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Abstract
Bayesian nonparametric density estimation is dominated by single-scale methods, typically exploiting mixture model speci-
fications, exception made for Pólya trees prior and allied approaches. In this paper we focus on developing a novel family of
multiscale stick-breaking mixture models that inherits some of the advantages of both single-scale nonparametric mixtures
and Pólya trees. Our proposal is based on a mixture specification exploiting an infinitely deep binary tree of random weights
that grows according to a multiscale generalization of a large class of stick-breaking processes; this multiscale stick-breaking
is paired with specific stochastic processes generating sequences of parameters that induce stochastically ordered kernel
functions. Properties of this family of multiscale stick-breaking mixtures are described. Focusing on a Gaussian specification,
a Markov Chain Monte Carlo algorithm for posterior computation is introduced. The performance of the method is illustrated
analyzing both synthetic and real datasets consistently showing competitive results both in scenarios favoring single-scale and
multiscale methods. The results suggest that the method is well suited to estimate densities with varying degree of smoothness
and local features.

Keywords Bayesian nonparametrics · Density estimation · Dirichlet process · Pitman–Yor process · Pólya trees

1 Introduction

Nonparametricmodels havewell-known advantages for their
weak set of assumptions and great flexibility in a variety
of situations. In particular, Bayesian nonparametrics (BNP)
has received abundant attention in the last decades and it is
nowadays a well-established modeling option in the data sci-
entist’s toolbox. If standard parametric Bayesian inference
focuses on the posterior distribution obtained by defining
suitable prior distributions over a finite dimensional paramet-
ric space Ξ with ξ ∈ Ξ typically characterizing a specific
parametric distributionGξ for data y = (y1, . . . , yn), in BNP
one defines prior distributions on infinite-dimensional prob-
ability spaces flexibly characterizing the data distribution G.
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Under these settings, only minor assumptions are made on
G making the whole inferential procedure more robust.

The cornerstone of the discipline is the Dirichlet process
(DP) introduced by Ferguson (1973). The DP is a stochas-
tic process that defines a prior on the space of distribution
functions; several generalizations of the DP have been pro-
posed such as the Pitman–Yor (PY) process (Perman et al.
1992; Pitman and Yor 1997), the normalized random mea-
sures with independent increments (NRMI) (Regazzini et al.
2003;Nieto-Barajas et al. 2004; James et al. 2006, 2009) and,
more in general, the Gibbs-type priors (Gnedin and Pitman
2006). Realizations from these priors, however, are almost
surely discrete probability functions, and thus, they do not
admit a density with respect to the Lebesgue measure. As a
remedy to this characteristic, the DP and allied priors can be
used as prior distributions for the mixing measure of a mix-
ture model. The first and most useful example of this is the
DP mixture (DPM) of Gaussian kernels (Lo 1984; Escobar
and West 1995).

Pólya trees (PT) (Lavine 1992a, b; Mauldin et al. 1992)
are alternative formulations whose draws implicitly admit
densities with respect to the Lebesgue measure. PT, on the
surface, are also particularly appealing in providing a mul-
tiscale structure and thus in characterizing possible abrupt
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local changes on the density. In practice, however, this con-
struction tends to producehighly spikydensity estimates even
when the true density is smooth. To circumvent this lack of
smoothnessWong andMa (2010)modify the PT construction
adding an optional stopping mechanism in the PT construc-
tion; more recently Cipolli and Hanson (2017) proposed a
smoothed version of the PT. Canale and Dunson (2016) con-
sider a related multiscale mixture model based on Bernstein
polynomials but are confined to model continuous densities
on (0, 1).

Consistently with these contributions, in this paper we
introduce a general class of multiscale stick-breaking pro-
cesses with support on the space of discrete probability mass
functions suitable asmixingmeasure inmultiscalemixture of
continuous kernels.Wewill show that the inducedmultiscale
mixture of kernels provides a compromise between the DPM
and the PT able to adapt both to smooth or spiky densities
while showing excellent performance when the underlying
density presents different local smoothness levels.

Themethod generalizes Canale and Dunson (2016) in two
directions. First, a more general multiscale stick-breaking
process inspired by the PY process is introduced. This gen-
eralization provides a high degree of flexibility and exhibits
only mild dependence from the specific prior parameters,
consistently with successful applications of the PY process.
Second, a multiscale base measure generating kernel densi-
ties that are stochastically ordered and defined on a general
sample space is introduced. These two elements induce a
class of prior for continuous densities that successfully adapts
to the actual degree of smoothness of the true data generating
distribution showing competitive performance with respect
to state-of-the-art competitors.

The remainder of the paper is organized as follows: In the
next section we introduce our multiscale stick-breaking prior
and describe some of its basic properties. Section 3 describes
a Gibbs sampling algorithm for posterior computation. Sec-
tion 4 illustrates the performance of the methods through
the analysis of several synthetic and real datasets. Section 5
concludes the paper.

2 Multiscale stick-breakingmixture

Let y ∈ Y ⊂ R, be a random variable with unknown density
f . We assume for f the following multiscale construction

f (y) =
∞∑

s=0

2s∑

h=1

πs,hK(y; θs,h), (1)

where K(·; θ) is a kernel function parameterized by θ ∈ Θ

and {πs,h} and {θs,h} are unknown sequences of positive
weights summing to one and parameters belonging to Θ ,
respectively. We will refer to this model with the term multi-
scale mixture (MSM) of kernel densities. This construction
canbe representedwith an infinitely deepbinary tree inwhich
each node is indexed by a scale s and an index h = 1, . . . , 2s

and where each of these nodes is characterized by the pair
(πs,h, θs,h). A cartoon of a truncation of this binary tree is
reported in Fig. 1.

