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Abstract

Every six-dimensional N = (2, 0) SCFT on R6 contains a set of protected opera-
tors whose correlation functions are controlled by a two-dimensional chiral algebra.
We provide an alternative construction of this chiral algebra by performing an Ω-
deformation of a topological-holomorphic twist of the N = (2, 0) theory on R6 and
restricting to the cohomology of a specific supercharge. In addition, we show that
the central charge of the chiral algebra can be obtained by performing equivariant
integration of the anomaly polynomial of the six-dimensional theory. Furthermore,
we generalize this construction to include orbifolds of the R4 transverse to the chiral
algebra plane.
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1 Introduction

The operator product expansion (OPE) is a cornerstone of non-perturbative quantum
field theory [1, 2]. Unfortunately, it is prohibitively hard to delineate the detailed prop-
erties of the OPE for general QFTs. To make progress, it is fruitful to focus on QFTs
with additional symmetries. Indeed, the OPE is best understood and most studied in the
context of conformal field theory due to its better convergence properties and the tighter
constraints imposed by conformal symmetry. For some two-dimensional CFTs, the asso-
ciativity of the OPE combined with the powerful constraints from the Virasoro algebra
can even lead to the exact solution for the correlation functions of local operators [3].
This in turn led to a fruitful interplay between the mathematics of infinite-dimensional
algebras and the physics of two-dimensional CFTs. However, it is not immediately clear
whether these vertex operator algebras, or chiral algebras as we refer to them here, have
any applications for QFTs in more than two dimensions. Supersymmetric QFTs present
another class of examples where the properties of the OPE can be studied in greater
detail. Indeed, employing “the power of holomorphy” [4] it was understood that the OPE
of some protected operators in QFTs with at least four supercharges exhibits a special
algebraic structure known as the chiral ring [5].

These two techniques for gaining calculational insight into the properties of the OPE were
nicely combined in [6, 7] where it was shown how non-trivial chiral algebras arise from
SCFTs in 4d and 6d by restricting to the cohomology of a certain combination of Poincaré
and conformal supercharges. The results of [6, 7] imply that every superconformal field
theory containing psl(2|2) as a subalgebra of its symmetry algebra contains a protected
subset of operators with an interesting OPE structure. To determine this set of operators
one has to study the cohomology of a specific nilpotent supercharge of the schematic
form Q = Q + S which is a linear combination of Poincaré and conformal supercharges.
The non-trivial OPE of interest is then formed by local operators in the cohomology of
this supercharge. For even-dimensional SCFTs on Rd with (at least) 6d N = (2, 0), 4d
N = 2, and 2d N = (0, 4) symmetry this cohomology results in a chiral algebra on a
two-dimensional plane in Rd.1 The correlation functions of these protected operators have
a specific dependence on the holomorphic coordinate on the chiral algebra plane which
is determined by their su(2) R-symmetry quantum numbers. These chiral algebras have
been the subject of intense recent interest and have led to a plethora of new insights into
the physics of 4d N = 2 and 6d N = (2, 0) SCFTs, see [9] for a recent review and a
comprehensive list of references.

Yet another way to tame the OPE in the context of supersymmetric QFTs is to employ
the topological twist of Witten [10]. The basic idea behind this technique is to use
the R-symmetry of a given supersymmetric QFT in flat space in order to modify the
Lorentz transformations of operators in the theory in such a way that the resulting QFT
is topological in nature and can be put on general curved manifolds. More generally,
this method and its generalizations can be used in conjunction with supersymmetric

1For 3d N = 4 SCFTs this cohomological construction leads to the OPE of operators on a real line
[8].
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localization to obtain non-trivial results for the path integral of the given supersymmetric
QFT, see [11] for a recent comprehensive review. An important application of these ideas
in the context of 4d N = 2 QFTs is the Ω-deformation [12, 13] which equips the QFT
on R4 with two parameters, usually called ε1 and ε2, associated with rotations in the
two orthogonal planes. This construction generalizes the Donaldson-Witten topological
twist and by using supersymmetric localization it was shown that the path integral of
the Ω-deformed SYM theory on R4 reproduces the Seiberg-Witten prepotential in the
ε1,2 → 0 limit. Another important application of the Ω-deformation arises in the AGT
correspondence which relates observables in 4d N = 2 QFTs of class S, arising from M5-
branes wrapped on a punctured Riemann surface [14], defined on R4

ε1,ε2
with correlation

functions of the Liouville [15] (or more general Toda [16]) CFT defined on the Riemann
surface, see [17]. Given these developments it is natural to ask whether the chiral algebras
associated with 4d N = 2 [6] and 6d N = (2, 0) SCFTs [7] can be obtained through
a topological twist accompanied by an Ω-deformation. In this paper we address this
question.

Indeed, in [18, 19] (see also Section 6 of [20]) it was shown that the chiral algebra of [6]
associated to a 4d N = 2 SCFT can be obtained in an alternative way. The starting
point is the topological-holomorphic twist of Kapustin [21] defined for any 4d N = 2
SCFT on the product manifold Σ × C. The twist is implemented by identifying the
structure group of C with the Cartan subalgebra of the su(2) R-symmetry and that of Σ
with the u(1) R-symmetry. Focusing on operators preserved by the supercharge invariant
under this twist leads to a theory that is topological on Σ and holomorphic on C. The
resulting OPE on C however is trivial since the operators are free to move on the surface
Σ and thus cannot have a singular OPE leading to an interesting chiral algebra on C.
This problem can be remedied by supplementing the topological-holomorphic twist with
an Ω-deformation. It was shown in [18, 19] that by considering the two-dimensional Ω-
background Σ = R2

ε and taking C = R2 one finds an invariant supercharge QΩ which has
the same cohomology as the supercharge used in the chiral algebra construction of [6].
Moreover, by considering explicit examples of Lagrangian 4d N = 2 QFTs it was shown
that supersymmetric localization with respect to QΩ leads to precisely the same chiral
algebra as in [6]. An important ingredient in the analysis of [18, 19] is to show that the
4d N = 2 SCFT on R2

ε ×R2 is not deformed, i.e. it has the same path integral as the
theory on R4. This establishes a direct relation between the two constructions of the
chiral algebra.

Encouraged by this result, it is natural to wonder whether one can obtain the 6d N =
(2, 0) SCFT chiral algebra of [7] through a similar Ω-deformed topological twist. The
purpose of this paper is to show that this is indeed possible and to outline the details
of the construction. As a starting point, we revisit the Donaldson-Witten twist of 4d
N = 2 QFTs and apply Ω-deformation as described by Nekrasov [12]. Next, we explicitly
identify the combination of supercharges, QΩ, invariant under this deformation. We
then show that when the 4d N = 2 theory is conformal and one takes ε1 = ε2 the
supercharge QΩ becomes a linear combination of Poincaré and conformal supercharges
of the theory on R4. This in turn implies that for this special choice of Ω-deformation,
the SCFT on R4 is not deformed and the effect of the Ω-deformation is to select an
appropriate set of protected operators in the cohomology of QΩ that form an interesting
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cohomology. Equipped with this understanding we then study a topological-holomorphic
twist of the 6d N = (2, 0) SCFT on a manifold of the form X4 × C. The twist is defined
by considering an su(2)× u(1) subalgebra of the so(5) R-symmetry and then performing
a twist with su(2) on X4 and with u(1) on C. Choosing X4 = R4

ε1,ε2
and C = R2 and

specializing to ε1 = ε2 relates this to the twist and Ω-deformation described above and
selects a specific QΩ supercharge which we construct explicitly. We then show that this
is precisely the same supercharge as the one used in the chiral algebra construction of [7]
establishing an equivalence between the two chiral algebras. Ideally one would then like to
use this result and employ supersymmetric localization of the 6d N = (2, 0) SCFT of type
g = {AN , DN , E6,7,8} with respect to this QΩ supercharge to derive the well-supported
conjecture of [7] that the resulting chiral algebra is theWg algebra. Unfortunately, this is
hard to do due to the lack of Lagrangian description of the 6d N = (2, 0) SCFT. In the
absence of such an explicit derivation of the chiral algebra we resort to a more indirect
method to check our results. Using the results of [22], we show that an equivariant
integration of the anomaly polynomial of the 6d N = (2, 0) SCFT on R4

ε1,ε2
×R2 leads

to the central charge of the Wg algebra in the limit ε1 = ε2. Moreover, we lend further
support for the validity of the construction in [18, 19] by performing a similar equivariant
integration of the anomaly polynomial of 4dN = 2 SCFTs in order to recover the expected
central charge and flavor symmetry current level of [6]. Our results also admit a natural
generalization where one considers Zk orbifolds of the X4 = R4

ε1,ε2
space transverse to

the chiral algebra plane C. Inspired by the results in [23, 24, 25] we conjecture that the
resulting chiral algebra is related to the kth para-Wg algebra.

In the next section we begin our exploration by discussing the Ω-deformation of topolog-
ically twisted 4d N = 2 SCFTs. In Section 3 we show how this can be used to formulate
a topological-holomorphic twist accompanied by an Ω-deformation for the 6d N = (2, 0)
SCFT and show how the chiral algebra of [7] arises from this construction. In Section 4
we use the equivariant integration of the anomaly polynomial to derive the central charges
of the 4d N = 2 and 6d N = (2, 0) chiral algebras. We conclude with a summary and a
discussion of some open problems in Section 5. In Appendices A, B, and C we collect
our conventions and some details on the 4d and 6d superconformal algebras used in the
main text. In Appendix D we clarify some aspects of the calculation of supercharges in
the construction of [18, 19]. Finally, Appendix E is devoted to a derivation of the chiral
algebra associated to 2d N = (0, 4) SCFT.

2 Ω-deformation of topologically twisted 4d N = 2

SCFTs

Let us start by recalling some basic facts about the four-dimensional conformal algebra
so(5, 1).2 It is generated by translations, special conformal transformations, rotations,

2We will be often cavalier about the distinction between Lorentzian and Euclidean conformal algebras.
For our purposes, one can work with the complexified version of the (super)conformal algebras and restrict
to a real form when needed.
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and dilatations with respective generators

Pαα̇ , Kα̇α , Mα
β , Mα̇

β̇ , H , (2.1)

where α, β = ± and α̇, β̇ = ±̇ are spinorial indices for Weyl spinors and their com-
plex conjugates. By adding eight Poincaré supercharges QIα, Q̃Iα̇ and eight conformal
supercharges SαI , S̃Iα̇ to this algebra we obtain the 4d N = 2 superconformal algebra
su(4?|2). These supercharges are rotated into each other by the U(2)R ' SU(2)R×U(1)r
R-symmetry with generators RIJ where I,J = 1, 2 are indices in the fundamental of
U(2)R. The commutation relations of this algebra are summarized in Appendix B.

We are interested in studying N = 2 SCFTs defined on an arbitrary spin manifold X4

with Riemannian metric gµν . In general, the holonomy group of the manifold is Spin(4)
but we will also consider manifolds of the form X4 = Σ × Σ⊥, where Σ and Σ⊥ are two
surfaces. In this case, the holonomy reduces to SO(2)Σ × SO(2)Σ⊥ and we will always
choose a local frame such that the generators of the holonomy group are

LΣ =
1

2

(
M+

+ −M−
− +M+̇

+̇ −M−̇
−̇

)
,

LΣ⊥ =
1

2

(
M+

+ −M−
− −M+̇

+̇ +M−̇
−̇

)
.

(2.2)

We denote the eigenvalues of these generators as hΣ and hΣ⊥ . The generators of the
Cartan of the two SU(2)’s in Spin(4) ' SU(2)+ × SU(2)− on the other hand are given by
LΣ + LΣ⊥ and LΣ − LΣ⊥ respectively. In Table 1 we present the Poincaré supercharges
together with their quantum numbers.

Q1
+ Q1

− Q2
+ Q2

− Q̃1+̇ Q̃1−̇ Q̃2+̇ Q̃2−̇

hΣ
1
2
−1

2
1
2
−1

2
−1

2
1
2

−1
2

1
2

hΣ⊥
1
2
−1

2
1
2
−1

2
1
2

−1
2

1
2

−1
2

R 1
2

1
2
−1

2
−1

2
−1

2
−1

2
1
2

1
2

r 1
2

1
2

1
2

1
2

−1
2
−1

2
−1

2
−1

2

Table 1: N = 2 supercharges and their quantum numbers. R and r denote the charges
under U(1)R ⊂ SU(2)R and U(1)r respectively. See Equation (B.3) for our conventions.

