¹132º; ¹1222º; ¹1223.123/º; ¹1223º; ¹1234.123/º; ¹1234.1234/º; ¹1234º;

so that altogether we get eight classes. As discussed in [26], their span is equal to the span of the
classes ˇ41 ; ˇ

2
1ˇ2; ˇ

2
2 ; ˇ1ˇ3, ˇ1.�K3 C �1C1C1/, ˇ4, ¹1234º C ¹1234.123/º C ¹1234.1234/º,

and ¹1234.1234/º. The stratum ˇ4 is irreducible, and we have ˇ4 D �1C1C1C1, which cor-
responds to the polynomial ¹1234º. From the definition of the cones �K3C1 and �C4 we find
that these strata correspond to the classes ¹1234.123/º and ¹1234.1234/º. Next ˇ1ˇ3 gives the
class coming from .T1CT2CT3/�1C1C1. Since �1C1C1 D ˇ3, we obtain, modulo ˇ1ˇ3, that
ˇ1.�K3C�1C1C1/ gives the unique degree 2 class on �K3 which, by the proof of Lemma 10.2 is
.2.T1 C T2/ � P /�K3 . Modulo the classes already enumerated we then see that ˇ22 , which cor-
responds to ¹12º2, gives .T1T2/�1C1. Similarly ˇ21ˇ2, which corresponds to ¹1º2¹12º, gives,
again modulo classes already enumerated, the class .T1 C T2/2�1C1. Finally, ˇ41 gives T 3�1
plus classes from above. This shows that we obtain the entire stable cohomology in degree 8
by using either the strata algebra or the polynomials in Dm.

Case k D 10. Here we will see that neither the boundary algebra nor the strata algebra
span all of H 10.APerf

g;smooth;Q/, while it could be that together they span it.
Indeed, we know from Theorem 1.6 that stable H 10.APerf

g;smooth;Q/ D Q38. Above we
have seen that all nineteen stable classes of degree 8 lie in the strata algebra and in the boundary
algebra. Multiplying each of these eighteen classes by �1 gives a degree 10 class in the stable
cohomology of APerf

g . We also have the class �5 in the stable cohomology of Ag (which also
extends to APerf

g ). Furthermore, we can construct more classes as a product of �3 and a suitable
boundary class. For this, we would need a polynomial in boundary strata of codimension 4, and
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there are of course two such classes, ˇ21 and ˇ2 (the same space is the linear span of ˇ.�1/2 and
ˇ.�1C1/). Thus altogether we have constructed 21 D 18C 1C 2 degree 10 classes involving
a �-class. We thus need to account for the remaining seventeen classes in H 10.APerf

g;smooth/.
To understand pure boundary strata inH 10, we need to study the possible quintics inDm:

these are enumerated in the proof of [26, Proposition 9.1], and in our notation are as follows:

¹15º; ¹142º; ¹1322º; ¹1323º; ¹1323.123/º; ¹12223º; ¹12223.123/º;

¹12234º; ¹12234.1234/º; ¹12234.123/º; ¹12234.234/º; ¹12345º;

¹12345.12345/º; ¹12345.1234/º; ¹12345.123/º; ¹12345.123; 145/º;

which gives a total of sixteen quintic polynomials in Dm. It follows that the dimension of pure
boundary algebra is 16, and together with the twenty-one classes enumerated above these are
insufficient to generate the stable H 10.APerf

g;smooth;Q/. Thus the boundary algebra is smaller
than H 10.APerf

g;smooth;Q/.
Similarly, for the strata algebra in degree 10, as per the discussion in Section (11), we

note that there are six boundary strata of complex codimension 5. These can be related to
polynomials in the Dm as follows:

�1C1C1C1C1 D ¹12345º;

�K3C1C1 D ¹12345.123/º;

�C4C1 D ¹12345.1234/º;

�K4�1 D ¹12345.123; 145/º;

while we have
�C5 C �NS D ¹12345.12345/º;

where we recall that �NS denotes the non-standard non-matroidal cone. The last identity follows
since the 5-tuples given by the generators of the cones �C5 and �NS coincide mod 2. Thus all
five quintics in Dm that involve five different indices can be expressed in terms of boundary
strata, but not vice versa. We now investigate further degree 10 classes in the strata algebra. For
polynomials that involve a boundary class of complex codimension 4, we have