Model (1) can be equivalently written as

f (y) =
∫

K(y; θ)dP(θ), P =
∞∑

s=0

2s∑

h=1

πs,h δ
θs,h

, (2)

where δx is theDirac delta function. Thus, a prior distribution
for the multiscale mixture (1) is obtained by specifying suit-
able stochastic processes for the random mixing measure P
or, equivalently, for the random sequences {πs,h} and {θs,h}.
These characterizations are separately carefully described in
the next sections.

Approximations of the mixture model (1) can be obtained
fixing an upper bound smax for the depth of the tree.
This truncation is obtained consistently with Ishwaran and
James (2001) for the standard single-scale mixture model
and Canale and Dunson (2016) for the multiscale mixture
of Bernstein polynomial model. Such a truncation can be
applied both if one considers not scientifically relevant higher
levels of resolution or to reduce the computational burden.

Fig. 1 Binary tree with mixture
weights πs,h and kernel’s
parameters θs,h at each node
(s, h), where s is the scale level
and h is the index within the
scale
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2.1 Multiscale mixture weights

We first focus on the sequence of mixture weights {πs,h}. We
introduce independent random variables Ss,h and Rs,h taking
values in (0, 1) and describing the probability of taking a
given path in the binary tree reported in Fig. 1. Specifically,
Ss,h denotes the probability of stopping at node h of scale
s while Rs,h denotes the probability of taking the right path
from scale s to scale s + 1 conditionally on not stopping in
node h of that scale. The weights are then defined as

πs,h = Ss,h
∏

r<s

(1 − Sr ,�h2r−s�)Tshr , (3)

where Tshr = Rr ,�h2r−s�, if (r + 1, �h2r−s+1�) is the right
daughter of node (r , �h2r−s�, and Tshr = 1−Rr ,�h2r−s�, oth-
erwise. This construction is reminiscent of the stick-breaking
process (Sethuraman 1994; Ishwaran and James 2001) and
can be described by the following metaphor: Take a stick
of length one and break it according to the law of S0,1;
the remainder of the stick is then randomly split into two
parts according to the law of R0,1; at general node (s, h) the
remainder of the stick, conditionally on the previous breaks,
is broken according to Ss,h and then split according to Rs,h .

Different distributions for Ss,h and Rs,h lead to different
characteristics for the tree of weights. Inspired by the gen-
eral stick-breaking prior construction of Ishwaran and James
(2001) we can set

Ss,h ∼ Be(as, bs), Rs,h ∼ Be(cs, cs) (4)

where Be(α, β) denotes a Beta random variable with param-
eters α and β. This construction leads to a proper sequence
of weights as formalized in the next Lemma. Its proof is
reported in the Appendix.

Lemma 1 Let πs,h be an infinite sequence of weights defined
by (3) and (4). Then,

∞∑

s=0

2s∑

h=1

πs,h = 1 (5)

almost surely.

The above construction is a flexible generalization of
Canale and Dunson (2016) that, mimicking the DP and its
stick-breaking representation, fixed as = 1, bs = α > 0, and
cs = β > 0 for each scale s. While being way more flexible,
the specification in (4) has different parameters for each scale
and its elicitation may be cumbersome in practice. To avoid
these complications while keeping an increasing degree of
flexibility through a specific scale dependence for the distri-
bution of the random weights, we consider δ ∈ [0, 1) and

α > −δ and let

Ss,h ∼ Be(1 − δ, α + δ(s + 1)), Rs,h ∼ Be(β, β). (6)

This specification is reminiscent of the PY process, a model
which stands out for being a good compromise between
modeling flexibility, and mathematical and computational
tractability (De Blasi et al. 2015). Following Lemma 1 this
construction also leads to a proper sequence of weights.

The δ parameter introduced in (6) allows for a greater
degree of flexibility in describing how the randomprobability
weights are allocated to the nodes. To see this, consider the
expectation of πs,h , i.e.,

E(πs,h) = E

{
Ss

s−1∏

l=0

(1 − Sl)
s∏

l=1

Tl

}

=
(
1 − δ

α + 1

)(
1

2

)s s∏

l=1

(
α + δl

α + δl + 1

)
,

where we discard the h subscript on Sl ∼ Be(1 − δ, α +
δ(l + 1)) and Tl ∼ Be(β, β) for ease in notation. This
does not impact the calculation because any path taken up
to scale s has the same probability a priori and the distri-
bution of the random variables in (6) depends on the scale
s only. The expected values of the random weights can be
used to calculate the expected scale at which an observa-
tion falls, a measure of the expected resolution level, defined
by E(S̃) = ∑∞

s=0 sE(πs,h). The latter simplifies to α when
δ = 0 but can be easily obtained numerically for δ > 0.