In general when one places an N = 2 theory on a curved space X4 all supersymmetry
is broken. However, there are various ways to preserve a fraction of the original su-
persymmetries; one of them is by performing a (partial) topological twist. The twisting
procedure we are interested in, originally introduced by Witten in [10], consists of redefin-
ing the Lorentz representations of the fields in order to construct a conserved topological
supercharge. This is achieved by turning on a background vector field that couples to the
SU(2)R current and identifying it with the SU(2)− spin connection. More concretely, this
means that we identify the SU(2)R indices I and J with the indices α̇ and β̇. We define
the twisted rotation generatorsM′α̇

β̇ as follows:

M′α̇
β̇ =Mα̇

β̇ −
(
Rα̇

β̇ −
1

2
δα̇β̇R

η̇
η̇

)
. (2.3)
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In the twisted theory, the group K′ = SU(2)+ × SU(2)′− acts as the new rotation group
on the tangent space of the four-manifold, where SU(2)′− is generated byM′. The trans-
formation properties of the eight Poincaré supercharges under the new rotation group are
given by

(1,2,2R) 1
2
→ (1,1′) 1

2
⊕ (1,3′) 1

2
, (2,1,2R)− 1

2
→ (2,2′)− 1

2
. (2.4)

Importantly, under the new rotation group the supercharge

Q ≡ εα̇β̇Q̃α̇β̇ = Q̃−̇+̇ − Q̃+̇−̇ , (2.5)

corresponding to (1,1′) 1
2
in (2.4), is a nilpotent scalar, i.e. it obeys

[Mα
β, Q] = 0 , [M′α̇

β̇, Q] = 0 , Q2 = 0 . (2.6)

In addition to this scalar supercharge we can define the vector supercharge Gαα̇ = iQα̇α,
or equivalently, Gµ = i(σ̄µ)α̇αQα̇α, which corresponds to (2,2′)− 1

2
in (2.4). Using the

commutation relations of the supersymmetry algebra it is easy to show that

{Q,Gαα̇} = iPαα̇ . (2.7)

By considering the cohomology with respect to the scalar supercharge Q one obtains a
topological field theory. Indeed, from (2.7) it is clear that all translations are Q-exact.
The Q-cohomology is graded by r. Note that for X4 = R4 the topological twist does not
change or deform the QFT. It is merely a relabeling of the fields in the 4d N = 2 theory
and can be used to select a subset of operators which forms a topological field theory
when passing to the cohomology of Q.

We are not interested in this Donaldson-Witten topological twist itself but rather in a
deformation of it. To formulate this deformation let us consider the topological twist on a
four-manifold X4 that has an isometry generated by a Killing vector field V . In [12, 13] a
deformation of the twisted theory with respect to V was introduced where the topological
supercharge Q is replaced with a new supercharge QΩ such that

Q2
Ω = LV , (2.8)

where LV is the conserved charge corresponding to V which acts on fields as the Lie
derivative with respect to V .3 Since QΩ is no longer nilpotent, the appropriate framework
to study the cohomological theory is equivariant cohomology and for consistency, we have
to restrict ourselves to V -invariant operators and states.

For example, if the 4d N = 2 theory is formulated on flat space, the topological twist
does not deform the original QFT and thus the vector supercharge discussed below (2.6)
is still a symmetry generator. If one then defines the Ω-deformation of R4 with respect
to the covariantly constant Killing vector V = V µ∂µ then ιVG = V µGµ is a conserved
charge and we can write the Ω-deformed supercharge as

QΩ = Q+ ιVG . (2.9)
3More generally, we allow V to be a complex linear combination of (commuting) Killing vector fields.
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It can be checked explicitly that this indeed satisfies Q2
Ω = LV .

As emphasized in [12, 13] the Ω-deformation can be defined in the more general situation
when X4 is not flat and V is not covariantly constant. In this case, the supersymmetry
transformations of the various fields in the original 4dN = 2 QFT have to be modified and
the action of the theory has to be supplemented by extra terms such that the deformed
theory is invariant under QΩ. We therefore conclude that generically the Ω-deformation
results in a genuine deformation of the 4d N = 2 QFT. In special cases, however, the 4d
N = 2 QFT might already be invariant under the Ω-deformed supercharge. Specifically,
this happens when the deformed supercharge QΩ is a symmetry the undeformed twisted
theory. In such a situation the Ω-deformation does not truly deform the 4d N = 2 QFT
but only changes the cohomology we consider. We now discuss precisely such a scenario
which is realized when the 4d N = 2 theory is conformal.

2.1 N = 2 SCFTs on R4
ε1,ε2

Now suppose that the original theory we consider is an N = 2 SCFT defined on R4 =
R2 × R2. As discussed above for some choices of the vector V , the quantity ιVG is a
linear combination of supercharges of the original SCFT hence the Ω-deformation does
not truly deform the twisted theory. For example, this is clearly true for V being one of
the generators of translations. We will consider the more interesting case when V is a
linear combination of rotations in the two orthogonal planes of R4, generated by LΣ and
LΣ⊥ . The vector V corresponding to this rotation can be written as

V = 2Ωµνxν∂µ = 2ε1x[2
∂

∂x1]
+ 2ε2x[4

∂

∂x3]
, (2.10)

where the matrix Ωµν is defined as

Ωµν =


0 ε1 0 0
−ε1 0 0 0
0 0 0 ε2
0 0 −ε2 0

 . (2.11)

To describe the contraction of V with the one-form supercharge G it will prove useful to
write the supersymmetry and superconformal generators as three-dimensional integrals of
local supercurrents:

Qα̇β =

∫
d3xGα̇β , Sα̇β =

∫
d3x (σµ)ββ̇ xµḠα̇β̇ , (2.12)

Q̃α̇β̇ =

∫
d3x Ḡα̇β̇ , S̃ α̇β̇ =

∫
d3x (σ̄µ)β̇β xµGα̇β . (2.13)

In terms of these supercurrents, the one-form supercharge takes the form

G = i(σ̄µ)α̇αQα̇αdxµ = i

(∫
d3x (σ̄µ)α̇αGα̇α

)
dxµ . (2.14)
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A natural definition for the contraction of this one-form supercharge with the vector V is
then given by

ιVG = 2i

∫
d3xΩµνxν(σ̄µ)α̇αGα̇α . (2.15)

For generic values of the deformation parameters, ε1 and ε2, the integral in (2.15) is not
a conserved charge of the original 4d N = 2 SCFT. Thus for generic ε1 and ε2 the Ω-
deformation genuinely deforms the twisted 4d N = 2 SCFT. However, in the special case
when ε1 = ε2 = ε

2
one finds that

ιVG
∣∣∣
ε2=ε1

= ε
(
S̃+̇−̇ + S̃−̇+̇

)
, (2.16)

such that, using (2.5) and (2.9), the Ω-deformed supercharge can be written as

QΩ = Q̃−̇+̇ − Q̃+̇−̇ + ε
(
S̃+̇−̇ + S̃−̇+̇

)
, (2.17)

which satisfies
Q2

Ω = 2 ε
(
M′+̇

+̇ −M′−̇
−̇

)
= LV . (2.18)

From now on we specify to ε1 = ε2 = ε
2
and denote by QΩ the corresponding Ω-deformed

supercharge. It is clear that QΩ is written entirely in terms of the generators of the 4d
N = 2 superconformal algebra and therefore we do not have to modify the 4d N = 2
SCFT to ensure invariance under QΩ.4

Next, we want to characterize the cohomology of local operators with respect to QΩ. Due
to (2.18) these operators must be invariant under the twisted rotation LV . Indeed, this
is expected based on the framework of equivariant cohomology with respect to the vector
V . Notice that the equivariant QΩ-cohomology is isomorphic for all values of ε 6= 0. We
also note that the Poincaré and conformal supercharges on the right-hand side of (2.17)
have different charges under the U(1)r symmetry. To remedy this we can assign degree 2
to ε so that the cohomology of interest is still graded by the U(1)r charge.

Notice that we can write QΩ as QΩ = Q
(1)
Ω +Q

(2)
Ω where

Q
(1)
Ω = −Q̃+̇−̇ + εS̃−̇+̇ , Q

(2)
Ω = Q̃−̇+̇ + εS̃+̇−̇ . (2.19)

Importantly, we find that
(
Q

(1)
Ω

)2

=
(
Q

(2)
Ω

)2

= 0. This implies that both Q
(1)
Ω and

Q
(2)
Ω define their own cohomology. Since twisted rotations are QΩ-exact as well as Q(1)

Ω -
and Q(2)

Ω -exact, to study these cohomologies it suffices to consider operators inserted at
the origin invariant under LV . A local operator inserted at the origin is a harmonic
representative of a QΩ-cohomology class if it is annihilated by both QΩ and Q†Ω. This
happens if and only if it is annihilated by

{
QΩ, Q

†
Ω

}
. Given that the cohomology of QΩ

4Similarly, we can choose to perform the Donaldson-Witten twist using the SU(2)+ instead of SU(2)−
in (2.3). We can then repeat all the steps above and find that the Ω-deformation with ε1 = −ε2 does not
deform the 4d N = 2 SCFT.
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is independent of ε we are free to fix |ε| = 1. One then finds that the three cohomologies
are related due to the following identity5

{
QΩ, Q

†
Ω

}
= 2

{
Q

(1)
Ω ,
(
Q

(1)
Ω

)†}
= 2

{
Q

(2)
Ω ,
(
Q

(2)
Ω

)†}
= 2 (H + 2r) ,

(2.20)

which in terms of the four-dimensional quantum numbers reduces to the condition
∆ + 2r = 0, where ∆ is the eigenvalue of H. We thus find that the equivariant
cohomology of QΩ is the same as that of Q(1)

Ω and Q(2)
Ω supplemented with the condition

that the operators in cohomology should be annihilated by the generator{
Q

(1)
Ω , Q

(2)
Ω

}
= ε

(
M′+̇

+̇ −M′−̇
−̇

)
= ε

(
M+̇

+̇ −M−̇
−̇ − 2R

)
. (2.21)

These operators have quantum numbers that obey hΣ − hΣ⊥ = 2R. It can be checked
that operators obeying such constraints on their quantum numbers belong to short and
semi-short multiplets of the 4d N = 2 superconformal algebra, see for example [26].6

We stress again that for ε1 = ε2 the topologically twisted and Ω-deformed 4d N = 2 SCFT
is in fact not deformed and has the same Lagrangian and symmetries as the theory on R4.
This bodes well with previous results in the literature. The Ω-deformation was studied
from the perspective of 4d N = 2 rigid conformal supergravity in [27] where it was shown
that only for ε1 6= ε2 the supergravity background is non-trivial and the Lagrangian of
the SCFT is deformed. This was also confirmed in [28] where the holographic dual of 4d
N = 2 SCFTs on Ω-deformed R4 was studied.

We end our discussion of the Ω-deformation of 4d N = 2 QFTs on R4 by noting that this
setup has been studied extensively in the context of supersymmetric localization. The
path integral of the QFT on this background can be reduced to an infinite sum of ordinary
integrals over instanton moduli spaces

Z(~a, τ ; ε1,2) = Zpert(~a, τ ; ε1,2)

(
1 +

∞∑
k=1

qkZ(k)(~a, τ ; ε1,2)

)
, (2.22)

where q = exp(2πiτ), τ is the complexified gauge coupling, ~a are the Coulomb branch
moduli, and Z(k)(~a, τ ; ε1,2) denotes the partition function in the k instanton sector. The
prefactor Zpert(~a, τ ; ε1,2) is explicitly known and given by the product of a tree-level contri-
bution and a one-loop determinant factor. The instanton contributions were understood
comprehensively in the seminal work [12, 13] where it was shown how to perform the
integrals over the instanton moduli space of the gauge theoryMG explicitly for general
k. This approach allows to explicitly recover the Seiberg-Witten prepotential [29, 30] in
the limit ε1,2 → 0. A prominent characteristic of the Nekrasov partition function is its
relation to two-dimensional chiral algebras of the Liouville/Toda type. This is the basis of
the AGT correspondence [15] and its generalizations, see for example [16]. In the context

5A related identity can be shown to hold for any ε when acting on operators annihilated by (2.21).
6Note that our normalizations for the superconformal algebra quantum numbers differ by various

factors of 2 from the conventions in [26].
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of these results, it is known that the Nekrasov partition function simplifies in various
limits of the parameters ε1,2. The observation we made above that for 4d N = 2 SCFTs
the Ω-deformation with ε1 = ε2 does not deform the theory and thus preserves the full
superconformal invariance may offer an insight into some of these simplifications.

