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Abstract

With the approach of winter, many insects switch to an alternative protective developmental

program called diapause. Drosophila melanogaster females overwinter as adults by induc-

ing a reproductive arrest that is characterized by inhibition of ovarian development at previ-

tellogenic stages. The insulin producing cells (IPCs) are key regulators of this process,

since they produce and release insulin-like peptides that act as diapause-antagonizing hor-

mones. Here we show that in D. melanogaster two neuropeptides, Pigment Dispersing Fac-

tor (PDF) and short Neuropeptide F (sNPF) inhibit reproductive arrest, likely through

modulation of the IPCs. In particular, genetic manipulations of the PDF-expressing neurons,

which include the sNPF-producing small ventral Lateral Neurons (s-LNvs), modulated the

levels of reproductive dormancy, suggesting the involvement of both neuropeptides. We

expressed a genetically encoded cAMP sensor in the IPCs and challenged brain explants

with synthetic PDF and sNPF. Bath applications of both neuropeptides increased cAMP lev-

els in the IPCs, even more so when they were applied together, suggesting a synergistic

effect. Bath application of sNPF additionally increased Ca2+ levels in the IPCs. Our results

indicate that PDF and sNPF inhibit reproductive dormancy by maintaining the IPCs in an

active state.

Author summary

Diapause is a hormonally mediated process that allows insects to predict and respond to

unfavourable conditions by altering their metabolism and behavior to resist the oncoming

environmental challenges. In Drosophila melanogaster females a protective state of repro-

ductive dormancy is induced by lower temperatures and shorter photoperiods that mimic
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the approach of winter. By genetically manipulating the circadian pacemaker s-LNvs cells,

which express two neuropeptides, Pigment dispersing factor (PDF) and short Neuropep-

tide F (sNPF), we were able to modulate levels of gonadal arrest. PDF and sNPF appear to

act as antagonists to dormancy, as do the Drosophila insulin-like peptides (dILPs) that are

expressed in the insulin producing cells (IPCs). Indeed, we observe that the axonal projec-

tions from the s-LNvs appear to overlap with those from the IPCs implying that the clock

cells signal to the IPCs. We confirm this possible communication by applying the two syn-

thetic peptides to the IPCs and detecting a response in the IPC signal transduction path-

way. We conclude that the clock neurons activate the IPCs via PDF and sNPF, which in

turn release the dILPs, antagonise dormancy and lead to reproductive growth, thereby

uncovering a neurogenetic circadian-overwintering axis.

Introduction

To synchronize with the Earth’s rhythmic environment, most higher organisms have evolved

endogenous time-keeping systems [1,2]. While the highly conserved circadian clock is well-

characterized [3,4], our knowledge of the seasonal clock that governs the overwintering

response (diapause) in insects is still fragmentary [5,6]. Diapause refers to an alternative devel-

opmental program, typically induced by the shortening days and falling temperatures of the

approaching winter [1,7]. Diapausing animals are characterized by low metabolic rate, drasti-

cally decreased food intake, extended lifespan, and increased stress resistance [8–15]. The fruit

fly Drosophila melanogaster exhibits an adult reproductive ‘diapause’ manifested by arrested

ovarian development which is stimulated by low temperatures and can be enhanced by short

photoperiods [15,16]. While the Drosophila literature refers to this phenomenon as ‘diapause’

rather than ‘dormancy’ or ‘overwintering’, we recognize that it is not a classic photoperiodi-

cally-induced state because it requires cold-temperature to induce the reproductive quies-

cence. Nevertheless, it shows features that are commonly associated with responses that are

resistant to environmental stresses [7,15,16].

An increasing body of evidence suggests that insulin-like signaling is a key regulator of dia-

pause in numerous species [13,17–20]. In Drosophila, 4 of the 8 identified insulin-like proteins

(DILP1, -2, -3, -5) are produced in 14 median neurosecretory cells (designated as Insulin Pro-

ducing Cells, IPCs) of the Pars intercerebralis (PI), which are anatomically connected to the

key neuroendocrine system that governs hormonal regulation of gonadal arrest [21–25]. Even

though the center for dormancy control is believed to be in the PI [26–28], the neurosecretory

cells in this brain area, including the IPCs, do not have a circadian clock, and would therefore

have to receive any timing information (if any) from other cells [29–33]. A challenging ques-

tion is how the environmental signals that trigger dormancy (i.e. decreasing photoperiod and

temperature) including putative timing information, are perceived, interpreted, and converted

into hormonal signals in the brain, leading to the overwintering phenotype [34].

Even though several neuropeptides, neurotransmitters, and peptide hormones have already

been identified as modulators of function of the IPCs (reviewed in [35,36]), there are still gaps

in our understanding of how the activity of these cells is controlled. Recent research revealed a

synaptic connection between the IPCs and one group of dorsal clock neurons (DN1), raising

the possibility of a direct modulatory effect exerted by the circadian system [33]. Indeed, natu-

ral variants of the timeless clock gene in D. melanogaster, namely the s-tim and ls-tim allelic

variants, are known to have a dramatic effect on the inducibility of reproductive dormancy

[37,38].
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In our study, we primarily focused on neuronal clusters that, based on their axonal projec-

tions to the dorsal brain (dorsal protocerebrum), could play an intermediary role in conveying

dormancy-inducing signals towards the IPCs. Neurites of the small ventral lateral neurons (s-

LNvs) project to the dorsal protocerebrum, where they rhythmically release the circadian neu-

romodulator PIGMENT DISPERSING FACTOR (PDF) [39]. PDF is also expressed in the

large ventral lateral neurons (l-LNvs), and in two groups of non-clock cells, a developmentally

transient neuronal cluster in the Tritocerebrum (designated as PDF-Tri), and a small number

of neurons in the eighth abdominal neuromere of the ventral ganglion (designated as PDFAb

neurons) [40]. PDF is a key coordinator of pacemaker interactions and behavioral rhythms

[41–43], of sleep and arousal [44,45] and of sexual behavior [46]. PDF may also be involved in

diapause regulation in the blow fly Protophormia terraenovae [47], the mosquito Culex pipiens
[48], and the bean bug Riptortus pedestris [49]. However, its effects appear to be contradictory

and the mechanisms through which PDF acts on diapause are unclear.

