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Abstract: This paper presents the methodology and results of an extensive benchmarking of laser
powder bed fusion (LPBF) machines conducted across five top machine producers and two end
users. The objective was to understand the influence of the individual machine on the final quality of
predesigned specimens, given a specific material and from multiple perspectives, in order to assess
the current capabilities and limitations of the technology and compare them with the capabilities of an
11-year-old machine belonging to one of the end users participating in this investigation. The collected
results give a clear representation of the status of LPBF technology considering its maturity in terms
of process capabilities and potential applications in a production environment.

Keywords: additive manufacturing; laser powder bed fusion; selective laser melting; benchmarking;
technology evaluation; accuracy; repeatability

1. Introduction and State of the Art

For about the last 40 years, additive manufacturing (AM), initially known as rapid prototyping, has
experienced huge technological advancements. AM is distinguished from other existing technologies
as it presents unparalleled design freedom and the possibility of mass customization [1,2]. Complexity
and customization in AM were deeply analyzed by Conner et al. by developing a reference system
for products that considered customization, volume, and complexity [3], and by Quinlan et al.,
who analyzed the capability of AM to provide “complexity for free” and compared this capacity with
conventional manufacturing technology [4].

According to the ASTM F42 committee, all AM processes can be classified into the following
seven main categories [5]:

• Binder jetting (BJ);
• Direct energy deposition (DED);
• Material extrusion (ME);
• Material jetting (MJ);
• Powder bed fusion (PBF);
• Sheet lamination (SL);
• Vat photopolymerization (VPP).

The applications of AM technologies are numerous across all industries, but their full potential has
not yet been exploited [6]. Gu et al. claimed that in the next few years, prototyping production using
polymers will no longer be a research focus, since it will reach its full maturity, while the focus will be
more on AM techniques for the industrial production of metallic components that cannot be produced
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easily with conventional technologies [7]. Among the AM technologies that are capable of processing
metal materials and are used the most for industrial applications, powder bed fusion—also called
selective laser melting (SLM) or laser powder bed fusion (LPBF)—stands out. Today, LPBF technologies
have been demonstrated to be among the most versatile AM metal processes, showing the capability
of producing metal components that have complex shape and are otherwise impossible to produce by
conventional manufacturing technologies [8].

LPBF, as all powder-based systems, produces parts by spreading dry powder on a building
platform and scanning the selected areas given by the CAD design, converted in STL format, with a
laser. The platform is then lowered by one step, a new layer of powder is spread on the surface and the
process starts again. One of the main advantages of LPBF is its relatively high resolution including its
internal features [9].

Among the main applications of LPBF are aerospace and aviation engineering, biomedical,
and tooling [10].

Several LPBF systems are currently available on the market, each with its own strengths and
limitations. However, it is still under debate how much powder bed fusion metal AM is ready for
industrial production.

In addition, when considering the broad variety of available metal AM systems, it should be
investigated how much the choice of a specific LPBF machine influences the quality of the final products.
This is the framework through which the present work tries to give some answers to those questions
through a machine benchmarking study.

One of the most detailed works dedicated to the benchmarking of AM machines was conducted
by Mahesh et al. in 2002. The study describes benchmarking as a process to identify the “highest
standards of excellence for products, services and processes” [11]. Benchmarking is a known method
to evaluate the capabilities and limitations of a process, in this case an AM process, but is also a useful
instrument to identify optimization approaches and sources of information [12]. In their work, Mahesh
and colleagues also proposed for the first time a benchmark classification of AM processes, depending
on the main purpose of the benchmark. These were divided into three groups:

1. Geometrical benchmark, used to evaluate the geometrical and dimensional accuracy of the
additively manufactured products;

2. Mechanical benchmark, a standard design of components to evaluate the AM parts’ mechanical
properties such as tensile strength, shrinkage, creep properties, etc.; and

3. Process benchmark including all the benchmarking artifacts used to optimize the process,
for example, to define the best process parameters for a given outcome [11].

Many benchmarking artifacts have been designed and tested in recent years, and a comprehensive
review was presented by Rebaioli and Fassi in 2017 [13]. From this extensive review, we recognize the
need for a standardized procedure to evaluate AM processes. In their paper from 2014, Moylan et al.
attempted to define general rules for a standard artifact: that it should be large enough to evaluate
the system performance, but does not consume too much material to be printed. A standard artifact
should include small, medium, and large features, and have both holes and bosses. It must be easy
to measure and present some real part features [14]. These guidelines, among other considerations,
were followed by Moylan et al. for their artifact, which was developed at the National Institute of
Standards and Technology (NIST), and was proposed as a standard test artifact for AM machines [15].

What appears to be clear through the literature review of benchmarking is that most of the studies
and recommendations have not focused on a specific AM technology. In fact, the aim was mostly to
compare different technologies. In Table 1, some selected examples of benchmarking research that was
particularly important for understanding AM processes and comparisons are presented.
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Table 1. Examples of benchmarking of additive manufacturing (AM) technologies. For the
AM technologies: SLA, stereolithography; SLS, selective laser sintering; LOM, laminated object
manufacturing; FDM, fused deposition modeling.