3 Chiral algebras from 6d N = (2, 0) SCFTs

We are now ready to apply the above results for topologically twisted 4d N = 2 SCFTs in
the context of the 6d N = (2, 0) theory and show how one can obtain the chiral algebra
of [7].

Before we start let us recall some basic facts about the 6d N = (2, 0) superconformal
algebra. The 6d conformal algebra, so(7, 1), is generated by translations, special conformal
transformations, rotations, and dilatations, with respective generators

Pab , Kab , Ma
b , H . (3.1)

In addition to this the superconformal algebra contains sixteen Poincaré and confor-
mal supercharges QAa and SaA as well as the generators RAB of the R-symmetry group
USp(4) ' Spin(5). The a, b, · · · = 1, . . . , 4 indices transform in the fundamental rep-
resentation of SU(4) ' Spin(6) while the A,B, · · · = 1, . . . , 4 indices transform in the
fundamental representation of USp(4). More details as well as the commutation relations
of this superconformal algebra are summarized in Appendix C.

In the following we choose a local frame such that an orthogonal basis for the Cartan of
so(6) is given by the following generators of rotations in the three orthogonal planes in
R6,

L1 ≡
1

2
(M1

1 +M2
2 −M3

3 −M4
4) ,

L2 ≡
1

2
(M1

1 −M2
2 +M3

3 −M4
4) ,

L3 ≡
1

2
(M1

1 −M2
2 −M3

3 +M4
4) .

(3.2)

We denote the eigenvalues of these generators with hi. In the following, we are interested
in the 6d N = (2, 0) theory on a manifold of the form X4 × C. On this type of product
manifold, the holonomy is reduced to

Spin(4)× Spin(2) ' SU(2)+ × SU(2)− × U(1)C , (3.3)

The rotations on C can be identified with L1, while the Cartan of the holonomy group
of X4 is generated by L2 and L3. The eigenvalues of the Cartan of SU(2)+ × SU(2)− are
given by h2 +h3 and h2−h3, respectively. An important role in the construction is played
by the maximal subgroup of the R-symmetry SU(2)R × U(1)r ⊂ USp(4) with generators
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R±, R and r given by7

R+ = R13 , R− = R24 , R = −1

2
(R14 −R23) , r =

1

2
(R14 +R23) . (3.4)

In a slight abuse of notation the eigenvalues under the Cartan of this subalgebra, generated
by R and r, are denoted by (R, r). In Table 2 we summarize the quantum numbers of the
supercharges under the global symmetries.

The supercharges transform in the (4+,4) of Spin(6) × Spin(5), where 4+ is a positive
chirality spinor of Spin(6). Under SU(2)+× SU(2)−× SU(2)R×U(1)C ×U(1)r the super-
charges decompose as

(4+,4)→ (2,1,2) 1
2
, 1
2
⊕ (1,2,2)− 1

2
, 1
2
⊕ (2,1,2) 1

2
,− 1

2
⊕ (1,2,2)− 1

2
,− 1

2
. (3.5)

QAa h1, h2, h3 (R, r) h′1
Q11 +,+,+ (+,+) 1
Q21 +,+,+ (−,+) 1
Q31 +,+,+ (+,−) 0
Q41 +,+,+ (−,−) 0
Q12 +,−,− (+,+) 1
Q22 +,−,− (−,+) 1
Q32 +,−,− (+,−) 0
Q42 +,−,− (−,−) 0

QAa h1, h2, h3 (R, r) h′1
Q13 −,+,− (+,+) 0
Q23 −,+,− (−,+) 0
Q33 −,+,− (+,−) −1
Q43 −,+,− (−,−) −1
Q14 −,−,+ (+,+) 0
Q24 −,−,+ (−,+) 0
Q34 −,−,+ (+,−) −1
Q44 −,−,+ (−,−) −1

Table 2: The spins, R-charges and twisted spins of the Poincaré supercharges. All un-
twisted quantum numbers have magnitude 1/2.

The first step to obtain a chiral algebra from a 6d N = (2, 0) theory is to twist the theory
on X4 × C. We choose a twist that results in a theory that is topological along X4 and
holomorphic along C. This twist is very similar to the twist studied by Kapustin in [21],
and used in [18, 19] to obtain the chiral algebra associated to 4d N = 2 SCFTs. We
implement the twist by taking the following twisted rotation group

K′ = SU(2)+ × SU(2)′− × U(1)′C , (3.6)

where SU(2)′− = diag(SU(2)− × SU(2)R) and U(1)′C = diag(U(1)C × U(1)r). Using (3.5)
we find that under K′ the Poincaré supercharges transform as

(2,2)1 ⊕ (2,2)0 ⊕ (1,1)0 ⊕ (1,3)0 ⊕ (1,1)−1 ⊕ (1,3)−1 . (3.7)

This twist thus produces exactly one scalar supercharge, given by the (1,1)0 above, which
we call Q. From the point of view of X4 this is precisely the Donaldson-Witten scalar
supercharge discussed in Section 2. From the point of view of C this is the unique twist of
the 2d N = (0, 2) supersymmetric theory [31]. In the twisted theory, the four-dimensional

7Note that there is a choice when we specify this subgroup. Namely in (3.4) we are free to simul-
taneously change the definition of R+ ↔ −R− and R → −R. This will play an important role below.
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translations areQ-exact. The theory is therefore topological alongX4 and does not depend
on its metric. On the other hand, the generator of anti-holomorphic translations on C,
given by P34, is Q-exact, while holomorphic translations are not. The theory is therefore
holomorphic along C.

To see more clearly how a chiral algebra can arise from this twist, let us proceed in two
steps. First, we consider the holomorphic twist along C, coupling the rotations on C
with U(1)r symmetry. This twist was studied in different contexts in [32, 33, 14]. The
quantum number related to the twisted rotation on C is given by h′1 = h1 + r. As is
apparent from (3.7), the twisted theory has eight supercharges transforming as scalars
along C. Using these supercharges together with the translations and rotations along X4,
we can form a 4d N = 2 subalgebra of the 6d N = (2, 0) superconformal algebra. The
Poincaré supercharges of this 4d N = 2 subalgebra are given by the following subset of
the 16 Poincaré of the 6d N = (2, 0) theory

Q1
+ = Q31 , Q1

− = Q32 , Q2
+ = Q41 , Q2

− = Q42 , (3.8)

Q̃1+̇ = −Q23 , Q̃1−̇ = −Q24 , Q̃2+̇ = −Q13 , Q̃2−̇ = −Q14 . (3.9)

The generators of the 4d N = 2 R-symmetry are given by (3.4). The conformal
supercharges and the remaining generators of this subalgebra are summarized in Ap-
pendix C. The second step in the topological-holomorphic twist of interest is to perform
the Donaldson-Witten topological twist on X4. The result of this twist will be a chiral
algebra on C. However, this algebra of local operators of the topological-holomorphic
theory is not very interesting. As in the work of Kapustin [21], one finds that the product
of two local operators can not contain any singularities. This can be seen as follows.
Since the theory is topological on X4 the operators can be inserted at any point on the
four-manifold and thus they cannot have a singular OPE on C and therefore do not have
an interesting chiral algebra. This is a consequence of Hartog’s extension theorem for
functions of multiple complex variables. In order to obtain an interesting OPE that al-
lows for singularities, we must modify the topological-holomorphic twist to eliminate the
freedom to move freely on X4 and fix the local operators to a point on X4. This is pre-
cisely what the Ω-deformation summarized in Section 2 achieves! Therefore by adding an
Ω-deformation to the topologically twisted theory on X4 all local operators localize to the
fixed points on X4 allowing for a non-trivial chiral algebra along C. To ensure that this
chiral algebra is the same as the one in [7] we need to take care of one final subtlety. In [7]
the 6d N = (2, 0) theory was not deformed, i.e. the chiral algebra arises as a subsector of
the 6d SCFT on R6. Therefore we should make sure that when we apply the Ω-deformed
topological-holomorphic twist on X4 × C described above, we do not deform the path
integral of the 6d N = (2, 0) SCFT. This can be achieved by taking C = R2 and, as
described in detail in Section 2.1, X4 = R4 with an Ω-deformation with ε1 = ε2 = ε

2
.

After we have specified in detail the procedure for performing the topological-holomorphic
twist on R4

ε,ε × R2 it is important to study the resulting invariant supercharge and its
cohomology. Fortunately, we have already done the necessary calculations. We simply
need to take the supercharge in (2.17) and use (3.8) and Appendix C to express it in
terms of the supercharges in the 6d N = (2, 0) superconformal algebra. We find that the
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invariant supercharge after the Ω-deformed topological-holomorphic twist on R4
ε,ε×R2 is

QΩ = Q13 −Q24 − ε
(
S4

3 + S3
4

)
, (3.10)

and therefore as emphasized above does not deform the SCFT. One can check explicitly
that indeed this supercharge squares to a twisted rotation of the 6d N = (2, 0) theory

− 1

2ε
Q2

Ω =
(
M3

3 −M4
4 +R14 −R23

)
=

1

2
(L2 − L3)− 2R . (3.11)

As discussed in Section 2.1, the cohomology of QΩ can be equivalently characterized by
the cohomology Q(1)

Ω or Q(2)
Ω , where QΩ = Q

(1)
Ω +Q

(2)
Ω and {Q(1)

Ω , Q
(1)
Ω } = {Q(2)

Ω , Q
(2)
Ω } = 0.

Using (3.10) we find that these supercharges are given explicitly by

Q
(1)
Ω = Q13 − εS4

3 , Q
(2)
Ω = −Q24 − εS3

4 . (3.12)

As remarked in Footnote 7 above there is some freedom in how to embed the SU(2)R
symmetry of the 4d N = 2 superconformal algebra in the USp(4) R-symmetry of the
6d N = (2, 0) SCFT. If we make the alternative SU(2)R choice described in Footnote 7
we can repeat the same topological-holomorphic twist accompanied by an Ω-deformation.
This leads to an alternative Ω-deformed supercharge given by

Q̃Ω = −Q14 −Q23 − ε
(
S3

3 − S4
4

)
. (3.13)

The cohomology of this supercharge can be studied in a similar way by decomposing it
as Q̃Ω = Q

(3)
Ω +Q

(4)
Ω with

Q
(3)
Ω = −Q14 − εS3

3 , Q
(4)
Ω = −Q23 + εS4

4 . (3.14)

We now notice that the Ω-deformed supercharges described above can be mapped to the
four supercharges Qi used to define the cohomology leading to the chiral algebra in [7].
The precise map is given by

Q1 = Q
(1)
Ω , Q2 = −Q(3)

Ω , Q3 = −Q(4)
Ω , Q4 = −Q(2)

Ω . (3.15)

Since the supercharges Qi are the starting point for the construction of the chiral alge-
bra in [7] we have shown that our procedure to perform a topological-holomorphic twist
accompanied by an Ω-deformation will eventually lead to the same chiral algebra. To
confirm this more explicitly one can show that the generators of the left-moving sl(2)
algebra on C are given by

L0 =
1

2
(H + L1) , L+1 = K21 , L−1 = P12 , (3.16)

and are closed under QΩ and Q̃Ω. As in [7] one can also appropriately modify the right-
moving sl(2) algebra on C using SU(2)R as

L̂0 =
1

2
(H−L1)+

ε

2
(R14 +R23) , L̂+1 = K43−εR12 , L̂−1 = P34+εR34 . (3.17)
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It is then easy to show that these generators are exact under QΩ and Q̃Ω

L̂0 =
1

4
{QΩ, Q

†
Ω} =

1

4
{Q̃Ω, Q̃

†
Ω} ,

L̂−1 = {QΩ,Q33} = {QΩ,Q44} = −{Q̃Ω,Q34} = {Q̃Ω,Q43} ,
L̂+1 = −{QΩ,S3

2} = −{QΩ,S4
1} = −{Q̃Ω,S4

2} = {Q̃Ω,S3
1} .