To better understand the role of δ, Fig. 2 reports the total
expected weight of scale s, defined as the expectation of
πs = ∑

h πs,h , for different values of δ and α. It is clear
that increasing values of δ make the first levels of the tree
less probable a priori, thus favoring a deeper tree. Note that
this characteristic has to be interpreted more in terms of prior
robustness rather than favoring rougher densities as the prior
mass is more spread through the whole tree allowing the
posterior to concentrate on a tree of suitable depth. This inter-
pretation is consistent with the role of the discount parameter
of the PY process that controls howmuch prior probability is
concentrated around the prior expected value of the number
of occupied clusters and thus inducing a posterior distribu-
tion that is more robust to the prior specification. See De
Blasi et al. (2015) for a related discussion. We will show in
Sect. 4.1 that this conjecture is empirically confirmedvia sim-
ulations. Note that despite one should be tempted to assume
δ close to one, our experience suggests that values between
0.2 and 0.5 are already sufficient to relieve the prior effect. In
any case, it must be kept in mind that arbitrarily increasing δ

without controlling for α may lead to an unnecessary—and
harmful—model complexity.
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Fig. 2 Prior total weight πs = ∑
h<2s πs,h as a function of s and for δ equal to 0 (—), 0.25 (−−), 0.5 (· · · ·), and 0.9 (· − ·−); α = 1 (left) and

α = 5 (right)

2.2 Multiscale kernel’s parameters

Wenowdiscuss the stochastic process for the sequence {θs,h}.
For Y = (0, 1), Canale and Dunson (2016) assume that
K(·; θs,h) is a Beta(h, 2s − h + 1) density so that θs,h is
identified by the pair (h, 2s − h + 1), a fixed set of param-
eters. This construction is implicitly inducing a mixture of
Bernstein polynomials (Petrone 1999a, b) for each scale s
and the randomness is totally driven by the sequence of mix-
ture weights. Here, instead, wewill consider the broader case
where θs,h are unknown parameters and where K(·; θ) is a
location-scale kernel defined on a general space Y . Under
this specification, we partition the kernel’s parameter space
into a location and scale part letting Θ = Θμ × Θω so that,
consistentlywith Fig. 1, each node of the binary tree is param-
eterized by the tuple {πs,h, μs,h, ωs,h, }.

2.2.1 Location parameters

We first focus on defining a suitable sequence of locations
{μs,h} that, consistently with the dyadic partition induced by
the binary tree structure, uniformly covers the space Θμ. To
this end, for any scale s we introduce a partition of Θμ by
letting

Θμ =
2s⋃

h=1

Θμ;s,h, (7)

such that for two neighboring scales s and s + 1,

Θμ;s,h = Θμ;s+1,2h−1 ∪ Θμ;s+1,2h . (8)

Let G0 be a base probability measure defined on Θμ and
use it both to define Θμ;s,h and to generate the multiscale
locations μs,h . Specifically, we set

Θμ;s,h = [
q h−1

2s
, q h

2s

]
, (9)

where qr is the r -level quantile of the density of G0. Then,
random μs,h are sampled proportionally to the density of G0

truncated in Θμ;s,h . While preserving the covering of Θμ

this construction allows for straightforward prior elicitation
similarly to what is done for the DP or the PY process. The
next lemma, whose proof is reported in the Appendix, shows
that a priori the random probability measure on Θμ defined
by

G =
∞∑

s=0

2s∑

h=1

πs,h δ
μs,h

(10)

is centered around G0.

Lemma 2 Let G0 be a base probability measure defined on
Θμ. Introduce a dyadic recursive partition of Θμ defined by
(7), (8), and (9) and G0. If G is the discrete measure (10)
and each μs,h is randomly sampled proportionally to G0

truncated in Θμ;s,h, then, for any set A ⊆ Θμ,

E[G(A)] = G0(A).

Note that equation (10) is similar, in spirit, to the approx-
imate PT (APT) prior of Cipolli and Hanson (2017) and in
particular to their equation (3). The difference, however, is
twofold. First, our weights come from a multiscale stick-
breaking process while those of APT are the result of the PT
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recursive partitioning. The second, more evident, difference
lies on how the Dirac’s delta masses are placed. While equa-
tion (3) of Cipolli and Hanson (2017) places these on the
center of the intervals Θμ;s,h , in our construction the masses
are randomly placed inside Θμ;s,h . Hence, while the learn-
ing in APT model is totally driven by the random weights,
our approach also allows for an update of the values μs,h a
posteriori.

2.2.2 Scale parameters

We now focus on describing the sequence of scale param-
eters {ωs,h}. Consistently with our multiscale setup, the
scale parameters need to be ordered with respect to the
scale levels of the binary tree in order to induce more
concentrated kernels for increasing values of s, on aver-
age. In general the direction of the ordering depends on
the actual role of the scale parameters in the specific ker-
nel K(·; θ). For instance, for scale parameters proportional
to the variances—respectively, precisions—a decreasing—
respectively, increasing—sequence needs to be specified.
Assuming that ωs,h are proportional to the variances of the
kernels,we induce a stochastic ordering of theωs,h’s at differ-
ent scales s in the followingway. Let H0 be a base probability
measure defined on Θω with first moment EH0(ω) = ω0 and
variance VH0(ω) = γ0 both finite. Then, let

ωs,h = c(s)Ws,h, Ws,h
iid∼ H0, (11)

where c(s) is a monotone decreasing deterministic function
of s. Under this definition the sequence of {ωs,h} is stochas-
tically decreasing and

EH0(ωs+1,h) ≤ EH0(ωs,h), VH0(ωs+1,h) ≤ VH0(ωs,h).