Ref. Year AM Tech Materials Comments

[16] 2004 SLA, SLS, LOM,
FDM Different plastics

Comparative evaluation of AM processes,
incorporating features from different
benchmarking (dimensions: 170 × 170 × 20 mm).

[17] 2005 SLS, LPBF Different metal
alloys

Thin plate with multiple features (dimensions: 50
× 50 × 9 mm).

[18] 2006 SLS Steel-based alloys Design derived from a real component: half die of
a glass bottle (dimensions: 200 × 100 × 40 mm).

[19] 2006 BJ Different plastics Development of a methodology to classify the
accuracy of printed parts.

[20] 2007 LPBF TiAl6V4 and
Co–Cr–Mo Investigation of medical parts production.

[21] 2010 SLS Bronze-based metal
Same features repeated in different orientations in
different positions (dimensions of small features:
20 × 20 × 20 mm).

[22] 2010 BJ Mixture of
polymers

Systematic investigation of the influence of 4
process parameters on the quality and accuracy of
green parts.

[23] 2011 FDM ABS Quantitative evaluation of open-source 3D printer.

[24] 2011 MJ, SLA, SLS, FDM Different plastics Simple and quick method to compare speed and
accuracy of AM technologies.

[25] 2012 SLS Nylon Focus on accuracy and repeatability (dimensions:
270 × 50 mm).

[14] 2014 Several AM techs Several materials Moylan et al.’s standardization proposal
(dimensions: 100 × 100 × 10 mm).

[26] 2015 SLS, SLA, MJ Different plastics Definition of a DoE to optimize the manufacturing
of a mass-production consumer device geometry.

Goals and Structure of the Paper

In the present work, the aim was not to compare different AM technologies, but rather to compare
different machines belonging to the same LPBF family. The aim was to understand the performance of
different systems and assess the current capabilities and limitations of the process. For these reasons,
an innovative artifact design was formulated to highlight the differences and similarities among the
considered systems.

The rest of this paper is structured as follows: in Section 2, the design of this extensive
benchmarking project is summarized, referring to a previous paper where this design was introduced
by Moshiri et al. [27]. Next, in Section 3, the methodology followed in this work is explained in
detail, considering both the data transfer with the participants who took part and the actual analysis
undertaken on the specimens. For confidentiality, the identities of the participants are not disclosed; but
consist of five current state-of-the-art LPBF machine producers and two end users whose production
LPBF systems are used daily. Finally, one machine placed at one of the end users was 12 years old.
This system was considered in order to highlight the degree of performance that more modern systems
have reached after approximately one decade of process development and advancements. In Section 4,
the collected results are presented and the various systems are compared. Our final remarks and
conclusions are presented in Section 5.
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2. Design of the Artifact

The reason for proposing a new design is that none of the benchmarking research in the published
literature to date has been prepared considering a holistic evaluation of all aspects of a specific AM
technology, in this case LPBF. The objective of this innovative design is to combine aspects from
geometrical, mechanical, and process benchmarks, according to [11], in order to have an overall
characterization of the actual technological readiness level of LPBF for its implementation in industrial
production technology (see Figure 1).
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Figure 1. Key elements considered for the benchmarking design approach, adapted from [27].

To limit the open variables as much as possible, this investigation focused on one process (LPBF),
and the design of the benchmarking specimens (prepared by the authors and sent to the participants)
and the material were locked. The material, maraging steel grade 300 (1.2709), was chosen because it is
a common material for LPBF processes, particularly relevant and applied in tooling applications [28].
The material required for the evaluation was new powder, never used and sieved in other jobs, to avoid
any cross-contamination that would have caused a deviation of the results from the influence of the
machine. Only the technology, intended as the specific machine, was the open variable.

All of the samples were analyzed as built; no post-process was allowed, apart from cutting the
parts from the building platform. The benchmarking project was designed to allow an evaluation of
multiple aspects (see Table 2).

Table 2. Investigation criteria of benchmarking.

General Aspect Specification Comments

Accuracy Dimension of feature
Various features visible in Figure 3, with minimum dimensions
that go beyond the currently known machine’s limitation (see
Table 3).

Surface roughness Important factor considering industrial production and current
need for post-processing parts to achieve specified roughness.

Repeatability Same job, different positions

Evaluated by repeating production of the same part in 4 corners
of the machine’s building volume and centre of the building
platform; extremely important considering industrial need for a
robust and reliable process.

Different jobs Same as above; each job repeated 3 times.

Complex feature Spiral shape: mold’s cooling
channel

Overview of machine capabilities in handling complex features
that can be related to real applications such as conformal cooling
channels in molds.

Homogeneity Residual defects Indicator of process quality.
Density

Residual stress Part distortions Related to robustness of the process and final quality of the
product in terms of how close they are to the nominal design.

Mechanical properties Rockwell hardness C General indicator of quality of the material.

Built speed To compare the speed of various machines.