(3.18)

These results are of course compatible with [7] and dictate how to construct correlation
functions of local operators inserted in the chiral algebra plane C.

To find the quantum numbers of a local operator inserted at the origin, O(0), that belongs
to the cohomology of the supercharges Q(i)

Ω , i = 1, 2, 3, 4, and thus to the chiral algebra,
we need to impose the identities (no sum over repeated indices)

[{Q(i)
Ω , (Q

(i)
Ω )†},O(0)] = 0 , [{Q(i)

Ω , Q
(j)
Ω },O(0)] = 0 , i 6= j . (3.19)

Evaluating these commutators explicitly one finds that the quantum numbers of O(0)
have to obey

∆ = 2R + h1 , r = 0 , h2 = h3 . (3.20)

Operators with these quantum numbers belong to (semi-)short representations of the
N = (2, 0) superconformal algebra. As could be anticipated these are precisely the
operators studied in [7] and summarized in their Table 1.

3.1 Intermezzo: lifting the Ω-deformation to 6d

We used a sleight of hand in the discussion above which we will address here.8 When
we write down the Ω-deformed supercharge in (3.10) we seem to treat the supercharges
on the right-hand side as in Section 2.1, i.e. as if arising from three-dimensional spatial
integrals of supercurrents, see (2.15). This is certainly not appropriate for supercharges
acting on the 6d N = (2, 0) SCFT. An alternative way to state the subtlety is that after
we perform the holomorphic twist on C we take C to be non-compact, i.e. C = R2. In
this section, we show how to resolve this problem and lift the Ω-deformation in Section 2.1
to six dimensions.

As in Section 2.1 it is useful to define the (conformal) supercharges in terms of supercur-
rents as

QAa =

∫
d5xGAa , SaA =

∫
d5x

(
Σµ

)ab
xµGAb . (3.21)

The 4d scalar and vector supercharges of the Donaldson-Witten used in (2.17) and (2.14)
can be easily written in terms of the 6d supercharges as9

Q(6d) = Q13 −Q24 ,

G
(6d)
X4

= iΣ̄ab
mQAbMA

a dxm .
(3.22)

8We are grateful to Chris Beem for an important conversation about this issue.
9In this subsection we sometimes use the superscript (6d) to emphasize that a given supercharge has

been properly obtained by a 5d spatial integral of a supercurrent.
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Here m = 1, . . . , 4, the Σ matrices are given in Appendix A and the matrix M is defined
as

M =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 . (3.23)

This matrix couples the SU(4) indices to the USp(4) indices and implements the topologi-
cal twist along X4. It can be checked explicitly that, with respect to the twisted rotations,
Q(6d) transforms as a scalar along X4 and C, i.e. it belongs to the (1,1)0 representation
in (3.7). Similarly G(6d)

X4
transforms as a vector along X4 and a scalar along C and thus

corresponds to the (2,2)0 representation in (3.7).

The holomorphic twist on C leads to another vector supercharge in the (1,1)−1 represen-
tation in (3.7) which is given by

G
(6d)
C = iΣ̄ab

p QAbNA
a dxp = (Q33 −Q44) dz , (3.24)

where p = 5, 6, z = x5 + ix6, and the matrix N is defined as

N =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (3.25)

To obtain the Ω-deformed supercharge we now proceed as in Section 2.1, namely we need
to contract the vector supercharge with an appropriate Killing vector. To do this properly
in 6d we need to use the vector supercharge G(6d) = G

(6d)
X4

+G
(6d)
C . For the Killing vector

on R6 we choose
V µ = Ωµνxν , (3.26)

where the matrix Ω is defined as

Ω =


0 ε 0 0 0 0
−ε 0 0 0 0 0
0 0 0 ε 0 0
0 0 −ε 0 0 0
0 0 0 0 0 ε
0 0 0 0 −ε 0

 . (3.27)

The vector V thus parameterizes rotations in the three orthogonal planes R2×R2×R2 ⊂
X4 × C. On X4 we recognize the familiar Ω-deformation from Section 2.1 which is now
accompanied by an additional Ω-deformation on C. With this at hand we can then write
the 6d Ω-deformed supercharge Q(6d)

Ω as

Q
(6d)
Ω = Q(6d) + ιVG

(6d)

= Q(6d) +

∫
d5x

(
iΩmnxn

(
Σ̄m

)ab GAbMA
a + iΩpqxq

(
Σ̄p

)ab GAbNA
a

)
= Q13 −Q24 − ε(S4

3 + S3
4 ) .

(3.28)
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Proceeding in a similar fashion we can find another Ω-deformed supercharge Q̃(6d)
Ω given

by

Q̃
(6d)
Ω = Q(6d) +

∫
d5x

(
iΩmnxn

(
Σ̄m

)ab GAbM̃A
a + iΩpqxq

(
Σ̄p

)ab GAbÑA
a

)
= −Q14 −Q23 − ε

(
S3

3 − S4
4

)
.

(3.29)

where Ω is the same matrix as in (3.27) while M̃ and Ñ are given by

M̃ =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 , Ñ =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

 . (3.30)

We have thus arrived at the same Ω-deformed supercharges as the one in (3.10) and
(3.13) but with the benefit of a more rigorous 6d derivation. We thus conclude that
the chiral algebra of [7] can be obtained from the cohomology of the supercharge of the
topological-holomorphic twist of the 6d N = (2, 0) SCFT on the Ω-deformed R6

ε1,ε2,ε3
with

ε1 = ε2 = ε3.

A similar subtlety arises in the procedure of [18, 19] to obtain the chiral algebra associated
with every 4d N = 2 SCFT by employing an Ω deformation. We show how to address
this subtlety in Appendix D .

3.2 Comments on supersymmetric localization

So far we have presented a procedure which involves topological twists and an Ω-
deformation of the 6d N = (2, 0) SCFT and leads to a set of invariant supercharges
which are identical to the ones used in [7] to arrive at a chiral algebra on C. This can
be viewed as the kinematical underpinning for the derivation of this chiral algebra. To
answer the dynamical question of the precise form of the chiral algebra one may adopt
the approach followed in [7] which, in short, amounts to an educated guess supported
by highly non-trivial consistency checks. Our construction above offers, at least in prin-
ciple, an alternative route to the derivation of the chiral algebra. This could proceed
as follows. We start with the path integral of the 6d N = (2, 0) SCFT and implement
the Ω-deformation described in the previous section. This selects the supercharge QΩ

in (3.28) which we could then use to perform equivariant localization along the lines of
[12, 13]. It is natural to expect that the full path integral will then localize to a the-
ory defined on C spanned by the BPS operators in the N = (2, 0) SCFT with quantum
numbers obeying (3.20). This localized path integral would then serve as a generating
functional for the correlation functions of the chiral algebra in [7]. Unfortunately, this
supersymmetric localization calculation is hard to perform explicitly. To understand why,
recall that the general 6d N = (2, 0) SCFT, labeled by a choice of a simply laced Lie
algebra g = {AN , DN , E6,7,8}, is intrinsically strongly coupled and lacks a (known) La-
grangian formulation that manifests all its symmetries. This prohibits a direct derivation
by path integral methods of the conjecture in [7] that the chiral algebra associated to this
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6d N = (2, 0) SCFT is the Wg algebra. Nevertheless, it is possible to find supporting
evidence that this path integral localization procedure will lead to the expected answer.
As we show in Section 4.2, directly following [22], upon an equivariant integration of the
anomaly polynomial of the 6d N = (2, 0) SCFT on R4

ε1,ε2
×R for a general choice of g

and after setting ε1 = ε2 one indeed finds the central charge of a Wg algebra.

The free tensor multiplet lies in an ultra-short representation which contains five real
scalars ΦI , two Weyl fermions λaA, and a two-form with self-dual field strength w+

[ab]. The
scalars transform in the 5 of so(5), which satisfy �ΦI = 0 and have ∆ = 2. The two
Weyl fermions transform in the (4,4) of so(6) × so(5) and are subject to a symplectic
Weyl reality condition. They satisfy the free Dirac equation and have scaling dimension
∆ = 5

2
. Finally, the two-form w+

[ab] has scaling dimension ∆ = 3 and self-dual field strength
H = ?H = dw. The field strength is both closed and co-closed, dH = d ? H = 0. In
[7] it was shown that there is only one operator in the chiral algebra of the free tensor
multiplet, namely the so(5)R highest weight state of the five scalar fields, and its OPE
forms an affine U(1) algebra. Here we outline how the same result should arise using
supersymmetric localization in the Ω-background described above.

Due to the self-duality of the field strength, it is not possible to write down a Lagrangian
for the free tensor multiplet. However, one can write down a free Lagrangian comple-
mented with a self-duality condition H− = 0, see for example [34]. The bosonic part of
this Lagrangian reads

S =

∫ [
−1

2
dΦI ∧ ?dΦI − 2H ∧H +

i

2
?
(
λa/∂λa

)]
. (3.31)

To obtain a chiral algebra we put this theory on a manifold of the form X4 ×C. On this
space, we can consider the manifestly self-dual reduction ansatz for the three-form field
strength

H = F ∧ dx+ ?4F ∧ dy + ?4dΦ6 + dΦ6 ∧ dx ∧ dy , (3.32)

where z = x + iy is a complex coordinate on C, Φ6 is a scalar, F is a two-form on X4

and ?4 is the four-dimensional Hodge star operator. With this reduction ansatz we see
that the equation of motion for the three-form give rise to the Maxwell equation in four
dimensions10

dH = d ? H = 0 ⇒ dF = d ? F = 0 , (3.33)

and the Klein-Gordon equation for a massless scalar Φ6. Together with the remaining
scalars and fermions, this results in the field content of N = 4 U(1) SYM defined on
X4. We are thus led to conclude that supersymmetric localization of the N = (2, 0) free
tensor multiplet on R4

ε,ε × C with a topological-holomorphic twist should be equivalent
to supersymmetric localization N = 4 U(1) SYM R4

ε,ε with the Donaldson-Witten twist.
To arrive at the final result we can appeal to the results in [35] where it was argued that
the theory resulting from this supersymmetric localization is the same as that of a chiral
fermion which can be thought of as moving on the chiral algebra plane. While it will
be nice to derive this result more rigorously, we will take it at face value and proceed

10The theory has become effectively four-dimensional due to the additional Ω-deformation on C dis-
cussed in Section 3.1.
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to bosonize this chiral fermion and thus find a u(1) Kac-Moody algebra on C. This is
in harmony with the result in [7] for the chiral algebra arising from the N = (2, 0) free
tensor multiplet.

Clearly, it is desirable to perform the supersymmetric localization with more rigor for
the general case of a 6d N = (2, 0) SCFT of type g. Perhaps the approach outlined in
[36] to use 5d N = 2 SYM obtained by a reduction of the 6d N = (2, 0) SCFT will be
fruitful in this regard. It is clear that there must be a relation between the Wg algebra
appearing in the AGT correspondence and the chiral algebra of the same type arising in
the construction of [7]. We hope that the procedure outlined above will shed more light
on this connection.

3.3 Orbifolds and defects

One way to generalize the construction above is to include orbifolds acting on the space
X4. The orbifold action should be compatible with the Killing vector in (3.26) used
to define the Ω-deformation. This implies that if we think of X4 as a two-dimensional
complex space C2 with coordinates (z, w) then we should consider Zk orbifolds defined
by the action (z, w) → (e2πi/kz, e−2πi/kw). Similarly, it is possible to generalize the four-
dimensional construction of [18, 19] to include an Abelian orbifold of the plane transverse
to the chiral algebra plane, i.e. take Σ = R2/Zk as the surface transverse to C. As
discussed in detail above, in the absence of orbifolds the 6d N = (2, 0) SCFT is not
deformed by the topological-holomorphic twist and the Ω-deformation. The same is true
for the construction of [18, 19]. This is crucial to ensure that the resulting chiral algebra
is indeed a property of a given 6d N = (2, 0) or 4d N = 2 SCFT. In the presence of
the Zk orbifold, this is no longer true and thus the resulting chiral algebras should be
associated with an appropriate deformation of the 6d N = (2, 0) or 4d N = 2 SCFT.