Consistently with our multiscale construction, the first
inequality reflects the fact that from scale s to scale s + 1
we expect more concentrated kernels in equation (2). The
second inequality, in addition, implies that the prior uncer-
tainty about ω scales as well.

In the next section we discuss a specification of this con-
struction by means of Gaussian kernels and suitable choices
for G0, H0, and c(·).

2.3 Multiscale mixture of Gaussians

Although several choices for the kernelK(·; θ) can be made,
the Gaussian one is probably the most natural when Y = R.
Hence, we specify the model described in previous sections
assuming K(·; θ) = φ(·;μ,ω) where φ(·;μ,ω) is a Gaus-
sian density with mean μ ∈ R and variance ω > 0. Under
this specification eEquation (1) becomes aMSMofGaussian

densities, i.e.,

f (y) =
∞∑

s=0

2s∑

h=1

πs,hφ(y;μs,h, ωs,h).

A pragmatic choice for the base measures consists in
choosing conjugate priors. Specifically we let G0 be a Gaus-
sian distribution with mean μ0 and variance κ0. Similarly,
we restrict to the inverse-gamma family of distributions the

choice for H0. Following (11), we let Ws,h
iid∼ IGa(k, λ),

leading to E(Ws,h) = λ/(k − 1) and E(ωs,h) = c(s)λ/(k −
1). A natural choice for the function c(·) is c(s) = 2−s , which
is equivalent to let ωs,h ∼ IGa(k, 2−sλ).

Consistently with the discussion at the end of Sect. 2.2.1,
this final specification is reminiscent of the smoothed approx-
imate Pólya tree (SAPT) of Cipolli and Hanson (2017). In
both specifications, indeed, the variances of each Gaussian
mixture component are the result of a deterministic scale-
decreasing component—represented by the function c(s)
here and by the parameter dk in SAPT—and a random quan-
tity. The latter, while being controlled by a single parameter
in the SAPT model, is component specific in the proposed
formulation thus allowing for local learning of the values of
each scale parameter.

2.4 Multiscale mixture of other kernels

Henceforth, we will focus on the Gaussian kernel specifica-
tion discussed in the previous section which is undoubtedly
the most convenient choice when Y = R. In this section,
however, we want to stress the generality of our approach
and to briefly discuss how other kernels can be used if data
do not lie inR.

For bounded data, e.g., Y = (0, 1), one can choose a
uniform kernel parameterized as

K(·; θ) = ω−11I[μ−ω/2,μ+ω/2](y)

with θ = (μ, ω) and elicit G0 to be a uniform distribution
over (0,1) and H0 satisfying the moment conditions dis-
cussed in Sect. 2.2.2. Our experience, however, suggests that
the multiscale mixture of Bernstein polynomial of Canale
and Dunson (2016) is already very competitive in estimat-
ing the density over bounded domains and the more general
approach described here may lead to minor improvements
only for small sample sizes.

Differently, for a count-valued random variable, i.e., Y =
N, our contribution may be of substantial help. In this case
one can specify the kernels to be rounded Gaussians follow-
ing the approach of Canale and Dunson (2011) and choose
G0, H0, and c(·) consistently with Sect. 2.3.
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3 Posterior computation

In this section we introduce a Markov Chain Monte Carlo
(MCMC) algorithm to perform posterior inference under
the model introduced in the previous section. In the general
settings, the algorithm consists of three steps: (i) Allocate
each observation to a multiscale cluster conditionally on
the current values of {πs,h} and {θs,h}; (ii) update {πs,h}
conditionally on the cluster allocations; (iii) update {θs,h}
conditionally on the cluster allocations.

In this sectionwe focus on themultiscalemixture ofGaus-
sian and related prior elicitation discussed in Sect. 2.3 but
steps (i) and (ii) also apply for a general kernel.

Suppose subject i is assigned to node (si , hi ), with si the
scale and hi the node within scale. Conditionally on the val-
ues of the parameters, the posterior probability of subject i
belonging to node (s, h) is simply

P(si = s, hi = h|yi , πs,h) ∝ πs,hK(y; θs,h).

Consider the total mass assigned at scale s, defined as πs =∑2s
h=1 πs,h , and let π̄s,h = πs,h/πs . Under this notation, we

can rewrite the likelihood for the i th observation as

f (yi ) =
∞∑

s=0

πs

2s∑

h=1

π̄s,hK(yi ; θs,h).

Following Kalli et al. (2011), we introduce the auxiliary ran-
domvariables ui |yi , si ∼ Unif(0, πsi ), and consider the joint
density

f (yi , ui , si ) ∝ 1I(0,πsi )
(ui )

2si∑

h=1

π̄si ,hK(yi ; θs,h),

where 1IA(x) is the indicator function that returns 1 if x ∈ A.
Then, we can update the scale si and the node hi using

P(si = s | ui , yi ) ∝ 1I[ui ,1](πs)

2s∑

h=1

π̄s,hK(yi ; θs,h),

P(hi = h|ui , yi , si ) ∝ π̄si ,hK(yi ; θs,h).