Tall parts production Tall samples Understanding of machine capabilities in building relatively tall
parts.
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The dimensions of the features mentioned in Table 2 are summarized in Table 3, and were
compared with the minimum dimensions the most capable machine manufacturers claimed to be able
to produce.

Table 3. Minimum dimension of features presented in benchmarking artifact.

Feature Minimum Dimension Min Dimension in Artifact

Wall thickness 0.15 mm 0.10 mm

Overhang structure 45◦ 25◦

Circular holes (diameter) 0.50 mm 0.20 mm

Circular pins (diameter) 0.50 mm 0.10 mm

Designing features that have a high probability of failure is critical to highlight the limits of
current capabilities of a given technology. Most of the designs in the literature were based on other AM
technologies or did not include this “fail test”, where it would not have been possible to easily determine
the technological capabilities of using such a design. The design of the complete benchmarking job is
presented in Figure 2.
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Figure 2. View of one complete platform of benchmarking building job. (a) View of the full building
job; (b) Top view of the building platform [27].

In Figure 2b, the arrow shows the recoating direction, taken as a reference to identify different
positions of the samples. Considering the large number of samples involved in the benchmarking, the
parts were identified with letters (A, B, C, D, F, G, and H) for the participant, numbers (1, 2, and 3)
identifying the job repetition and combinations of letters (BL, BR, C, TL and TR) identifying the position
of the sample on the building platform according to the recoating direction (Bottom Left, Bottom Right,
Centre, Top Left, and Top Right, respectively).

In the spiral samples, it was possible to notice all the features mentioned in Table 3 plus others
used for a comprehensive characterization of the machine performance. The sample presented in
Figure 3 contains the following features:

• Long thin wall: thickness 0.3 mm; height 7 mm; length 49 mm;
• Eight pins with diameters of 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, and 4.0 mm;
• Twelve holes on the top surface with diameters of 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.2, 1.5, 2.0, 3.0, 4.0,

and 6.0 mm;
• Eight crosses with wall thicknesses of 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.50 mm;
• Nine holes on vertical surface with diameters of 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, and 6.0 mm;
• Unsupported pyramids with slopes of 25◦, 35◦, and 45◦;
• Two unsupported spirals with internal diameters of 1.0, 2.5, and 4.5 mm.

The global overview of the samples per job was as follows:
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• Five spiral samples;
• Five parallelepipeds with overall dimensions 30 × 30 × 20 mm;
• Five parallelepipeds with overall dimensions 15 × 15 × 10 mm;
• Four tall samples (with the shape of tensile test specimens);
• Five cylinders with diameter 20 mm and height 60 mm.

All features were checked to be measurable with the intended available equipment, in accordance
with the design-for-metrology guidelines [29,30].
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Figure 3. Artifact with spiral on benchmarking [27].

3. Materials and Methods

Each participant received the STL file for each sample that had to be inserted on the building
platform, with an indication of where to place it (see Figure 2b). The choice of sending the STL files
directly was made as all of the participants received the designs with exactly the same mesh sizes to
avoid having the quality of the products depend on the meshing accuracy. Participants were asked to
additively manufacture the parts with new maraging steel powder and not post-process any of the
parts, apart from cutting them from the building platform, and to specify the technology used for the
separation operation. The companies were informed about the analysis that was going to be conducted
and the aspects that were going to be evaluated. Specific aspects of the AM process such as the choice
of process parameters and the type of support structures to connect the parts to the platform were left
to the companies under the assumption that they were in fact in the best position to understand the
equipment and its usage to ensure the best results.

As already mentioned, the material chosen was maraging steel grade 300 (18% Ni Maraging 300,
1.2709), with the chemical composition presented in Table 4.

Table 4. Chemical composition of maraging steel (st-%) [31].

Fe Ni Co Mo Ti Al Cr, Cu C Mn, Si P, S

Bal 17–19% 8.5–9.5% 4.5–5.2% 0.6–0.8% 0.05–0.15% Each
≤0.5% ≤0.03% Each

≤0.1%
Each
≤0.01%

The bulk density of the material considered was 8.1 g/cm3 [31,32].
Then, the analysis of the parts was conducted as follows:

• All spiral samples received (five samples per job for three jobs and seven participants) were coated
with a thin layer of TiO2 and measured with a GOM Atos ScanBox 5108 16M 3D scanner. From the
results collected, it was possible to evaluate the repeatability among positions and jobs and the
distortions of the parts as an indicator of residual stresses. It was also possible, with further
analysis of the scan, to determine the deviations of a feature’s dimensions from the nominal CAD
design. The data from the scanner were analyzed with GOM Inspect software (as was done,
for example, in [23,33]). The authors’ choice of using a contactless system to measure geometrical
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features (a 3D scanner) instead of more conventional instruments, such as micrometers and
calipers, was justified by a preference to obtain more measurement points over an easier and faster
measurement technique for more reliable results [34].