It is tempting to speculate that for the 6d N = (2, 0) theory on this orbifold space it
is possible to use supersymmetric localization to derive the corresponding chiral algebra.
The results of [37, 38] may be useful in this regard. In the absence of such an explicit
calculation we can try to formulate an educated guess for the chiral algebras arising
from this orbifold construction. To formulate the conjecture we draw inspiration from
the results in [23, 24, 25] on the generalizations of the AGT correspondence to theories
on 4d orbifolds. The natural conjecture for the chiral algebra obtained from localizing
the 6d N = (2, 0) theory of type g = AN−1 on the Ω-deformed R4/Zk × C is that
it should be the same as the algebra of a system of generalized para-fermions known
as RCFT[Ak−1, AN−1] ⊕ RCFT[AN−1, Ak−1] [39], see [40, 41, 42, 43]. More generally for
N = (2, 0) theories of type g one should find a system of generalized para-fermions of type
RCFT[Ak−1, g] ⊕ RCFT[g, Ak−1]. Indeed, this appears to be in line with the discussion
in [35], where the localization of the four-dimensional theory resulting from the abelian
N = (2, 0) theory was studied. In Section 4.3 we discuss the results in [24] which provide
supporting evidence for this conjecture by computing the chiral algebra central charge via
an explicit equivariant integration of the anomaly polynomial of the 6d N = (2, 0) SCFT
of type g.
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Similarly one should be able to construct a chiral algebra starting from a 4d N = 2
theory on R2/Zk×R2 along the lines of [18, 19]. In this case, however, we are not able to
formulate a guess for the resulting chiral algebra. Nevertheless, in Section 4.3 we calculate
the central charge of this chiral algebra using equivariant integration of the 4d N = 2
anomaly polynomial. It would certainly be interesting to explore this in more detail.

Another way to enrich the story above is to include defects in the six-dimensional theory.
In order to be compatible with the Ω-deformation and topological-holomorphic twist of
interest, one has to restrict to supersymmetric co-dimension two or co-dimension four
defects. The co-dimension two defects admit an su(4?|2) superconformal algebra on their
worldvolume and thus come equipped with their own chiral algebra. If the defect ex-
tends along C and spans two directions in X4 then it modifies the chiral algebra of the
N = (2, 0) SCFT. Defects extending along all four directions of X4 are interpreted as
chiral vertex operators in the chiral algebra on C. The co-dimension four supersymmetric
defects compatible with the chiral algebra should have su(2|2) worldvolume supercon-
formal symmetry. Some properties of these superconformal defects have been studied in
[7, 44] but there is more to be understood. This is especially true in the context of relating
the chiral algebra in the presence of these defects with the role that similar defects play
in the AGT correspondence, see [17] for a recent review. We hope that the Ω-deformed
topological-holomorphic twist discussed above will shed some new light on this.

4 Central charges from the anomaly polynomial

In this final section, we show how one can extract the central charges of the chiral algebras
arising as subsectors in 4d N = 2 and 6d N = (2, 0) SCFTs. The calculation proceeds
along the lines of [22] and amounts to integrating the anomaly polynomial of the SCFT
over the Ω-deformed space transverse to the chiral algebra plane.

4.1 Chiral algebras in 4d N = 2 SCFTs

The anomaly polynomial of a 4d N = 2 SCFT with conformal anomalies a and c and
flavor anomaly kG is given by (see for example [45])

I6 = (a−c)
[
8c1(Fr)

3 − 2c1(Fr)p1(T4)
]
−8(2a−c)c1(Fr)c2(FR)+2kGc1(Fr)c2(FG) . (4.1)

Here c1,2 are the first and second Chern classes, p1 is the Pontryagin class, and Fr, FR and
FG are the field strengths associated to the background vector fields of the U(1)r, SU(2)R
and flavor symmetries, respectively.

We consider a 4d N = 2 SCFT on a manifold of the form X4 = Σ × C and denote with
λ and t the Chern roots of the tangent bundles of Σ and C, respectively. Following the
construction of [18, 19], we should perform the topological-holomorphic twist of Kapustin
accompanied by an Ω-deformation along Σ. To obtain the central charges we proceed in
steps. First, we twist the theory along Σ by coupling the U(1)r background vector field
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to the spin connection. This is implemented by identifying the first Chern class of the
R-symmetry bundle of the four-dimensional theory with the Chern root of the tangent
bundle of Σ,

c1 (Fr) = −1

2
λ , (4.2)

while the SU(2)R bundle remains untouched and becomes the R-symmetry of the resulting
2d N = (0, 4) theory on C. We can then evaluate the anomaly polynomial for the twisted
theory and integrate tΣ over Σ. This operation results in the following anomaly four-form,

I4 = −2(2a− c)c1(FR)2

∫
Σ

λ+ (a− c)p1(TC)

∫
Σ

λ− kGc1(FG)2

∫
Σ

λ . (4.3)

For a 2d N = (0, 4) theory with left- and right-moving central charges cL and cR and
flavor symmetry at level k2d, the anomaly polynomial takes the form (see for example
[46])

I
(0,4)
4 =

cR
6
c1(FR)2 +

cL − cR
24

p1(TC) + 2k2dc1(FG)2 . (4.4)

Comparing (4.3) and (4.4) we find the following central charges for the theory on C 11

cR = −12χ(Σ)(2a− c) , cL = −12χ(Σ)c , k2d = −χ(Σ)

2
kG . (4.5)

Here χ(Σ) =
∫

Σ
λ is the Euler characteristic of Σ.

This result holds for all four-manifolds of the form Σ × C where Σ and C are two-
manifolds. To study the chiral algebra of interest, we want to consider a 4d N = 2
SCFT on R2

ε ×R2 and perform the twist along Σ = R2
ε where R2

ε is the two-dimensional
Ω-background. To properly compute the Euler characteristic of the Ω-background, we
should proceed with care and consider the characteristic classes in the equivariant sense
[47, 22, 48]. We consider the action of a U(1) rotating the plane around the origin and
call the equivariant parameter ε. We can now use the Duistermaat-Heckman (or more
general Berline-Vergne/Atiyah-Bott) localization formula∫

M

α =
∑
p

α|p
e(Np)

, (4.6)

where α is an equivariantly closed differential form. The sum runs over all fixed points of
the torus action (in our case simply the U(1) action) and e(Np) is the equivariant Euler
class of Np, the normal bundle of p in Σ. In our case, the only fixed point of the U(1)
action is the origin and therefore we find the following equivariant Euler characteristic

χ(R2
ε) =

∫
R2
ε

λ = 1 . (4.7)

Finally, as described in [18, 19], to obtain a chiral algebra on C we have to perform a
holomorphic twist of the 2d N = (0, 4) theory with anomalies in (4.5) with respect to

11In our conventions the supercurrents are right-moving and therefore cR is associated with the super-
symmetric part of the theory.
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the Cartan of the SU(2)R symmetry. This makes the right-moving sector of the theory
topological and thus we find

cR = 0 , cL = −12c , k2d = −1

2
kG . (4.8)

These are precisely the chiral algebra anomalies derived by different methods in [6]. Note
in particular that for a unitary 4d N = 2 SCFT we have kG > 0 and c > 0 and thus we
find a non-unitary chiral algebra.

4.2 Chiral algebras in 6d N = (2, 0) SCFTs

In six dimensions we can proceed in the same spirit. The calculation was performed
in detail in [22] and here we summarize their results with particular emphasis on the
ε1 = ε2 limit relevant for our discussion. We consider the 6d N = (2, 0) theory of type
g on a manifold of the form X4 × C. Following the construction of the chiral algebra in
Section 3, we consider a topological-holomorphic twist of the 6d theory accompanied by
an Ω-deformation.

The anomaly polynomial of the 6d N = (2, 0) theory of type g, where g =
{AN , DN , E6,7,8}, can be written as [49, 50, 51]

I8[g] = rgI[1] +
dghg
24

p2(NW) , (4.9)

where rg, dg and hg are the rank, dimension, and Coxeter number of the simply-laced Lie
algebra g, see Table 3, and I8[1] is the anomaly eight-form of one M5-brane [52]

I8[1] =
1

48

[
p2(NW)− p2(TW) +

1

4
(p1(TW)− p1(NW))2

]
, (4.10)

where NW and TW stand for the normal and tangent bundle to the M5-brane worldvolume
and pk is the kth Pontryagin class.

g rg dg hg

AN−1 N − 1 N2 − 1 N
DN N 2N2 −N 2N − 2
E6 6 78 12
E7 7 133 18
E8 8 248 30

Table 3: Rank, dimension and Coxeter number of the Lie algebras of type g.

We proceed by twisting the theory along X4 as described in Section 3. The supercharges
preserved under this twist form a 2d N = (0, 2) superalgebra with U(1)r symmetry.
We can determine the anomaly polynomial of the resulting two-dimensional theory by
integrating the eight-form anomaly polynomial (4.9) over X4. We denote the Chern root
of the tangent bundle of C with tC and use λ1 and λ2 for the Chern roots of the tangent
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bundle of X4. The Chern roots of the normal bundle are n1 and n2. The topological twist
along X4 introduces the identification

n2 = λ1 + λ2 , (4.11)

and we can identify the R-symmetry of the two-dimensional theory on C as 2c1(FR) → n1.
Expanding the Pontryagin classes as

p1(TW) = p1(TC) + p1(TX4) , p2(TW) = p1(TC)p1(TX4) , (4.12)
p1(NW) = 4c1(FR)2 + p1(TX4) + 2e(X4) , p2(NW) = 4c1(FR)2(p1(TX4) + e(X4)) ,

where e(X4) is the Euler class of X4, we can integrate the anomaly polynomial over X4

to find the four-form anomaly polynomial

I4 =

[
rg + 2dghg

12

∫
X4

p1(TX4) +
3rg + 4dghg

12

∫
X4

e(X4)

]
c1(FR)2

− rg
48

[∫
X4

(p1(TX4) + e(X4))

]
p1(TC) .

(4.13)

Comparing this with (4.4) we find the left- and right-moving central charge12

cL = χ(X4)rg + (P1(X4) + 2χ(X4)) dghg ,

cR =
1

2
(P1(X4) + 3χ(X4)) rg + (P1(X4) + 2χ(X4)) dghg ,

(4.14)

where χ(X4) =
∫
X4
e(TX4) is the Euler number of X4 and P1(X4) =

∫
X4
p1(TX4) is the

integrated first Pontryagin class which is equal to three times the signature of X4.

So far we treated X4 as a general four-manifold. Our main interest here is to study the
theory on the Ω-background, X4 = R4

ε1,2
. We take the action of the torus U(1)2 to rotate

the two orthogonal planes in R4 with equivariant parameters ε1 and ε2. To compute the
Euler number and integrated Pontryagin class we need to employ equivariant integration.
Since the Chern classes of the two planes are given by ε1,2 we have p1(TR4

ε1,ε2
) = ε21 + ε22

and e(TR4
ε1,ε2

) = ε1ε2. The only fixed point of the torus action is again the origin so we
find

P1(R4
ε1,ε2

) =
ε21 + ε22
ε1ε2

, χ(R4
ε1,ε2

) = 1 . (4.15)

Substituting this result in (4.14) we arrive at, see [22],

cL = rg + (b+ b−1)2hgdg ,

cR =
1

2
((b+ b−1)2 + 1)rg + (b+ b−1)2hgdg ,

(4.16)

where b2 = ε1/ε2. To complete the chiral algebra construction we need to implement a
further holomorphic twist of the two-dimensional theory on C. This sets cR = 0 and leaves
only a left-moving chiral algebra with central charge cL. As emphasized in Section 3 the
chiral algebra of interest arises when we set ε1 = ε2 or b = 1. Setting b = 1 in (4.16) one
finds that cL = 4dghg + rg which is the expected central charge of the Wg algebra [7].

12The expression in (4.4) is also the anomaly polynomial for 2d N = (0, 2) theories.
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4.3 Including orbifolds

As discussed in Section 3.3, we can generalize the setup of [6, 7] and replace Σ = R2

and X4 = R4 by the orbifold spaces C/Zk and C2/Zk where the orbifold action is z 7→
e2πi/kz and (z, w) 7→ (e2πi/kz, e−2πi/kw), respectively. To find the central charge of the
corresponding chiral algebra we need to slightly modify the computations above when it
comes to the evaluation of the equivariant Euler number and integrated first Pontryagin
class.