Conditionally on cluster allocations, the update of the
weights is obtained applying (3) to the updated values of
Ss,h and Rs,h obtained sampling from

Ss,h ∼ Be(1 − δ + ns,h, α + δ(s + 1) + vs,h − ns,h),

Rs,h ∼ Be(β + rs,h, β + vs,h − ns,h − rs,h),

where vs,h is the number of subjects passing through node
(s, h), ns,h is the number of subjects stopping at node (s, h),
and rs,h is the number of subjects that continue to the right
after passing through node (s, h).

Conditionally on cluster allocation, the update of locations
and scale parameters follows from usual conjugate analysis
arguments. Specifically the location parameters are sampled
from

μs,h ∼ NΘμ;s,h

(
μ0ωs,h + ns,h ȳs,hκ0

ns,hκ0 + ωs,h
,

ωs,hκ0

ns,hκ0 + ωs,h

)
,

where ȳs,h is the sample mean of the observations assigned
to node (s, h), and NA(m, v) denotes a Gaussian distribution
with mean parameter m and variance parameter v truncated
in the set A. The scale parameters are sampled from

ωs,h ∼ IGa

(
k + ns,h

2
,

λ

2s
+

∑
i :si=s,hi=h(yi − μs,h)

2

2

)
.

4 Illustrations

In this section we discuss the performance of the proposed
MSM of Gaussian densities through the analysis of different
synthetic and real datasets. Specifically, we investigate the
role of the δ parameter in the next section and compare the
method with alternative approaches in Sect. 4.2. Finally, in
Sects. 4.3 and 4.4 themethod and one possible extension of it
are used to analyze two different astronomical datasets. The
analysis of a third dataset is postponed to the Supplementary
Material.

4.1 The role of ı

As already discussed in the previous sections, the δ parameter
allows for a greater degree of flexibility in the prior specifi-
cation. In this section we want to empirically assess its role
a posteriori. To this end we generate 100 samples of size
n = 50 from three different densities and run the Gibbs sam-
pling algorithm described in Sect. 3 to get an estimate of the
posterior mean density for different values of the α and δ

parameters.
Data are generated from a finite mixture of Gaussian

densities f (y) = ∑K
k=1 πkφ(y;μk, ωk) with an increas-

ing level of local variability. Specifically, the first density
is the standard normal distribution, the second density is
a mixture of two components with μ1 = −μ2 = 0.935,
ω1 = ω2 = 1/8, and π1 = π2 = 1/2, while the last den-
sity has three components and parameters equal to μ1 = 0,
μ2 = 1.392, μ3 = −1.392, ω1 = ω2 = ω3 = 1/32,
π1 = 1/2, π2 = π3 = 1/3.

We considered δ equal to 0, 0.25, and 0.5 and numeri-
cally obtain the values of α in order to match a fixed prior
expectation for the scale of the density. We considered three
values for the prior expected scale that are consistent with
the densities of the data generating processes. Specifically
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Fig. 3 Posterior scale as a function of δ for different values of E(S̃). Continuous line: E(S̃) = 1; dashed line: E(S̃) = 3; dotted line: E(S̃) = 5;
first plot: standard normal distribution. Second plot: mixture of two Gaussians (see text). Third plot: mixture of three Gaussians (see text). Sample
size is equal to 50

Table 1 Values of α parameters for given δ and expected scales E(S̃)

E(S̃)

1 c3 5

δ 0.00 1.00 3.00 5.00

0.25 0.25 1.25 2.25

0.50 −0.45 −0.35 −0.25

we assume E(S̃) = 1, 3 and 5. The related parameters are
summarized in Table 1.

We run the Gibbs sampler described in Sect. 3 for 1000
iterations with a burn in of 200. Visual inspections of the
trace plots of the posterior mean density on a grid of domain
points suggest no lack of convergence.

Figure 3 reports the values of the average (over the 100
replicates) of the posterior mean scale as a function of the
discount parameter δ. Each dot corresponds to a specific con-
figuration of the α and δ parameters and configurations with
the same prior mean scale are connected. For δ = 0 the prior
choice drives the behavior of the posterior, i.e., on average
lower posteriormean is obtainedwhen the priormean scale is
equal to 1 while a higher posterior mean is obtained when the
prior mean is equal to 5. This prior dependence is less evident
for increasing values of δ. Indeed regardless the prior spec-
ification, when the value of δ increases, the posterior mean
stabilizes in a neighborhood of a specific value. This behav-
ior is consistent with what happens for the posterior mean
number of clusters for a PY process mixture model (see De
Blasi et al. 2015; Canale and Prünster 2017, for related dis-
cussions).

Note that in addition to this prior robustness on the pos-
terior mean scale—that is related to the actual degree of
smoothness of the posterior mean density—we also observe
an increasing precision of the density estimates in terms of L1

distance of the posterior mean density and the true density.
See the Supplementary Materials for additional details.

The same simulation experiment was carried out also for
datasets with sample size equal to 250. The qualitative results
are similar but less striking as the different posterior mean
scales are closer for small values of δ. This is expected and
reflects the informative gain related to a bigger sample size.
Additional details and plots are reported in the Supplemen-
tary Materials.

4.2 Comparison with alternativemethods

In this section we assess the performance of the proposed
method and compare it with available alternatives, namely
a location-scale DPM of Gaussians, the hierarchical infinite
mixture (HIM) model of Griffin (2010) and, for its close
relations with our method, a SAPT.