• Figure 4 shows the sample and the direction of the surface roughness measurements: X and Y in
the XY Cartesian plane, Z and T in the ZX plane. The surface roughness was measured with a
Taylor Hobson Form Talysurf 50 profilometer.
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Figure 4. Surface roughness measurements of samples with spiral and big parallelepiped. (left) position
on the sample with spirals where the roughness in X and Y directions was measured, (right) position
on the parallelepiped where the roughness in Z and T directions was measured.

Each measurement was performed only on the central samples for each job. The measurements
were conducted according to DIN EN ISO 4288:1998 and 3274:1998. The specifications used are reported
in Table 5.

Table 5. Surface roughness measurement specifications.

Ra Range 2–10 µm

Evaluation length 12.5 mm
Sample length 2.5 mm
λc 2.5 mm
λf 0.08 mm
Number of cut-offs 5
Surface Aperiodic
Filter Gaussian

In this report, the choice was to use the Ra parameter for the roughness evaluation, since it is one
of the most frequently adopted texture parameters, to allow for an easier comparison of performance
in the existing literature [35].

• The homogeneity evaluation was conducted through density measurements on the small
parallelepiped (15 × 15 × 10 mm) using the Archimedes principle, as in [36], and by analyzing
the residual defects under an optical microscope of two polished surfaces (on the XY and ZX
planes) of all central big parallelepipeds (30 × 30 × 20 mm). The samples were mirror-polished
on the two surfaces and observed under an optical microscope, and the pictures collected were
elaborated with ImageJ software, as in [37]. The images were converted to black and white
to count the number of darker pixels that were considered residual defects by using a specific
tool in the software. In many industrial applications, the surface of LPBF products needs to be
post-processed, in particular polished, to obtain the required surface quality. When defects are
presented close to the surface, for example, residual porosities or inclusions, the surface quality
after polishing will not be acceptable, and this is why it was important to evaluate this aspect.

• Rockwell C (HRC) was the method chosen for hardness evaluation, as in [38], and it was performed
on a clean surface, slightly ground, in the XY and ZX planes.

• Moreover, the time necessary for producing each job was recorded and compared. As already
mentioned, all but one of the machines were among the newest technology on the market, and in
this paper are identified with letters. Table 6 shows the shareable information from the participants
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(i.e., type of company, number of lasers, technology used to separate the parts from the building
platform, and layer thickness used for production).

Table 6. Machines evaluated in this benchmarking. Machine H is the only one whose information will
be shared: Yb fiber laser, max power 200 W, building platform 250 × 250 mm, nitrogen atmosphere,
hard ceramic recoater.

Company Type of Company No. Lasers Used Cutting Technology Layer Thickness [µm]

A Machine manufacturer 1 Wire EDM 40
B Machine manufacturer 1 Wire EDM 30

C Machine manufacturer 2 2 jobs: wire EDM 1 job:
band saw 30

D Machine manufacturer 1 Wire EDM 40
E End user (machine owner) 2 – 40
F Machine manufacturer 4 Wire EDM 40
G End user (machine owner) 1 Band saw 40
H End user (machine owner) 1 Band saw 40

Company E was not able to produce three complete jobs, so no results from E are presented in
this research.

4. Results

In this section, all the results collected from the above-mentioned analysis are presented. Figure 5
shows the CAD drawing of the part with reference dimensions, and Figures 6 and 7 show some of the
manufactured samples.
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The white residuals on the surface of some parts came from the TiO2 coating used for the 3D
scanning of the parts. Examining the parts when they were still attached to the building platform,
it was possible to do some useful observation such as in Figure 8, where a significant part distortion
that generated delamination of the parts from the platform can be seen.
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Another aspect immediately visible from the pictures is the effect of the choice of tool to cut the
part from the building platform. We noticed that the use of a wire-cut electrical discharge machining
(EDM) left the bottom surface smoother and more precise, with the risk that rust would be created on
the surface if a water dielectric was chosen, as happened for some participants.

4.1. 3D Scanner Results: Accuracy, Repeatability, and Complex Feature Production

All the results generated by the 3D scanner of the spiral samples were produced by using Gaussian
best fit alignment, focusing on three surfaces to obtain a more comprehensive and robust comparison
of the dimensions and distortions of parts. The first two surfaces used for the alignment are presented
in Figure 9.
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An additional surface for alignment, focusing on the thin wall of the spiral sample, was used to
more accurately evaluate the distortion of the part, as presented in Figure 10.
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Figure 11. Color plot of the central spiral sample, first job from company H.

On the right side of the color plot, the scale bar shows the upper and lower limits, chosen as +/−

0.1 mm, since greater distortions would make the part unacceptable for most applications.
The generated color plot was used to evaluate the repeatability of the machines across jobs and

positions. A comparison of the color plots between different suppliers across the jobs for each company
is shown in Figure 12 for all central positions.
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It is evident in Figure 12 that repeatability across jobs is not ensured for all machines, for example,
in the color plots for participants A, B, D, F, and G, where the deviations differed for all three jobs.
In addition, repeatability was not ensured across different positions, as presented in Figure 13 for
company G.
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Figure 14. Color plot from the entire second job from company H; 3D scanner top alignment. (a) BL,
(b) BR, (c) C, (d) TL, (e) TR.