In four dimensions we must compute the equivariant Euler characteristic on R2
ε/Zk. We

do this by passing to the k-fold cover of the orbifold. On this cover, the U(1) action has
k fixed points, one corresponding to each sheet. From the localization formula it then
straightforwardly follows that the Euler characteristic is given by

χ(R2
ε/Zk) =

∑
i

1 = k , (4.17)

where i runs over the fixed points. Inserting this result in the formulae for the central
charges, (4.5), we find the central charge and current level of a chiral algebra obtained
from an N = 2 SCFT as

c2d = −12kc , k2d = −k
2
kG . (4.18)

For k = 1 we recover the result in (4.8). It will be interesting to understand whether this
two-dimensional chiral algebra has any relation to the one studied in Section 5 of [53].

In the six-dimensional case, we proceed analogously. This calculation was in fact per-
formed in [24] and here we briefly summarize their results. To compute the equivari-
ant characteristic classes for R4

ε1,ε2
/Zk it is more convenient to work with the resolved

ALE space obtained by blowing up the singularity at the origin. The blowup of C2/Zk
is given as the standard blowup of an Ak−1 singularity, where we replace the singular
point at the origin by a collection of k − 1 CP1’s which are either completely disjoint
or intersect in exactly one point. The intersection numbers are related to the Cartan
matrix of the Ak−1 algebra. In the resolved space, the fixed points of the U(1)2 action
can be mapped to the nodes of the Dynkin diagram of Ak−1. Therefore, we conclude
that the blown-up geometry contains k fixed points which contribute to the localization
formula. It proves useful to introduce local coordinates for the k fixed points given re-
spectively by (zi, wi) = (zk−i+1w1−k, zi−kwk). If we parameterize the original U(1)2 action
on R4 as (z, w) 7→ (eε1z, eε2w), then the torus action at the fixed points is given by
(zi, wi) 7→ (eε1(i)zi, e

ε2(i)wi), where

ε1(i) = (k − i+ 1)ε1 + (1− i)ε2 , ε2(i) = (i− k)ε1 + iε2 . (4.19)

Using these data, the equivariant Euler number and integrated Pontryagin class can be
computed from the localization formula resulting in

χ(R4
ε1,ε2

/Zk) =
∑
i

1 = k , (4.20)

P1(R4
ε1,ε2

/Zk) =
∑
i

ε1(i)2 + ε2(i)2

ε1(i)ε2(i)
=

1

k

(ε1 + ε2)2

ε1ε2
− 2k . (4.21)
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Using this and (4.14) we find the central charge

cL = k rg +
dghg
k

(b+ b−1)2 . (4.22)

To obtain the chiral algebra central charge we need to set b = 1. We then obtain a
result for the central charge related to the central charge of the k-th para-Wg algebra as
discussed in detail in [24]. For k = 1 one recovers the result in (4.16). For k = 2 and
rg = 2 one finds the central charge of N = 1 super Liouville theory which is in harmony
with the results in [23]. It will be very interesting to understand how to generalize the
results of [7] and obtain a chiral algebra with the central charge in (4.22) from the OPE
of a suitable deformation of the 6d N = (2, 0) theory on R4/Zk ×R2.

5 Discussion

In this paper, we studied an alternative derivation of the chiral algebra associated with
a 6d N = (2, 0) SCFT proposed in [7]. Our construction is similar in spirit to the one
in [18, 19] which is relevant for the chiral algebras associated with 4d N = 2 SCFTs.
An essential ingredient in our discussion is a topological-holomorphic twist of the 6d
N = (2, 0) SCFT on the Ω-deformed space R4

ε1,ε2
×R2. In the limit ε1 = ε2 this operation

does not deform the theory and the cohomology of the QΩ supercharge leads to the same
chiral algebra onR2 as in [7]. Furthermore, we also generalized this construction to include
orbifolds in the space transverse to the chiral algebra plane and showed how to utilize
equivariant integration of the anomaly polynomial of the 4d N = 2 and 6d N = (2, 0)
SCFTs to derive the chiral algebra central charges obtained by other means in [6] and [7],
respectively.

The most important open question is how to use our construction as a basis for a super-
symmetric localization calculation in order to derive the proposal in [7] that the chiral
algebra for the 6d N = (2, 0) theory of type g is the Wg algebra. This result, and its
orbifold generalization, are also supported by the central charge calculation in Section 4.2.
As already discussed in Section 3.2, this direct derivation of the chiral algebra is difficult
due to the absence of a Lagrangian of the 6d N = (2, 0) interacting SCFTs and it will be
most interesting to circumvent this difficulty. One possible line of attack is to use the idea
of [36], see also [54], and reduce the 6d N = (2, 0) theory to a 5d N = 2 SYM theory in a
non-trivial background. The knowledge of the explicit Lagrangian of the 5d SYM theory
may then facilitate the supersymmetric localization calculation.

Many of the ingredients in our analysis are reminiscent of elements appearing in the AGT
correspondence [15]. The twist we employ on C is the same as the one in the class S
construction [32, 14], the difference being that in our setup C is simply the Euclidean
plane instead of a punctured Riemann surface. Moreover, it is well-known that the Ω-
deformation is intimately related to the Nekrasov partition function and therefore AGT
[55]. Finally, the appearance of the Liouville [15] and more general Toda [16] CFTs in
the AGT setup is of course reminiscent of the W algebras arising as chiral algebras in
the construction of [7]. All of this suggests that it might be possible to generalize the
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results presented here to more general surfaces C and combine them with supersymmetric
localization to arrive at a derivation of the AGT correspondence. This may offer an
alternative to the derivation in [36] of the Toda CFT from the 6d N = (2, 0) SCFT in
which the role of the Ω-background is more manifest. Inspired by these observations it
is tempting to speculate that the 3d-3d correspondence, see [56] for a review, can be
somehow leveraged to uncover a subset of operators in the 6d N = (2, 0) SCFT which
span a 3d complex Chern-Simons theory. Perhaps combining the ideas discussed in [57]
together with a topological twist accompanied by an Ω-deformation may be a fruitful
strategy to pursue this.

It is natural to wonder also whether the idea to use a topological-holomorphic twist to
arrive at an interesting cohomological sector with a non-trivial OPE can be generalized
to other setups. While the chiral algebras proposed in [6] and [7] require the 4d and 6d
theories from which they originate to be conformal and highly supersymmetric one may
hope that there are generalizations of these ideas to theories with less supersymmetry
or with broken conformal invariance. For example the 1d topological theory studied in
[8] arising from 3d N = 4 SCFTs can be extended to non-conformal theories [58].13 In
addition, there are some hints that a version of the topological-holomorphic twist with
interesting relations to chiral algebras arises also in 4d N = 1 QFTs [60, 61, 62]. It will
be very interesting to understand whether using the Ω-deformation accompanied by an
appropriate topological twist may lead to new insights on these examples. Finally we
should mention that a topological-holomorphic twist of the non-conformal 6d N = (1, 1)
SYM on X4×C with X4 = R4

ε1,ε2
was studied in [63]. This construction uses the Marcus,

or geometric Langlands, twist of the effective 4d N = 4 SYM theory on X4 [64, 65]. As
explained in detail above, the construction employed in our work uses the Donaldson-
Witten twist on X4. It is then natural to ask whether there is any application of the
Yamron-Vafa-Witten twist of N = 4 in a similar context [66, 67]. We are not aware of an
obvious candidate construction that results in such a topological-holomorphic twist and
it will be interesting to understand the reason behind such a potential obstruction.

Another way to generalize our construction is to consider more general manifolds X4 on
which the topological twist accompanied by an Ω-deformation can be performed. Indeed,
for X4 a general toric four-manifold one can perform the topological twist and define the
Ω-deformation using the U(1)2 isometry of the manifold. For compact X4 one should
find at low energies a 2d N = (0, 2) theory of the type studied in [68, 69] and more
recently in [70]. For non-compact X4 the Ω-deformation may still give rise to new chiral
algebra sectors on C outside of the scope of [7]. However, for general X4 it is a priori not
clear if there exists a specific combination of equivariant parameters which leaves the 6d
N = (2, 0) theory undeformed. Therefore in general these putative chiral algebras will
not describe a protected subsector of the original 6d N = (2, 0) SCFT on R6.

The chiral algebras of [6] and [7] should have applications also in holography. This was
explored initially in [71] and further in [72] in the context of the 4d N = 2 chiral algebras.
In contrast, the 6d N = (2, 0) chiral algebras, and their orbifold generalizations discussed
in our work, have not been studied holographically. It is clearly important to understand

13See also [59], where these results were extended to N = 4 theories on more general 3d manifolds.
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this better especially since the non-trivial OPE of the operators in the chiral algebra may
lead to important insights into holography and perhaps the structure of M-theory [7, 73,
74]. It will also be interesting to explore the relation between this and the appearance of
the Ω-deformation in AdS/CFT [28, 75, 76].
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A Bi-spinors in four and six dimensions

Here we collect some facts about the rotation groups in four and six dimensions and the
bi-spinor notation used in the paper. The rotation groups in four and six dimensions
enjoy the exceptional isomorphisms

Spin(4) ' SU(2)× SU(2) , and Spin(6) ' SU(4) . (A.1)

Thus there is a useful alternative way to represent various fields and operators of interest
here. Instead of using the usual vector indices µ, ν, ... we can us spinor indices transforming
in the fundamental representations of SU(4) or SU(2) × SU(2). Furthermore, in the 6d
N = (2, 0) theory the R-symmetry group is Spin(5) which also has a useful alternative
representation due to the isomorphism

Spin(5) ' USp(4) . (A.2)

Bi-spinors in four dimensions

In four dimensions, a Weyl spinor ψα, α = 1, 2 transforms in the fundamental representa-
tion of SL(2,C), the complex conjugate representation is denotes by ψα̇, α̇ = 1, 2. Both
the dotted and undotted spinor indices are raised and lowered with the SL(2,C) invariant
tensor εαβ (and εα̇β̇). In our conventions

ε12 = ε21 = ε1̇2̇ = ε2̇1̇ = 1 . (A.3)

In this convention εαβεβγ = δγα. The real forms of the complex Lie algebras sl(2,C) and
su(2)+× su(2)− are the same. This allows us to use the same notation (j1, j2) to label the
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representations, where j1 and j2 are the spins of the two su(2)’s. In this way, the spinor
representation and its complex conjugate representation correspond to (2,1) and (1,2).

In Euclidean space, the spacetime rotation group is given by the orthonormal group SO(4)
which has covering group Spin(4). This group in turn is isomorphic to SU(2)+× SU(2)−.
Exploiting this isomorphism we can rewrite vectors as bi-spinors

Pµ(σµ)αβ̇ = Pαβ̇ = cαc̃β̇ . (A.4)

Here c and c̃ are complex valued spinors transforming in the (2,1) and (1,2) representa-
tions of the Lorentz group.

The Clebsch-Gordan coefficients (σµ)αα̇ intertwining between the vector representation
and the (2,2) representation of SL(2,C) are given by

(σµ)αβ̇ = (σ1, σ2, σ3, i12×2)αβ̇ , (A.5)

where we have used the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.6)

The dual Clebsch-Gordan coefficients are defined as

(σ̄µ)α̇β = (−σ1,−σ2,−σ3, i12×2)α̇β , (A.7)

and allow to transform a vector into a bi-spinor corresponding to the dual representation.
The matrices σµ and σ̄µ satisfy the following relations:

σ̄µσν + σ̄νσµ = −2ηµν ,

(σ̄µ)α̇β(σµ)γδ̇ = −2δβγ δ
α̇
δ̇
.

(A.8)

To define the generators of Spin(4) rotations we first define the following matrices

(σµν)α
β =

1

4
(σµσ̄ν − σν σ̄µ)α

β , (σ̄µν)β̇ α̇ =
1

4
(σ̄µσν − σ̄νσµ)β̇ α̇ . (A.9)

These matrices provide a spinorial representation of the Lorentz group, Mµν = iσµν (or
Mµν = iσ̄µν).

We can then decompose Mµν into a self-dual and anti-self-dual part in the bi-spinor
notation as

Mµν → (σµ)αα̇(σµ)ββ̇Mµν =Mαα̇,ββ̇ = εαβMα̇β̇ + εα̇β̇Mαβ , (A.10)

so thatMα̇
β̇ are the generators of SU(2)− andMα

β the generators of SU(2)+.