�1�1C1C1C1 D �¹1
2234º C �¹12345º C �¹12345.12345/º;

�1�K3C1 D �¹1
2234.123/º C �¹12234.234/º C �¹12345.123/º C �¹12345.123; 145/º;

�1�C4C1 D �¹1
234.1234/º C �¹12345.1234/º;

where � denotes the various combinatorial non-zero coefficients appearing. Using these expres-
sions, together with the expressions for the quintics involving five different Dm, obtained
above, we can express ¹12234º and ¹1234.1234/º as linear combinations of polynomials in
boundary strata. Note, however, that so far we are only able to express a suitable linear combi-
nation �¹12234.123/º C �¹12234.234/º as a polynomial in boundary strata – but not the two
summands individually.

For the elements of the (pure, not involving the classes �) strata algebra involving a cone
of complex codimension 3, we similarly have

�21�1C1C1 D �¹1
323º C �¹12223º CX;

�21�K3 D �¹1
323.123/º C �¹12223.123/º CX;

�1C1�1C1C1 D �¹1
2223º CX;

�1C1�K3 D �¹1
2223.123/º CX;
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whereX in each case denotes various explicit linear combinations of quintics involving at least
four different Dm. Thus from the above expressions, we can express each of the four quintic
polynomials ¹1323º, ¹1323.123/º, ¹12223º, ¹12223.123/º, as a linear combination of monomi-
als in boundary strata and quintics involving at least four differentDm, while we get no further
information or relations that could allow us to distinguish �¹12234.123/º and �¹12234.234/º
(or �NS and �C5).

It remains to enumerate elements of the strata algebra that only involve classes of codi-
mension at most 2; that is to say, we now need to write monomials in �1 and ˇ.�1C1/ only.
Again, now denoting X any linear combinations of quintics involving at least three differ-
ent Dm, we get

�51 D �¹1
5
º C �¹142º C �¹1322º CX;

�31�1C1 D �¹1
42º C �¹1322º CX;

�1�
2
1C1 D �¹1

322º CX;

so that again these monomials can be expressed in terms of the polynomials in the strata algebra
and the monomials we have studied previously. We thus obtain

Summary 12.1. There exist sixteen pure boundary classes (quintics inDm) and sixteen
pure strata classes (monomials in the classes of the strata), such that:

(i) Each pure boundary class except ¹12234.123/º and ¹12234.234/º lies in the pure strata
algebra; moreover, a suitable linear combination �¹12234.123/º C �¹12234.234/º lies
in the pure strata algebra.

(ii) Each pure strata class except �C5 and �NS lies in the pure boundary algebra; moreover,
�C5C�NS also lies in the pure boundary algebra (in fact, simply equals ¹12345.12345/º).

We thus obtain:

Proposition 12.2. Neither the strata algebra nor the boundary algebra generate the
cohomology rings of either the smooth or the simplicial locus of APerf

g .

We furthermore conjecture that in fact both the boundary algebra and the strata algebra
in degree 10 have dimension 37, that together they spanH 10.APerf

g;smooth;Q/, and moreover that
the boundary algebra actually is equal to H 10.AMatr

g /. As the stratum �NS does not belong
to AMatr

g , the dimension of the restriction of the strata algebra to AMatr
g is only 36 in degree 10,

so it is clear that the strata algebra cannot give all stable cohomology of AMatr
g .

Case k D 12. Here we will see that H 12.APerf
g;smooth;Q/, H

12.AMatr
g ;Q/, the boundary

and the strata algebra all seem to have different dimensions. We recall that by Theorem 1.6 and
Theorem 1.9 we have

H 12.APerf
g;smooth;Q/ D Q83

and
H 12.AMatr

g ;Q/ D Q78:

For both the boundary and the strata algebra, we shall first enumerate those classes which
involve �-factors. Here we have four classes in the interior: �61; �

3
1�3; �1�5, 3 � 1 classes by
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multiplying the k D 10 interior classes by the unique pure boundary class ¹1º (which is the
same as the pure stratum class �1, of course), 2 � 2 classes by multiplying the k D 8 interior
classes by the two pure boundary/strata classes in degree 4, 2 � 4 classes by multiplying the
k D 6 interior classes by the two pure boundary/strata classes in degree 6, 1 � 8 classes by
multiplying the k D 4 interior class �21 by the pure boundary/strata classes in degree 8, and
1 � 16 classes by multiplying �1 by the quintics in Dm (which are different from the sixteen
pure strata classes, but the dimension is the same), for a total of 4C 3C 4C 8C 8C 16 D 43
classes.