Considering the same printing job, the dimensional analysis highlights that the parts produced
were affected by some repeatability issues depending on their position on the building platform.
Similar observations could be made for all participants. A distortion evaluation was conducted by
looking at the entire color plot (and for some companies these were particularly evident such as for
company C in Figure 12) as well as by comparing the distortions, focusing on the deviations of thin
walls compared to the nominal design. A comparison is presented in Figure 15.
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For some companies such as C, distortions on the thin walls were extremely evident and already
visible during the visual inspection, as shown in Figure 16.
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Figure 16. Picture of the real sample from company C, first job, BL.

From the 3D scanner results, all features were analyzed to evaluate how much they deviated from
the nominal CAD design. The first objective of features such as pins and crosses is to immediately
understand whether the machine is capable of producing them or not, as a pass/fail evaluation. In the
following tables, the pass/fail test results are presented for each supplier and for all pins and crosses.

Starting from the pin’s features, Table 7 shows which features managed to be produced and which
did not. The analysis and dimensions were assessed with an optical microscope. The number of
features is in the same ascending order as in Section 2, here reported again: diameter of pins 1–8:
0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm, 1 mm, 2 mm, 3 mm, and 4 mm. The symbol legend is as follows:
X acceptable; ≈uncertain; 7 not built. A feature was considered acceptable when it was fully built,
with approximately the dimensions defined in the CAD that could be measured with the optical
microscope, also tolerating slightly bent pins because of normal handling. A feature was considered
uncertain when it was properly built but too bent to be measured, in order to confirm its dimension
compared to the nominal.

Table 7. Pin construction summary for each company. X acceptable; ≈uncertain; 7 not built.

Supplier Pin 1 2 3 4 5 6 7 8

A

TL 777 777 7XX 77≈ XXX XXX XXX XXX
TR 777 777 7X7 77≈ XXX XXX XXX XXX
C 777 7≈7 XXX 7≈7 XXX XXX XXX XXX

BL 777 777 7X≈ 7≈≈ XXX XXX XXX XXX
BR 777 777 X7X 777 XXX XXX XXX XXX

B

TL 7≈7 ≈77 XXX XXX XXX XXX XXX XXX
TR 77≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
C 77≈ ≈≈≈ XXX XXX XXX XXX XXX XXX

BL 7≈7 ≈≈7 XXX XXX XXX XXX XXX XXX
BR 7≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
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Table 7. Cont.

Supplier Pin 1 2 3 4 5 6 7 8

C

TL ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
TR ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
C ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX

BL ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
BR ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX

D

R 777 ≈77 XXX XXX XXX XXX XXX XXX
T 777 7≈7 XXX XXX XXX XXX XXX XXX
C 777 777 XX7 XXX XXX XXX XXX XXX
L 777 77≈ XXX XXX XXX XXX XXX XXX
B 777 777 XX7 XXX XXX XXX XXX XXX

F

TL 777 777 777 XXX XXX XXX XXX XXX
TR 777 777 X7X XXX XXX XXX XXX XXX
C 777 777 X≈7 XXX XXX XXX XXX XXX

BL 777 777 777 XXX XXX XXX XXX XXX
BR 777 777 XXX XXX XXX XXX XXX XXX

G

TL 777 7≈7 XXX XXX XXX XXX XXX XXX

TR 777 777 XXX XXX XXX XXX XXX XXX

C 777 777 XXX XXX XXX XXX XXX XXX

BL 777 777 XXX XXX XXX XXX XXX XXX

BR 777 7≈≈ XXX XXX XXX XXX XXX XXX

H

TL 777 77≈ XXX XXX XXX XXX XXX XXX

TR 777 ≈≈7 X7X XXX XXX XXX XXX XXX

C 777 777 XXX XXX XXX XXX XXX XXX

BL 777 ≈≈≈ 77X XX≈ XXX XXX XXX XXX

BR 777 7≈7 XX7 XXX XXX XXX XXX XXX

The optical microscope analysis revealed that most of the smallest pins (i.e., 0.3 mm diameter or
less) were deformed or completely bent. As far as the largest pins were concerned, it was possible to
distinguish the contour lie from the internal filling of the laser scan track, as presented in Figure 17.
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distinguish the contour lie from the internal filling of the laser scan track, as presented in Figure 17. 
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With GOM Inspect analytical software from the 3D scanner, the deviation of dimensions of the
printed features compared to the nominal design was plotted, and shown in Figure 18. In the graph,
the samples are defined on the x-axis, and the y-axis shows the deviation from the nominal CAD design
(referred as 0). Each line color represents a different pin, while each peak/valley is a different sample.
On the top, the companies are indicated for each region of the graph.
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Figure 18. Deviation graph of the pin diameters compared to nominal CAD dimension produced with
GOM Inspect for each pin from each company (in the graph, company F is referred to as company I).

Some of the lines of the deviation graph look interrupted or completely out of average; this is
again due to the fact that most of the smallest pins were broken or bent (probably due also in part to
handling), and therefore it was not possible to obtain a proper measurement. It is interesting to observe
that most of the companies produced pins that were smaller than the nominal CAD dimension.