Synthetic data are simulated from different scenarios
corresponding to varying degrees of global and local smooth-
ness. As benchmark scenarios we used the densities reported
in Marron and Wand (1992), which provide a commonly
used set of different densities in many density estimation
exercises. For sake of brevity we report here the results for
four scenarios (the results for all the densities of Marron and
Wand (1992) are reported in the Supplementary Materials)
corresponding to a smooth unimodal skew density (S1), a
smooth bimodal density (S2), and two densities with sharp
local variability (S3 and S4), more details are reported in the
Supplementary Materials. These densities are plotted with
a thick dark line in Fig. 4. Obviously, we expect the DPM
and the SAPT to perform better in Scenarios 1–2 and 3–4,
respectively—the former not having any multiscale structure
and the latter presenting different local smoothness levels.
The HIM is expected to be uniformly competitive since it is
amodel that enriches the standardDPMwith a tailoredhierar-
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Fig. 4 Posterior mean densities (bright thin lines) for 100 independent
samples (sample size n = 100) and true densities generating the data
(thick darker lines). Rows reports the results for the four scenarios. The

results for MSM, HIM, DPM, and SAPT are reported in the first, sec-
ond, third and fourth columns, respectively. This figure appears in color
in the electronic version of the paper

chical structure that allows to adapt to the actual smoothness
of the unknown density. For each scenario we generate 100
samples of sizes n = 100 and n = 500. Before fitting each
model, data are standardized to have mean zero and variance
one. For the DPM we used the marginal Pólya urn sam-
pler implemented in the R package DPpackage (Jara et al.
2011), for HIM we use the MATLAB routines in Jim Grif-
fin’s home page, while for SAPT we used the Gibbs sampler

described in Cipolli and Hanson (2017) and implemented in
set of R functions gently provided by the authors—that we
thank warmly. The performance of the competing methods
are evaluated in terms of L1 distance and Kullback–Leibler
(KL) divergence of the posterior mean densities from the true
density evaluated on a grid of points.

For our MSM we set G0 to be the standard normal distri-
bution and λ = k = 26 for the inverse-gamma distribution
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Table 2 Mean and standard deviation (×103) of the L1 distance and KL divergence between the estimated posterior density and the true data
generating density over 100 simulations

MSM HIM DPM SAPT

L1 KL L1 KL L1 KL L1 KL

n = 100

S1 149.7 (57.9) 25.9 (15.5) 139.0 (56.9) 23.3 (13.9) 155.1 (61.0) 29.7 (15.6) 216.5 (64.2) 51.1 (22.3)

S2 169.9 (42.9) 30.2 (14.0) 173.5 (47.4) 29.6 (15.4) 205.7 (51.7) 44.6 (20.2) 190.7 (39.9) 37.7 (11.8)

S3 291.3 (37.4) 92.1 (17.0) 290.5 (40.5) 92.8 (20.7) 315.4 (36.2) 105.7 (15.9) 288.4 (46.4) 94.7 (15.4)

S4 225.5 (41.1) 45.5 (14.6) 199.1 (47.5) 35.6 (16.2) 227.4 (64.8) 48.3 (22.7) 218.7 (41.8) 46.8 (14.9)

n = 500

S1 79.6 (20.6) 7.4 (4.4) 68.1 (21.9) 6.2 (3.8) 68.6 (22.3) 6.2 (3.7) 143.1 (26.8) 23.0 (7.0)

S2 86.5 (20.4) 7.5 (3.2) 76.9 (24.4) 6.2 (3.6) 82.4 (35.8) 7.7 (8.6) 129.8 (22.0) 16.4 (4.4)

S3 174.7 (26.1) 40.5 (7.2) 161.2 (21.6) 31.4 (7.2) 210.6 (57.5) 53.8 (21.7) 199.6 (24.9) 57.5 (5.4)

S4 137.6 (20.7) 17.1 (4.4) 124.6 (18.3) 13.7 (3.3) 124.3 (17.8) 13.7 (3.1) 140.1 (21.0) 19.7 (4.3)

H0. This choice for λ and k leads to a high variance for
the scale parameters reflecting mild prior information about
these quantities. The maximum depth for the tree was set to
smax = 6. Consistently with the discussion on δ of the previ-
ous sections, we assumed δ = 0.5. The value of α has been
obtained numerically in order tomatchE(S̃) = 2. Finally, we
set β = 1. For the SAPT model we followed the specifica-
tion presented in Cipolli and Hanson (2017) and additionally
let c ∼ Ga(1, 1). The tree was grown up to J = 6 levels,
consistently with the truncation induced in the multiscale
stick-breaking. For the DPM the model specification is

f (·) =
∫

φ(·;μ,ω)dF(·;μ,ω), F ∼ DP(α, F0),

with F0 = N(m1, ω/κ)× IGa(ν1, ψ1) and additional hyper-
priors

m1 ∼ N(m2, s2), κ ∼ Ga(τ1/2, τ2/2),

ψ1 ∼ IGa(ν2, ψ2), α ∼ Ga(a0, b0),

with values of the parameters equal to a0 = b0 = 1,m2 =
0, s2 = 1, ν1 = ν2 = 3, ψ2 = rs22 , r = 0.1, τ1 = 2, τ2 =
200 as suggested in Cipolli and Hanson (2017). For HIM we
follows the guidelines discussed in Griffin (2010). All prior
specifications are broadly comparable looking at the induced
prior predictive distributions. Each MCMC algorithm was
run for 1000 iterations with a burn-in period of 200.