The bi-spinor notation allows to write the commutation relation for (super)conformal
algebras of interest here in a unified manner irrespective of the signature of spacetime.
The different choice of spacetime signature differ by the definition of the σ-matrices. In
our analysis we mostly work in Euclidean signature and thus use the definition in (A.5).
To convert to Lorentzian mostly plus signature we should use the intertwining matrices:

(σµ)αβ̇ = (12×2, σ
1, σ2, σ3)αβ̇ , (σ̄µ)α̇β = (12×2,−σ1,−σ2,−σ3)α̇β . (A.11)
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Bi-spinors in six dimensions

A similar construction can also be performed in six dimensions. The Lorentz group is
Spin(6) ' SU(4) and the six-dimensional spinors have four complex components, trans-
forming in the fundamental of SU(4). We can rewrite the momentum vector as a bi-spinor

Pµ(Σµ)ab = Pab = cacb , (A.12)

where c is a fermion transforming in the fundamental representation. Indeed, the anti-
symmetric representation of SU(4) is six-dimensional so this bi-spinor has the correct
number of components. Similarly we can define the dual intertwining matrices (Σ

µ
)ab

and spinors c̃a transforming in the anti-fundamental representation. Unlike in the case of
SU(2) the fundamental and anti-fundamental are inequivalent since no tensor can raise
or lower indices. The only non-trivial invariant tensor is the four index Levi-Civita tensor
εabcd.

The Clebsch-Gordan coefficients are defined in terms of the Pauli matrices as

Σ1 = iσ2 ⊗ σ1 , Σ2 = −σ1 ⊗ σ2 ,

Σ3 = iσ2 ⊗ σ3 , Σ4 = σ2 ⊗ 1 ,

Σ5 = σ3 ⊗ σ2 , Σ6 = iσ0 ⊗ σ2 .

(A.13)

These matrices satisfy the following relations

Tr ΣµΣν = −4ηµν ,

(Σµ)ab (Σµ)cd = 2εabcd ,(
Σµ

)ab (
Σ
µ)cd

= 2εabcd ,

(Σµ)ab
(
Σ
µ)cd

= 2
(
δcaδ

d
b − δdaδcb

)
,

(A.14)

where Σ is the complex conjugate of Σ.

B The 4d N = 2 superconformal algebra

In this appendix, we collect some basic facts about the 4d N = 2 superconformal alge-
bra.14 The spacetime symmetry algebra for N = 2 superconformal field theory is the
superalgebra sl(4|2).15 The maximal bosonic subalgebra is so(6,C)× gl(2,C).

The four-dimensional complexified conformal algebra so(6,C) is generated by translations,
special conformal transformations, rotations, and dilatations. The generators for these
transformations are given by

Pαα̇ , Kα̇α , Mα
β , Mα̇

β̇ , H , (B.1)

14See [77] for a comprehensive review on superalgebras.
15Here and in the next appendix we specify the complexified superalgebra. One should specify a real

form together with the correct representation of the σµ matrices to obtain the desired real superalgebra
and commutation relations.
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where we use the bi-spinor notation (see Appendix A). By adding eight Poincaré su-
percharges QIα, Q̃Iα̇ and eight conformal supercharges SαI , S̃Iα̇ to this algebra we ob-
tain the 4d N = 2 superalgebra sl(4|2). These supercharges are acted upon by the
gl(2,C) ' sl(2,C)R × gl(1,C)r R-symmetry with generators RIJ where I,J = 1, 2 are
indices in the fundamental of gl(2,C).

The commutation relations for the so(6,C) conformal algebra are[
Mα

β,Mγ
δ
]

= δβγMα
δ − δδαMγ

β ,
[
Mα̇

β̇,M
γ̇
δ̇

]
= δα̇

δ̇
Mγ̇

β̇ − δ
γ̇

β̇
Mα̇

δ̇ ,[
Mα

β,Pγγ̇
]

= δβγPαγ̇ −
1

2
δβαPγγ̇ ,

[
Mα̇

β̇,Pγγ̇
]

= δα̇γ̇Pγβ̇ −
1

2
δα̇
β̇
Pγγ̇ ,[

Mα
β,Kγ̇γ

]
= −δγαKγ̇β +

1

2
δβαKγ̇γ ,

[
Mα̇

β̇,K
γ̇γ
]

= −δγ̇
β̇
Kα̇γ +

1

2
δα̇
β̇
Kγ̇γ ,

[H,Pαα̇] = Pαα̇ ,
[
H,Kα̇α

]
= −Kα̇α ,[

Kα̇α,Pββ̇
]

= δαβ δ
α̇
β̇
H + δαβMα̇

β̇ + δα̇
β̇
Mβ

α .

(B.2)

The R-symmetry generators are defined as

R1
2 = R+ , R2

1 = R− , R1
1 = r +R , R2

2 = r −R , (B.3)

where R± and R form a Chevalley basis of generators for sl(2,C)R. The commutation
relations obeyed by the R-charges are[

RIJ ,RKL
]

= δKJRIL − δILRKJ . (B.4)

The non-vanishing commutators between the supercharges are{
QIα, Q̃J α̇

}
= δIJPαα̇ ,{

S̃Iα̇,SαJ
}

= δIJKα̇α ,{
QIα,S

β
J

}
=

1

2
δIJ δ

β
αH + δIJMα

β − δβαRIJ ,{
S̃Iα̇, Q̃J β̇

}
=

1

2
δIJ δ

α̇
β̇
H + δIJMα̇

β̇ + δα̇
β̇
RIJ ,

(B.5)

Finally, the bosonic generators act on the supercharges as[
Mα

β,QIγ
]

= δβγQIα −
1

2
δβαQIγ ,

[
Mα̇

β̇, Q̃Iγ̇
]

= δα̇γ̇ Q̃Iβ̇ −
1

2
δα̇
β̇
Q̃Iγ̇ ,[

Mα
β,SγI

]
= −δγαS

β
I +

1

2
δβαS

γ
I ,

[
Mα̇

β̇, S̃
Iγ̇
]

= −δγ̇
β̇
S̃Iα̇ +

1

2
δα̇
β̇
S̃Iγ̇ ,[

H,QIα
]

=
1

2
QIα ,

[
H, Q̃Iα̇

]
=

1

2
Q̃Iα̇ .

[H,SαI ] = −1

2
SαI ,

[
H, S̃Iα̇

]
= −1

2
S̃Iα̇ .[

Kα̇α,QIβ
]

= δαβ S̃Iα̇ ,
[
Kα̇α, Q̃Iβ̇

]
= δα̇

β̇
SαI ,[

Pαα̇,SβI
]

= −δβαQ̃Iα̇ ,
[
Pαα̇, S̃Iβ̇

]
= −δβ̇α̇QIα ,[

RIJ ,QKα
]

= δKJQIα −
1

4
δIJQKα ,

[
RIJ , Q̃Kα̇

]
= −δIKQ̃J α̇ +

1

4
δIJ Q̃Kα̇ .

(B.6)
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All other commutators vanish.

In radial quantization, the various generators satisfy the following hermiticity conditions

H† = H , (Pαα̇)† = Kα̇α , (Mα
β)† =Mβ

α , (Mα̇
β̇)† =Mβ̇

α̇ ,

(RIJ )† = RJ I , (QIα)† = SαI , (Q̃Iα̇)† = S̃Iα̇ .
(B.7)

C The 6d N = (2, 0) superconformal algebra

In this appendix, we collect basic facts about the 6d N = (2, 0) superconformal alge-
bra and establish our conventions. The spacetime symmetry algebra is the superalgebra
D(4, 2) = osp(8|4). The maximal bosonic subalgebra is so(8,C)× sp(4,C).

The six-dimensional complexified conformal algebra so(8,C) is generated by translations,
special conformal transformations, rotations, and dilatations, with respective generators

Pab , Kab , Ma
b , H . (C.1)

Adding to this 16 Poincaré and 16 conformal supercharges,QAa and SaA, and the generators
RAB of the R-symmetry group sp(4,C) we obtain the N = (2, 0) superconformal algebra
osp(8|4). We again use the bi-spinor notation summarized in Appendix A for the indices
a, b = 1, . . . , 4. The A index transforms in the fundamental representation of sp(4). The
A,B indices are raised and lowered with ΩAB, the skew-symmetric symplectic matrix with
Ω14 = Ω23 = 1 and the other entries vanishing.

We use an oscillator representation of the superconformal algebra [78]. In addition to the
fermionic oscillators ca and c̃a from the bi-spinor formalism we introduce another set of
bosonic oscillators αA. These oscillators satisfy the following commutation relations

{ca, c̃b} = δba , [αA, αB] = ΩAB . (C.2)

We can define the generators of the bosonic so(8,C) algebra as bi-spinors

Pab = cacb , Kab = c̃ac̃b ,

Ma
b = cac̃

b − 1

4
δbacdc̃

d , H =
1

2
cac̃

a .
(C.3)

In particular, note thatMa
b is traceless. In addition to these bosonic generators, we can

define the fermionic and the additional bosonic R-symmetry generators as

QAa = caαA , SaA = c̃aαA , RAB = αAαB . (C.4)

The fermionic anti-commutators are given by

{QAa,QBb} = ΩABPab ,
{SaA,SbB} = ΩABKab ,

{QAa,SbB} = δa
bRAB + ΩABMa

b +
1

2
δa
bΩABH .

(C.5)
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The non-vanishing commutators of the bosonic generators read

[Pab,Kcd] =
(
δcaδ

d
b − δcbδda

)
H + δcbMa

d + δdaMb
c − δcaMb

d − δdbMa
c ,

[Pab,Mc
d] = δdaPbc − δdbPac +

1

2
δdcPab ,

[Kab,Mc
d] = δbcKad − δacKbd −

1

2
δdcKab ,

[Ma
b,Mc

d] = −δdaMc
b + δbcMa

d ,

[H,Pab] = Pab ,
[H,Kab] = −Kab ,

[RAB,RCD] = ΩACRBD + ΩBCRAD + ΩADRBC + ΩBDRAC .

(C.6)

Finally, the fermionic and bosonic generators have the following commutation relations

= 0 , [Pab,ScC ] = δcbQCa − δcaQCb ,
[Kab,QCc] = δbcSaC − δacSbC , [Kab,ScC ] = 0 ,

[Ma
b,QCc] = δbcQCa −

1

4
δbaQCc , [Ma

b,ScC ] = −δcaSbC +
1

4
δbaScC ,

[H,QCc] =
1

2
QCc , [H,ScC ] = −1

2
ScC ,

[RAB,QCc] = ΩACQBc + ΩBCQAc , [RAB,ScC ] = ΩACScB + ΩBCScA .

(C.7)

In radial quantization, the generators satisfy the following hermiticity conditions

H† = H , (Pab)† = Kab , (Ma
b)† =Mb

a ,

(RAB)† = ΩACΩDBRDC , (QAa)† = ΩABSaA .
(C.8)

4d N = 2 subalgebra

There is a 4d N = 2 subalgebra of the 6d N = (2, 0) algebra described above. This
subalgebra plays an important role in the construction outlined in Section 3.

The 4d N = 2 Poincaré charges are given by the following list

Q1
+ = Q31 , Q1

− = Q32 , Q2
+ = Q41 , Q2

− = Q42 , (C.9)

Q̃1+̇ = −Q23 , Q̃1−̇ = −Q24 , Q̃2+̇ = −Q13 , Q̃2−̇ = −Q14 . (C.10)

Similarly, the 4d N = 2 superconformal charges are given by

S+
1 = −S1

2 , S−1 = −S2
2 , S+

2 = −S1
1 , S−2 = −S2

1 , (C.11)

S̃1+̇ = −S3
3 , S̃1−̇ = −S4

3 , S̃2+̇ = −S3
4 , S̃2−̇ = −S4

4 . (C.12)

The 4d translations and special conformal transformations can be identified as

P++̇ = P13 , P+−̇ = P14 , P−+̇ = P23 , P−−̇ = P24 , (C.13)

K+̇+ = K13 , K+̇− = K23 , K−̇+ = K14 , K−̇− = K24 . (C.14)
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If we choose a four-dimensional local frame such that the generators of the rotations in
the two orthogonal planes L2 and L3 are given by (M+

+ −M−
−) ± (M+̇

+̇ −M−̇
−̇),

respectively, we can identify

M+
+ =M1

1 , M+
− =M1

2 , M−
+ =M2

1 , M−
− =M2

2 , (C.15)

M+̇
+̇ =M3

3 , M+̇
−̇ =M4

3 , M−̇
+̇ =M3

4 , M−̇
−̇ =M4

4 . (C.16)

Finally, the R-symmetry generators read

R1
1 = R23 , R1

2 = R13 , R2
1 = R24 , R2

2 = R14 . (C.17)

The generators of the gl(1,C)r-symmetry and the Cartan of the sl(2,C)R are given by

r =
1

2

(
R1

1 +R2
2

)
, R =

1

2

(
R1

1 −R2
2

)
. (C.18)

D Ω-deformation of the Kapustin twist

In the construction of [18, 19] the chiral algebra in [6] is derived by employing the
topological-holomorphic twist of Kapustin [21] on Σ×C such that the theory is topolog-
ical on Σ and holomorphic on C. To obtain a non-trivial chiral algebra it is important to
perform also an Ω-deformation on Σ. In [18, 19] it was assumed that C is simply R2. As
discussed in Section 3.1 there is a subtlety in constructing a proper QΩ supercharge in this
case. There is a simple remedy to this problem which can be applied as in Section 3.1.
Here we briefly outline how to do this.