The same investigation was conducted for the crosses, and Table 8 shows a summary of the pass/fail
dimensions. Crosses 1–8 had the following dimensions (vertical and horizontal wall thickness): 0.10 mm,
0.15 mm, 0.20 mm, 0.25 mm, 0.30 mm, 0.35 mm, 0.40 mm, and 0.50 mm, respectively. The symbol
legend is as follows: X acceptable; ≈existing feature, oversize; X existing feature, not acceptable;
7 not built.

Table 8. Cross construction summary for each company. X acceptable; ≈existing feature, oversize;
X existing feature, not acceptable; 7 not built.

Supplier Cross 1 2 3 4 5 6 7 8

A

TL 777 777 XXX XXX XXX XXX XXX XXX
TR 777 777 XXX XXX XXX XXX XXX XXX
C 777 777 XXX XXX XXX XXX XXX XXX

BL 777 777 XXX XXX XXX XXX XXX XXX
BR 777 777 XXX XXX XXX XXX XXX XXX

B

TL XXX XXX XXX XXX XXX XXX XXX XXX
TR XXX XXX XXX XXX XXX XXX XXX XXX
C XXX XXX XXX XXX XXX XXX XXX XXX

BL XX7 XXX XXX XXX XXX XXX XXX XXX
BR XXX XXX XXX XXX XXX XXX XXX XXX

C

TL ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
TR ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
C ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX

BL ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
BR ≈≈≈ ≈≈≈ XXX XXX XXX XXX XXX XXX
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Table 8. Cont.

Supplier Cross 1 2 3 4 5 6 7 8

D

R XXX XXX XXX XXX XXX XXX XXX XXX
T XXX XXX XXX XXX XXX XXX XXX XXX
C XXX XXX XXX XXX XXX XXX XXX XXX
L XXX XXX XXX XXX XXX XXX XXX XXX
B XXX XXX XXX XXX XXX XXX XXX XXX

F

TL XXX XXX XXX XXX XXX XXX XXX XXX
TR XXX XXX XXX XXX XXX XXX XXX XXX
C XXX XXX XXX XXX XXX XXX XXX XXX

BL XXX XXX XXX XXX XXX XXX XXX XXX
BR XXX XXX XXX XXX XXX XXX XXX XXX

G

TL 777 XXX XXX XXX XXX XXX XXX XXX
TR 777 XXX XXX XXX XXX XXX XXX XXX
C 777 XXX XXX XXX XXX XXX XXX XXX

BL 777 XXX XXX XXX XXX XXX XXX XXX
BR 777 XXX XXX XXX XXX XXX XXX XXX

H

TL 777 XXX XXX XXX XXX XXX XXX XXX
TR 777 XXX XXX XXX XXX XXX XXX XXX
C 777 XXX XXX XXX XXX XXX XXX XXX

BL 777 XXX XXX XXX XXX XXX XXX XXX
BR 777 XXX XXX XXX XXX XXX XXX XXX

Measurement of the crosses was carried out with an optical microscope and a 3D scanner.
Some pictures collected with the optical microscope are presented in Figure 19, and also show the
shapes of the crosses that were considered to be not acceptable.

Again, the deviation analysis of the real dimensions of the features against the nominals from the
GOM software is reported in Figure 20.

One reason why most of the crosses of small dimensions, compared to the pins, were built while
the pins were not is due to the geometry of the features. The pins, whose dimensions were almost as
large as the beam focus (around 80 µm for most of the suppliers), were built with a single laser shot,
while the crosses were made of an entire scan track, which is inherently more resistant, for a more
robust design.

The same type of evaluation was conducted for the holes, in particular using the deviation analysis
produced by the GOM software. The deviation graph of the real dimensions compared to the nominal
dimensions is plotted in Figure 21.
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Figure 22. Optical microscope pictures of selected holes: diameter of 1.5 mm and 1.2 mm, F, first job,
central sample (left); diameter of 1.5 mm and 1.2 mm, H, first job, central sample (right).

Observing and comparing the deviation graphs of the average diameters of pins and holes, it is
possible to consider the beam offset. As reported by Moylan et al., a too large beam offset can be
recognized when the diameters of the pins are smaller than the nominal, while the holes are larger.
On the contrary, a too small beam offset generates larger pins and smaller holes than the nominal [14].
This tendency can be recognized for company C, for which the beam offset was too large, and to some
extent for company G, which had a too small beam offset.

The last important feature that needs to be considered in this evaluation is unsupported pyramids
(see Figure 23).J. Manuf. Mater. Process. 2019, 3, x FOR PEER REVIEW 22 of 31 
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All the companies managed to produce a pyramid, even ones most inclined at 25◦, for all positions
and jobs. Only one of the participants, D, presented some issues with the down-facing surface,
most likely due to the wrong choice of process parameters for this type of surface, particularly critical
in LPBF, and/or damage on the recoated surface that is also visible on the top. Figure 24 shows the
pyramids and recoated issues.
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Figure 24. Observed defects on the spiral samples: pyramids from company D, first job, C sample
(left); recoater issue from company D, first job, T sample (right).