We want to stress that we are not endowing our MSM
with any hyperprior distribution. Conversely we try to favor
each competingmethod adding different layers of hyperprior
distributions in order to relieve the effects of specific prior
choices on their performance. Our goal here is to show that
the proposed multiscale approach, even in its basic specifi-
cation, provides a competitive alternative to state-of-the-art
approaches.

Table 2 reports the results of the simulations study.Overall
the performance of all the four methods is comparable. For
n = 100 our MSM of Gaussian performs slightly better—on
average—both in terms of L1 distance and KL divergence
with respect to DPM and SAPT, and has comparable per-
formance to HIM. The lower values of L1 distance and KL
divergence attained by our MSM are also often coupled with
less Monte Carlo variability. For the higher sample size of
n = 500, all the methods improve in terms of precision with
our MSM always performing slightly better than DPM and
SAPT and with a substantial improvement of HIM over all
themethods. These results show that both ourMSMapproach
and HIM are able to adapt to the actual smoothness of the
density. The performance of ourMSMmake it a serious com-
petitor of standard methods not only in the situations where
a multiscale structure is expected, but also when the density
of the data is reasonably smooth.

Figure 4 gives additional insights on the results summa-
rized in Table 2. Each subplot of Fig. 4 depicts, with thin
bright lines, the posterior mean densities for each simulated
datasets (of size n = 100) with different subplots in the
same row denoting the four different competing methods.
While the performance in terms of L1 distance andKullback–
Leibler divergence reported in Table 2 is most of the time
comparable among methods, it is evident that for some spe-
cific datasets, the DPM estimates are a unimodal density,
oversmoothing the true underlying density—see the second,
third and fourth lines. On the other side, the SAPT estimates
avoid this oversmoothing but exhibit a very high variability
with different datasets leading to estimates with prominent
differences. The estimates obtained with MSM and HIM,
instead, provide a better compromise between bias and vari-
ance, resulting in better posterior estimates that are smooth
but also able to capture, abrupt local changes in the density—
if present. Qualitatively similar results are also noticeable for
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the datasets with sample size n = 500. See the Supplemen-
tary Materials for details.

4.3 Roeder’s galaxy speed data

As benchmark dataset to assess the performance of our
method we use the famous Galaxy velocity dataset of Roeder
(1990) reporting the velocity of 82 galaxies sampled from 6
conic sections of the Corona Borealis. Our goal here is to
achieve comparable results in terms of goodness of fit with
respect to standard methods that already showed to provide
meaningful results—namely theDPMand alliedmodels—as
we do not expect a prominent multiscale structure.

We used the same prior specification of the previous
section but used a more conservative truncation of the
binary trees, namely smax = 8. We compared the three
methods using the log-pseudo marginal likelihood (Gelfand
and Dey 1994), a cross-validated predictive measure of fit
obtained as the sum of the log-conditional predictive ordi-
nates, log(CPOi ) where

CPOi =
∫

Θ

f (yi |θ)dΠ(θ | y−i )dθ ,

f (·; θ) is the model density, and Π(· | y−i ) is the param-
eters’ posterior probability conditioned on the whole vector
of observation excluding yi . A larger value of log-pseudo
marginal likelihood (LPML) indicates a better predictive per-
formance. Figure 5 depicts the posterior mean density along
with the histogram of the raw data and 95% credible bands.
As expected the method has a comparable performance with

Fig. 5 Galaxy velocity data histogram and posterior mean density with
95% posterior credible bands for the multiscale mixture of Gaussian
model

respect to state-of-the-art competitors and achieve a LPML
value of−217, comparable to that of theDPM(−212), SAPT
(−215), and HIM (−199).

4.4 Sloan Digital Sky Survey data

We consider a second astronomical dataset consisting of
n = 24 312 galaxies, drawn from the Sloan Digital Sky Sur-
vey first data release (see Cimatti et al. 2019, for details).
The galaxies are partitioned into 25 different groups (Balogh
et al. 2004), by combining the separation in 5 groups for dif-
ferent luminosity and in 5 groups by different density—the
latter being a physical characteristic of the galaxy that does
not need to be confused with a probability density function.
Group sizes vary and range from 158 to 2515. The exact
group sizes ng are reported in Fig. 6.

Our goal here is twofold. From the astronomical point of
view, considering this partition of the data as fixed, we want
to estimate the probability density function of the difference
of ultraviolet and red filters (U − R color) for each group.
In addition, we use this example to show the flexibility of
the proposed approach in dealing with complex situations
proposing a modification of the mixture model discussed in
Sect. 2.3. Specifically, for each group g = 1, . . . , 25, we
assume the multiscale mixture

fg(y) =
∞∑

s=0

2s∑

h=1

π
(g)
s,hφ(y;μs,h, ωs,h), (12)

where each set of weights π
(g)
s,h is assumed to be generated

independently according to the multiscale stick-breaking
process introduced in Sect. 2.1 and each group-specific den-
sity fg shares a common set of kernel’s parameters. The idea
of a shared-kernel model accounts for the existence of com-
mon latent information shared between groups and allows for
borrowing of information in learning the values of the ker-
nel’s parameters. See Lock and Dunson (2015) for a related
approach.