In terms of the 4d N = 2 supercurrents we can define the Ω-deformed twisted supercharge
as QΩ = Q+ ιVG, where Q is the scalar supercharge of the four-dimensional topological-
holomorphic twist of [21] and G is a one-form supercharge associated to the same twist.
The subtlety arises due to the fact that G is a one-form on Σ. This will not be a problem
if C is a compact Riemann surface but for C = R2 one has to be more careful. As in
Section 3.1, the resolution amounts to contracting G with the four-dimensional Killing
vector V = Ωµνx

ν∂µ and thus effectively performing an Ω-deformation on C. We find the
following result16

ιVG = i

∫
d3x

(
(σ̄m)α̇βGIβMIα̇Ωmnxn + (σm)αβ̇ḠIβ̇M̃

I
αΩmnxn

)
+
(

(σ̄α̇βp GIβNIα̇Ωpqxq + (σp)
αβ̇ḠIβ̇Ñ

I
αΩpqxq

)
= ε(S̃2−̇ − S1

−)

(D.1)

where m,n = 1, 2 and p, q = 3, 4 and the matrices encoding the topological-holomorphic
twist are given by

M =

(
0 1
0 0

)
, M̃ =

(
0 0
1 0

)
, N =

(
0 0
0 −1

)
, Ñ =

(
0 0
1 0

)
. (D.2)

16The same result can be obtained by following the procedure discussed around Equation (3.33) in [18].
We are grateful to Junya Yagi for a useful discussion on this.
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The matrix Ω is given by

Ω =


0 ε 0 0
−ε 0 0 0
0 0 0 ε
0 0 −ε 0

 . (D.3)

This is simply the familiar Ω-deformation in four dimensions with ε1 = ε2.

Using that the scalar supercharge of the topological-holomorphic twist in [21] is given by
Q = Q1

− + Q̃2−̇ together with the result in (D.1) we find the following Ω-deformation
supercharge

QΩ = Q1
− + Q̃2−̇ + ε(S̃2−̇ − S−1 ) . (D.4)

This is precisely the supercharge used in [18, 19] where it was shown that passing to its
cohomology leads to the chiral algebra derived in [6].

E 2d N = (0, 4) SCFTs and chiral algebras

The chiral algebra construction of [6] can be applied also to 2d SCFTs with N = (0, 4)
supersymmetry. The goal of this appendix is to review the small N = (0, 4) superconfor-
mal algebra and to show that the operators spanning the chiral algebra resulting from the
construction in [6] are simply those in the left-moving, i.e. non-supersymmetric, sector of
the N = (0, 4) SCFT.

The small N = (0, 4) superconformal algebra

Here we collect some well-known facts about the small N = 4 superconformal algebra
in two dimensions. The global part of the spacetime symmetry algebra is given by the
superalgebra sl(2)l×su(1, 1|2) which has the maximal bosonic subalgebra sl(2)l×sl(2)r×
su(2)R. In this appendix, we work to Euclidean signature.

On the Euclidean plane, with complex coordinate z, the stress-energy tensor has two
independent components, T (z) and T̄ (z̄) with the following Laurent series representation

T (z) =
∞∑

n=−∞

Ln
zn+2

, T̄ (z̄) =
∞∑

n=−∞

L̄n
z̄n+2

. (E.1)

The Laurent coefficients Ln and L̄n generate two copies of the Virasoro algebra with
central charge c.17 In addition to the energy-momentum tensor, the small N = 4 algebra
contains four spin-3

2
currents ḠaA, where a is a doublet index with respect to the su(2)R

R-symmetry current algebra. The integer level, k, of the current algebra is related to the
central charge c = 6k. The index A is a doublet under an outer automorphism SU(2)out

17In general the left- and right-moving Virasoro algebras may have different central charges.
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which is not part of the superconformal algebra and in general not a symmetry of the
SCFT. The supercurrents admit the Laurent series expansion

ḠaA(z̄) =
∑
r∈Z+ 1

2

ḠaA
r

z̄r+
3
2

. (E.2)

Finally, the su(2)R R-symmetry is generated by the currents J̄ i which have the Laurent
series expansion

J̄ i(z̄) =
∞∑

p=−∞

T̄ ip
z̄p+1

. (E.3)

The non-trivial (anti-)commutation relations among the right-moving modes close the
small N = 4 superconformal algebra18

[L̄m, L̄n] = (m− n) L̄m+n + 1
12
c(m3 −m)δm+n,0,

[T̄ im, T̄
j
n] = iεijkT̄

k
m+n + kmδm+n,0δ

i,j,

[L̄m, T̄
i
n] = −nT̄ im+n,

[L̄m, Ḡ
aA
r ] =

(
m
2
− r
)
ḠaA
m+r,

[T̄i, Ḡ
a1
r ] = 1

2
σibaḠ

b1
r ,

[T̄i, Ḡ
a2
r ] = −1

2
σibaḠ

b2
r ,

{Ḡa1
r , Ḡ

b1
s } = {Ḡa2

r , Ḡ
b2
s } = 0,

{Ḡa1
r , Ḡ

b2
s } = 2δabL̄r+s + 2σiab(r − s)T̄ ir+s + 1

3
c(r2 − 1

4
)δr+s,0δab ,

(E.4)

where σi and σ̄i are the Pauli matrices and their complex conjugates (A.6). Similarly, the
Laurent coefficients of the holomorphic component of the energy-momentum tensor, Lm
generate the left-moving Virasoro algebra with commutation relations

[Lm, Ln] = (m− n)Lm+n + 1
12
c(m3 −m)δm+n,0 , (E.5)

and commute with all the right-moving generators.

We are interested in the algebra su(1, 1|2) which corresponds to the right-moving part of
the global superconformal algebra above. The global sl(2)l × sl(2)r algebra is generated
by L0, L±1 and L̄0, L̄±1 and su(2)R is generated by T̄ i0. The global Poincaré supercharges
are given by Ḡa1

− 1
2

and Ḡb2
− 1

2

and the conformal supercharges by Ḡa1
1
2

and Ḡb2
1
2

. It is useful
to rename the global supercharges and R-symmetry generators as as

Q1 ≡ 1√
2
Ḡ11
− 1

2
, Q2 ≡ 1√

2
Ḡ21
− 1

2
, Q̃1 ≡ 1√

2
Ḡ12
− 1

2
, Q̃2 ≡ 1√

2
Ḡ22
− 1

2
, (E.6)

S1 ≡ 1√
2
Ḡ12

1
2
, S2 ≡ 1√

2
Ḡ22

1
2
, S̃1 ≡ 1√

2
Ḡ11

1
2
, S̃2 ≡ 1√

2
Ḡ21

1
2
, (E.7)

R+ ≡ T̄ 1
0 + iT̄ 2

0 , R− ≡ T̄ 1
0 − iT̄ 2

0 , R ≡ T̄ 3
0 . (E.8)

The non-vanishing bosonic commutation relations of su(1, 1|2) are then given by

[R,R±] = ±R± , [R+,R−] = 2R , (E.9)
[L̄0, L̄±1] = ∓L̄±1 , [L̄1, L̄−1] = 2L̄0 . (E.10)

18See for example [79]. However, note that there are some typos in that reference.
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The anti-commutation relations among the fermionic generators are given by19

{QI , Q̃J } = δIJ L̄−1 , {S̃I ,SJ } = δIJ L̄+1, (E.11)

{QI ,SJ } = δIJ L̄0 −RIJ −
1

2
δIJZ , {Q̃J , S̃I} = δIJ L̄0 +RIJ +

1

2
δIJZ . (E.12)

Where RIJ are defined as

R1
2 = R+, R2

1 = R−, R1
1 = R, R2

2 = −R . (E.13)

The generator Z is a central element which can be added to the algebra but will play no
role in our discussion. If we remove Z we obtain the algebra psu(1, 1|2). The remaining
non-trivial commutators in the algebra are given by

[L̄−1, S̃I ] = −QI , [L̄−1,SI ] = −Q̃I , (E.14)

[L̄1, Q̃I ] = SI , [L̄1,QI ] = S̃I , (E.15)

[L̄0, S̃I ] = −1

2
S̃I , [L̄0,SI ] = −1

2
SI , (E.16)

[L̄0, Q̃I ] =
1

2
Q̃I , [L̄0,QI ] = −QI . (E.17)

Chiral algebras from 2d N = (0, 4) SCFTs

Next, following [6, 7], we define a set of special nilpotent supercharges Q which commute
with the generators L0, L±1 and for which the anti-holomorphic transformations are Q-
exact. The first part of this requirement is trivial, since all right-moving supercharges
commutes with the left-moving Virasoro generators. The Q-exactness criterion is more
stringent. In fact, up to similarity transformations, the only choices are:

Q1 = Q1 + S̃2 , Q
†
1 = S1 + Q̃2 , (E.18)

Q2 = Q̃2 − S1 , Q
†
2 = S̃2 −Q1 , (E.19)

Both these supercharges give rise to the same Q-exact generators of the anti-holomorphic
sl(2) algebra

L̂−1 ≡ {Q1, Q̃1} = {Q2,Q2} = L̄−1 +R+ ,

L̂+1 ≡ {Q1,S2} = {Q2,−S̃1} = L̄+1 −R− ,
2L̂0 ≡ {Q1, Q

†
1} = {Q2, Q

†
2} = 2(L̄0 −R) .

(E.20)

In addition, we note that the central element of su(1, 1|2) is exact with respect to both
supercharges

{Q1, Q2} = −Z . (E.21)

With this at hand we can proceed to construct a chiral algebra with operators that are
in the cohomology of Q1 (or equivalently Q2). Our task thus consists of identifying those

19The last of these relations differs by a minus sign from the one mentioned in [6] but matches with
[79] and gives the correct twisted ŝu(2).
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operators that define non-trivial cohomology classes. For an operator O(x) to define a
non-trivial Qi-cohomology class it has to obey the following conditions,

{Qi,O(0)] = 0 , and O(0) 6= {Qi,O′(0)], (E.22)

for i = 1 or 2. Since both Qi commute with L̂0 and Z, we lose no generality by restricting
to definite eigenspaces of these charges. A standard cohomological argument then implies
that since L̂0 and Z are Qi-exact, an operator satisfying (E.22) must lie in the zero
eigenspace of both charges. Such operators obey

ĥ = h̄− r = 0 , (E.23)

where r is the eigenvalue of R. These are precisely the operators contributing to the chiral
algebra characterizing the so-called half-twisted model of a N = (0, 2) theory [80].

Hence, it appears that we have found a novel chiral algebra inside a N = (0, 4). However,
as already noted above we see that the operators contributing to the cohomology are
identical as the ones in the chiral algebra of a half-twisted N = (0, 2) theory, which is
obtained by passing to the cohomology with respect to a Poincaré supercharge. Indeed,
from the equality

{Q1,S1} = {Q̃2, S̃2} = L̄0 −R . (E.24)

we see that going to the cohomology with respect to Q1 or Q̃2 selects the same operators.
Hence we have found that the cohomologies are isomorphic as graded vector spaces.
However, this isomorphism on the level of graded vector spaces does not necessarily lift
to an isomorphism of the full chiral algebra. Indeed, due to the twisted translations the
OPE between various operators in the cohomology can still differ from the OPE of the
chiral algebra discussed in [80].20
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