4.2. Surface Roughness: Accuracy

The surface roughness was evaluated in four directions (Figure 4), using the Ra parameter and
repeating each measurement at least three times. Table 9 shows the collection of results, showing the
company, direction, average (avg, in µm), and standard deviation (std.-dev).

All the data presented were analyzed using Minitab software with one-way ANOVA to recognize
particular trends depending on the job number for each direction. For companies A, F, and H, there were
no significant differences among jobs for any direction; all of the other companies revealed some
discontinuities. To summarize, Figure 25 shows the means comparison charts from the one-way
ANOVA analysis for all directions.
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Table 9. Collection of results on surface roughness, Ra µm.

Company Direction Job Avg Std.-Dev Company Direction Job Avg Std.-Dev

A

X
1 9.5 0.7

F

X
1 6.5 0.4

2 8.9 0.7 2 6.1 0.6
3 9.6 0.9 3 5.6 0.2

Y
1 9.9 0.6

Y
1 6.9 1.0

2 8.8 0.6 2 6.7 0.4
3 8.3 1.1 3 6.3 0.9

Z
1 6.1 0.5

Z
1 10.1 1.3

2 6.3 0.2 2 9 1
3 6.5 0.5 3 11 1

T
1 6.7 1.0

T
1 10.6 1.4

2 6.3 0.4 2 9.6 0.8
3 5.9 0.7 3 10 1

B

X
1 12.6 0.4

G

X
1 9.9 0.2

2 10.6 1.9 2 8.9 0.7
3 10.6 1.9 3 8.6 1.2

Y
1 10.3 0.4

Y
1 8.3 0.1

2 10.1 0.2 2 9.4 0.9
3 10.4 1.1 3 8.7 0.4

Z
1 9.2 0.8

Z
1 8.0 0.9

2 11.4 0.3 2 6.4 0.3
3 8.6 0.6 3 7.8 0.2

T
1 9.7 0.4 1 5.5 1.7
2 10.8 1 T 2 5.0 0.3
3 8.9 0.3 3 5.3 0.5

C

X
1 10.8 0.2

H

X
1 7.1 0.9

2 11.5 0.3 2 5.2 0.5
3 9.9 0.6 3 6.1 0.4

Y
1 10.1 1.1

Y
1 6.1 0.6

2 9.8 0.7 2 6.2 0.6
3 10.1 0.7 3 6.1 0.3

Z
1 7.7 0.3

Z
1 5.4 0.7

2 7.8 0.5 2 5.2 0.5
3 9.3 0.3 3 6.2 0.3

T
1 7.0 0.6

T
1 5.1 0.9

2 7.7 0.8 2 5.2 0.4
3 9.7 0.5 3 5.7 0.33

D

X
1 6.9 0.5
2 19.9 6.4
3 11.7 0.5

Y
1 18.9 2.1
2 19.2 3
3 10 1.2

Z
1 6.2 0.4
2 7.5 0.4
3 8 1.2

T
1 5.9 0.1
2 7.6 0.6
3 8.6 1.9
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4.3. Homogeneity

The homogeneity of the products was evaluated both by analyzing the density and by measuring
the quantity of residual defects after polishing two sides (XY and ZX planes) of the cubes. The density
results are presented in Table 10, and relative density was calculated as follows:

Relative density =
Density (measured)
Theoretical density

× 100

where the theoretical bulk density was considered to be 8.1 g/cm3, as mentioned in Section 3.

Table 10. Density and relative density for each supplier.

Company Density (g/cm3) Relative Density (%)

A 8.05 99.4
B 8.04 99.3
C 8.07 99.6
D 7.98 98.5
F 8.06 99.5
G 8.05 99.4
H 8.06 99.5

As expected, density for most of the participants was above 99%, except for company D, again most
likely because of the recoated issue that did not ensure proper distribution of the powder.

For evaluation of the residual defect, the central larger parallelepiped was polished on two
surfaces: XY (parallel to the building platform) and XZ (one of the growing sides). Using ImageJ
software, as in [30], the number of defects was calculated to produce the results presented in Table 11
and plotted in Figure 26. The defects identified with this method were recognized as residual porosities
or inclusions in the material.

Table 11. Percentage of residual defects visible on polished surfaces.

Company Face XY Face Z

A 0.02% 0.01%
C 0.09% 2.6%
F 0.06% 0.4%
G 0.07% 0.7%
H 0.04% 0.04%

The participant that showed the highest percentage of residual defects on the surfaces was C
(see Figure 27, showing two selected pictures for each face).

The sample from company C presented multiple defects in some areas of the XZ surfaces of
dimensions considerably bigger than all samples from other companies or from the same company,
but on the XY face, which explains the very big deviations of values seen in Figure 26. To precisely
define the source of these differences, further analysis would be required.
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4.4. Mechanical Properties: Rockwell Hardness C

Rockwell hardness C (HRC) was measured for two sides, XY and XZ, on the as-built parts.
The means charts are presented in Figure 28.
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As expected, no relevant differences were recorded from the conventional value of HRC for
non-heat-treated maraging steel grade 300 [39]. One-way ANOVA analysis was conducted to identify
eventual variation across jobs and positions, but it was negligible.