Next we discuss the pure boundary classes, i.e. sextic polynomials in Dm. We have

¹16º; ¹152º; ¹1422º; ¹1323º; ¹1423º; ¹1423.123/º; ¹13223º; ¹13223.123/º;

¹122232º; ¹122232.123/º; ¹13234º; ¹13234.1234/º; ¹13234.123/º;

¹13234.234/º; ¹122234º; ¹122234.1234/º; ¹122234.123/º; ¹122234.134/º;

¹122345º; ¹122345.12345/º; ¹122345.1234/º; ¹122345.2345/º;

¹122345.123/º; ¹122345.234/º; ¹122345.123; 145/º; ¹122345.123; 245/º;

¹123456º; ¹123456.123456/º; ¹123456.12345/º; ¹123456.1234/º;

¹123456.1234; 1256/º; ¹123456.1234; 156/º; ¹123456.123/º;

¹123456.123; 145/º; ¹123456.123; 145; 246/º; ¹123456.123; 456/º

for a total of 36 sextics, so that the total dimension of the boundary algebra in degree 12 is at
most 43C 36 D 79 (it could be less as we have not ruled linear relations among the above,
which, however, seem unlikely to exist).

We will now discuss the pure strata classes, and will take this opportunity to set up this
approach more systematically. We first list the cones of the perfect classes of boundary strata,
in each codimension.

Codim Cones Number of cones

2 �1 1

4 �1C1 1

6 �K3 ; �1C1C1 2

8 �K3C1; �C4 ; �1C1C1C1 3

10 �K4�1; �K3C1C1; �C4C1; �C5 ; �1C1C1C1C1; �NS 6

12 . . . 13

To compute the number of pure strata classes in degree k is to compute the number of
monomials in the classes of these cones, of appropriate degree. Thus we need to sum over all
partitions k D 2n1 C � � � C 2ni with the products of the numbers of cones in codimension 2ni ,
from the table above. We have of course implicitly used this throughout the computations
above, but there we also were able to identify the individual monomials with the stable coho-
mology generators or with the boundary algebra. Here we only do the combinatorics; the result
is given by the following table, where the results for degree up to 10 simply summarize the
previous discussion, and the number of pure strata classes in degree 12 is what we wanted.
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k Partitions of k Number of pure strata classes in deg k

2 1 1

4 2; 11 1C 1 � 1 D 2

6 3; 21; 111 2C 1 � 1C 1 � 1 � 1 D 4

8 4; 31; 22; 211; 1111 3C 2 � 1C 1C 1C 1 D 8

10 5; 41; 32; 311; 221; 2111; 11111 6C 3C 2C 2C 1C 1C 1 D 16

12 6; 51; 42; 411; 33; 321; 3111, 13C 6C 3C 3C 2 � 2C 2C 2

222; 2211; 21111; 111111 C1C 1C 1C 1 D 37

Summary 12.3. We thus have:

(i) The dimension of the strata algebra in degree 12 is equal to at most 80, of which at
most 37 are the pure strata classes.

(ii) The dimension of the boundary algebra in degree 12 is equal to at most 79, of which at
most 36 are the pure boundary classes.

It thus follows that neither the strata nor the boundary algebra in degree 12 generate all of
H 12.APerf

g;smooth;Q/ – which of course is not surprising given that this fails already in degree 10.
We would like to close with the following:

Conjecture 12.4. There are no stable relations in the strata or boundary algebra. More
precisely, the strata and boundary algebra are freely generated by the odd lambda classes and
the strata, respectively boundary classes for k � g.

Question 12.5. Is it true that the strata and the boundary algebras together generate the
stable cohomology of APerf

g;smooth?

Question 12.6. What is (stably) the intersection of the strata and the boundary algebra?

Question 12.7. Is it true that the boundary algebra generates the stable cohomology
of AMatr

g ?

We hope that we, or others, would be able to address some of these questions in the
future.
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