Posterior sampling under the extension (12) can be per-
formed following the details of Sect. 3 and considering the
update of each group specific set of weights independently
by simulating

S(g)
s,h ∼ Be(1 − δ + n(g)

s,h, α + δ(s + 1) + v
(g)
s,h − n(g)

s,h)

R(g)
s,h ∼ Be(β + r (g)

s,h , β + v
(g)
s,h − ns,h − r (g)

s,h ),

where v
(g)
s,h , n

(g)
s,h , and r (g)

s,h are defined consistently to vs,h ,
ns,h , and rs,h of Sect. 3 but considering only the subjects
preassigned to group g.

Assuming the same prior specification of the previous
sections with smax = 4 we run 1000 iterations of a Gibbs
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Fig. 6 Sloan Digital Sky Survey data, U − R color distributions, grouped with respect to luminosity and density. Black line: posterior mean
densities; shaded areas: 0.95 posterior credible bands. Group size reported in each upper left corner

sampler with a burn-in period of 200. Figure 6 reports, for
each group, the estimated posterior mean density along with
95% credible bands. Many estimated densities show a clear
bimodality which previous studies justifiedwith the presence
of two subpopulations of galaxies: a blue and red population
(Balogh et al. 2004; Canale et al. 2019). Note that our charac-
terization of the posterior uncertainty, visualized by means
of pointwise posterior credible bands, is smaller than that
obtained in Canale et al. (2019) where a dependent Dirichlet
process, as defined in Lijoi et al. (2014), was assumed. The

different estimated densities clearly show different levels of
global and local variability that our model is able to capture.

5 Discussion

We introduced a family of multiscale stick-breaking mixture
models for Bayesian nonparametric density estimation. This
class of models is made of two building blocks: a flexible
multiscale stick-breaking process inspired by the PY litera-
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ture and a stochastic process that generates a dictionary of
stochastically ordered kernel densities. We showed that the δ

parameter of the multiscale stick-breaking process—related
to the discount parameter of the PY—makes the prior flexi-
ble and robust. Specifically, it allows the method to achieve
results comparable to those obtainable by more basic mod-
els endowed with an additional degree of hyperpriors—thus
relieving the computational burden. The comparison with
standard Bayesian nonparametric competitors showed, on
average, superior performance in terms of finding the right
smoothness of the unknown density.

Multivariate extensions of this approach are possible
but not straightforward. One possibility is to introduce a
suitable mechanism to define the dyadic splitting of the p-
dimensional location parameter space, for example exploit-
ing the concept of tolerance regions in place of the univariate
quantiles adopted in (9). A different solution may be build
upon a modification of the multiscale tree of Fig. 1 where
each node is split into 2p nodes. Consistently with this,
at the sth scale, 2ps location parameters may be sampled
under the constraints induced by the partition obtained tak-
ing p dyadic splits for each marginal coordinate similarly to
(9) and then taking their Cartesian product. This construc-
tion is reminiscent of the approach of Jara et al. (2009) for
the multivariate Pólya tree. Clearly with the latter approach
also the multiscale stick-breaking needs to be reformulated
accordingly. Nonetheless, the univariate model described is
amenable to extensions and generalizations to more com-
plex settings involving hierarchical structures or covariates
as illustrated through the analysis of the Sloan Digital Sky
Survey data.
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Appendix

Proof (Lemma 1) Let πs = ∑2s
h=1 πs,h . For finite integer S,

let ΔS = 1 − ∑S
s=0 πs which is equivalent to

ΔS =
2S∑

h=1

ΔS,h

=
2S∑

h=1

{
(1 − SS,h)

∏

r<S

(1 − Sr ,�h2r−s�)TShr ,
}

.

To establish the result, it is sufficient to show that the limit
of each ΔSh for S → ∞ is 0 a.s. Note that each ΔS,h has the
same distribution of

S∏

s=1

(1 − Ss)Ts−1,

with Ss ∼ Be(as, bs) independent of Ts ∼ Be(cs, cs). Using
Jensen’s inequality

E[log{(1 − Ss)Ts−1}] ≤ log{(1 − E[Ss])E[Ts−1]}
= log

(
as

2(as + bs)

)
< 0,

and therefore

∞∑

s=0

E[log{(1 − Ss)Ts−1}] = −∞.

Now use Lemma 1 of Ishwaran and James (2001) to obtain
the result. �
Proof (Lemma 2)

E[G(A)]

= E

⎡

⎣
∞∑

s=0

2s∑

h=1

πs,hδμs,h (A)

⎤

⎦

=
∞∑

s=0

2s∑

h=1

E
[
πs,h

]
G0

(
A ∩ Θμ;s,h

)
2s

=
∞∑

s=0

2s∑

h=1

(1 − δ)
∏s−1

j=0 (α + δ( j + 1))
∏s

j=0 (α + δ j + 1)
G0

(
A ∩ Θμ;s,h

)

=
∞∑

s=0

(1 − δ)
∏s−1

j=0 (α + δ( j + 1))
∏s

j=0 (α + δ j + 1)

2s∑

h=1

G0
(
A ∩ Θμ;s,h

)
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= G0 (A)

∞∑

s=0

(1 − δ)
∏s−1

j=0 (α + δ( j + 1))
∏s

j=0 (α + δ j + 1)

= G0 (A)

�
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