4.5. Build Speed Comparison

The average time required to print each job was provided by the participants to have a reference
for the building speed of the machine. Table 12 reports the times along with the number of lasers that
the specific machine used for the job.

Table 12. Build time (in hours) for each company to produce one job.

A (1 Laser) B (1 Laser) C (2 Laser) D (1 Laser) F (4 Lasers) G (1 Laser) H (1 Laser)

40.5–49.5 52.6 50–65 66–80 24–25 60–62 52–53

It is clear that the build time was influenced mainly by the number of lasers and not by how
new the machine was. Other factors that certainly influenced the build time are related to the process
parameters chosen and the scan strategy.

4.6. Tall Parts Production

Tall specimens with the shape of tensile test samples were used to evaluate the capability of the
machines to build relatively tall parts (more than 80 mm, with a 10 mm base diameter). Figure 29
shows selected pictures.
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Apart from company G, all participants managed to produce most of the samples.

5. Discussion and Conclusions

In this work, the authors present the results from an extensive benchmarking activity conducted
on LPBF machines, comparing the performance of five state-of-the-art machines operated by their
respective manufacturers and two-state-of-the art machines operated by their respective owners
(end users), and contrasting the newest machine capabilities with a machine more than 10 years old.
The old machine, identified with the letter H, was an EOS M270. Table 13 presents an overview of the
results collected with related discussion.

Table 13. Results overview and discussion.

General Aspect Specifications Results and Discussion

Accuracy
Dimension of

feature
Most features measured overcame limitations stated by machine
manufacturers in Table 3.

Surface
roughness

Surface roughness revealed for most companies’ discontinuities in Ra
value among jobs depended on the directions; in general, between all
samples, Ra was never lower than 5.0 ± 0.3 µm (G-T-2).

Repeatability

Same job,
different
positions

Color plot analysis shows there was total repeatability among positions
and/or jobs for none of the companies; however, differences could have
been appreciated between companies.

Different jobs

Complex feature
Spiral shape:

mold’s cooling
channel

All companies managed to produce good quality spiral features, well
handling complex geometries.

Homogeneity
Residual defects Most companies had density higher than 99%, as expected, during

Archimedes analysis; in polished surface analysis some differences of
residual defects could be seen, even if most participants did not
overstep 0.1% of defects on both surfaces.

Density

Residual stress Part distortions

Thin wall showed, especially in some cases, great distortions coming
from process that would need to be considered for production of end
products with tight tolerance; during analysis of repeatability it was
possible to appreciate part distortion of overall spiral sample.

Mechanical properties Rockwell
hardness C

Measurements did not reveal discontinuity of products from any
company, recording expected HRC value.

Built speed
Time required for production was important input for readiness of use
of LPBF for industrial production as well as an indication of the recent
direction of technology development.

Tall parts production Tall samples Tall parts production (with a small base) presented issues for only one
company, confirming that it does not represent a current problem.

The outcomes of the benchmarking work can be summarized as follows:
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• Considering the good results from company H, which used the oldest machine, it is evident that
user experience and expertise play large roles in the final quality of the delivered product.

• The part design presented for realizing holistic benchmarking of LPBF machines was successful
in achieving the goal.

• According to this work, even the newest machines did not outperform the older machine.
• One of the major trends revealed by analyzing the newest systems is the focus of machine

manufacturers on building larger and faster machines; this goal is currently achieved in the
industry by increasing the number of lasers, but little attention is given to other factors (such as
higher repeatability and the ability to print tiny features, or improving the surface roughness),
as was observed during this work.

LPBF, and AM in general, is technology that is trying to overcome prototyping applications to
create its own space in industrial production. In order to help this technology achieve this ambitious
goal, it is extremely important that the process become more robust, in terms of better repeatability
and less dependence on the user’s experience.

An additional consideration of this work can be made regarding the suitability of using a
benchmarking component to compare different AM technologies, particularly considering the multiple
attempts made in recent years to standardize a design for additive manufacturing. Given the seven
categories of AM technology, even if they all essentially build parts layer upon layer, they are profoundly
different from each other with respect to the basic working principles and the materials they consider
(for example, in PBF, both metal and polymer powders can be processed), so it is very complex, if not
impossible, to create a unique design without considering the final application of products built with the
technology. Moreover, considering the fast development of all AM technologies, specific geometrical
aspects such as the minimum feature size (both external and internal) and the components’ overall
size should always be updated. As a final reflection on how this work integrates in the landscape of
previous benchmarking research for AM, it is the first attempt to evaluate the influence of the specific
machine used, by multiple manufacturers, from a holistic perspective, requiring the design of not
only a single artifact but a complete job that integrates designs for metrology concepts to ensure the
measurability of all specimens and features.
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