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Abstract—A novel h–ϕ formulation for solving time–harmonic
eddy current problems is presented. It makes it possible to limit
the number of degrees of freedom required for the discretization
likewise T–Ω formulation, while overcoming topological issues
related to it when multiply connected domains are considered.
Global basis functions, needed for representing magnetic field
in the air region, are obtained by a fast iterative solver.
The computation of both source fields and thick cuts by
high–complexity computational topology tools is thus avoided.

Index Terms—Eddy currents, Finite element method, Cell
Method, Multiply connected, Cut.

I. INTRODUCTION

The T–Ω method is known to be one of the most efficient
methods for eddy–current problems [1]. This formulation
requires however high–complexity algorithms for generating
source fields and thick cuts. A novel H–Φ formulation for
multiply connected problems has been proposed in [2]. By
generating topological bases with an iterative LSMR solver,
cuts for Φ are avoided in [3]. Starting from this approach, an
h–ϕ formulation for eddy current problems is here presented.

II. h–ϕ FORMULATION

The computational domain Ω ⊂ R3 is made of multiply
connected conductive ΩC and insulating ΩI subdomains, with
Γ = ΩC ∩ ΩI . In order to avoid cuts, the key idea is that the
reduced magnetic field in ΩI splits as H = ∇ϕ+

∑β
k=1 IkHk,

where ϕ, Ik are not necessarily a magnetic scalar potential and
currents, and Hk are curl–free fields, i.e., a cohomology basis
in ΩI , with possibly unconstrained circulations around ΩC .

The time–harmonic diffusion equation of the magnetic field
in ΩC , discretized by the Cell Method (CM), becomes:(
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where Mρ,ΩC
, Mµ,ΩC

are electric and magnetic constitutive
matrices, CΩC

, C̃ΩCΓ are the (primal) edge–to–face and the
boundary (dual) face–to–edge incidence matrices, and hΩC

,
ẽΓ are the arrays of mmfs and emfs on primal and dual edges
of ΩC and Γ. The magnetostatic equation in ΩI becomes:
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where Mµ,ΩI
is the magnetic constitutive matrix, D̃ΩΓI

are the (primal) node–to–edge and the boundary (dual)
face–to–volume incidence matrices, and b̃Γ is the array of

magnetic fluxes through Γ. A key feature is that arrays hΩI
,

i.e., mmfs of field H1 in ΩI , and hs, i.e. mmfs of the source
magnetic field, are computed by a fast iterative LSMR solver.
hΩI

is obtained by solving system CΩI
hΩI

= 0, where CΩI

is the (primal) edge–to–face incidence matrix in ΩI and a
coefficient of hΩI

, corresponding to an arbitrary edge of Γ, is
set to one. Complementing (1) and (2) with the magnetostatic
energy balance in ΩI and matching conditions on Γ yields a
saddle–point matrix system to be solved by direct LU solver.

The method is validated with 3rd ord. axisymmetric FEM.
A torus shell ΩC (5 mm inner radius, 5 mm thick, 4 cm long,
µr = 2 relative permeability, σ = 25 MS/m conductivity) is
excited by a current–driven coil ΩS (4 mm × 4 mm square
cross–section, 15 mm radius, 106 A m−2 current density, 100
Hz frequency) centered on the shell axis. A very coarse mesh
is used for 3–D CM (i.e. 5,867 tets for the shell, 213 tets for
the coil, 11,811 tets for the air), whereas 2–D FEM is refined
up to convergence. Topological field is solved in 7 ms by the
LSMR solver. Fig. 1 shows that 3–D CM results are very
accurate even with a coarse discretization (12,539 DoFs).
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Fig. 1. Real and imaginary parts of the magnetic flux density z–axis
component along the vertical line x = 4 mm, y = 0, z = [0, 40] mm.
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