Short Neuropeptide F (sNPF) has been implicated in the modulation of diapause in the Col-

orado potato beetle [50] and has been shown to stimulate ovarian development in the locust

[51,52]. In Drosophila sNPF increases food intake and body size [53] and enhances growth

[54]. This peptide is broadly produced in the Drosophila nervous system [53,55], including the

s-LNvs [56]. A small set of bilaterally symmetric neurons in the Pars lateralis (PL), defined as

dorsal-lateral peptidergic neurons (DLPs), also express sNPF. DLPs have axon terminations in

the proximity of the IPCs, and co-express the multi-functional neuropeptide Corazonin (Crz)

[57], which has also been proposed as a diapause regulating peptide in the hawkmoth Man-
duca sexta [58].

The G protein-coupled receptors for PDF, sNPF, and Crz (PDFR, sNPFR1, and CrzR,

respectively) have already been characterized and extensively studied in Drosophila [57,59–

67]. Interestingly, sNPFR1 and CrzR have been found to influence the activity of the IPCs

[53,54,57,68]. However, to date no studies have reported PDF signaling to the IPCs.

In the present study, we demonstrate that PDF and sNPF produced by PDF-positive

(PDF+) neurons, reduce the induction of dormancy in Drosophila, mainly through a direct

effect on the IPCs. Conversely, the Corazonin-expressing DLP neurons do not seem to be

involved. Using live imaging, we show that the IPCs respond to both PDF and sNPF peptides

with increasing levels of cAMP and to sNPF additionally with increasing Ca2+ levels suggesting

that PDF and sNPF positively modulate IPCs activity and thereby inhibit gonadal arrest.

Results

Genetic manipulations of PDF+ neurons alter dormancy levels

To examine whether the PDF-expressing neurons have a role in the regulation of reproductive

arrest, we used a Pdf-Gal4 driver to target gene expression specifically in PDF+ neurons includ-

ing both s- and l-LNvs [39,41]. First, a bacterial depolarization-activated sodium channel

(Na+ChBac) was expressed in these neurons (Pdf>Na+ChBac). Such manipulation will

enhance the release of neurotransmitters and neuropeptides, including PDF and sNPF [69].

Pdf>Na+ChBac flies showed significantly lower levels of dormancy compared to controls

(p<0.001; Fig 1A). Importantly, Na+ChBac expressing and control flies shared the same time-
less (tim) background, as tim alleles (s- and ls-tim) affect the overall level of reproductive arrest

(S1 Table) [37]. We also overexpressed PDF in the same subset of cells (Pdf>Pdf), which again

resulted in a significant decrease in the incidence of dormancy compared to controls

(p<0.001; Fig 1A).

In addition to PDF, the s-LNvs co-express the neuropeptide sNPF. Since sNPF is widely

present in the nervous system [53,55], we started by overexpressing this neuropeptide with a
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pan-neuronal driver. This manipulation (elav>2xsNPF) produced a very significant reduction

in dormancy in the experimental flies compared to the controls (p<0.001; Fig 1B). Consider-

ing that both the elav-Gal4 and the UAS-2xsNPF lines carry the ls-tim allele (S1 Table), which

is known to promote ovarian quiescence [37], the antagonistic effect of sNPF is quite dramatic.

We then narrowed the overexpression of the neuropeptide specifically to the PDF+ neurons

(Pdf>2xsNPF) and detected a similar and highly significant reduction of ovarian arrest in the

experimental flies compared to the controls (p<0.001; Fig 1C). These results suggest that the

Pdf-expressing tissues (the s-LNvs, l-LNvs, the PDF-Tri and the PDF-Ab) are making the

major contribution to the inhibition of dormancy. To test the importance of the s-LNvs we

used the R6-Gal4 driver [70] which is active in the s-LNvs and in some other neurons but not

in the remaining PDF+ cells [71]. Again, R6>2xsNPF flies showed significantly reduced dor-

mancy when compared to controls (p<0.001; Fig 1C). Thus, we conclude that sNPF, likely

released from the s-LNvs, is involved in the negative regulation of gonadal arrest.

We then considered the opposite manipulation, namely reduced neuronal excitability,

which ultimately results in reduced release of neuropeptides. Neuronal overexpression of the

potassium channel Ork increases potassium efflux and causes membrane hyperpolarization,

thereby preventing the firing of action potentials [72]. Pdf>Ork flies showed higher levels of

ovarian arrest compared to controls (p<0.001; Fig 2A). Furthermore, genetically ablating the

PDF+ neurons by overexpressing the pro-apoptotic protein hid (head involiution defective),

Pdf>hid), also caused a larger proportion of females to undergo dormancy compared to con-

trols (p<0.001; Fig 2B).

As the PDF neurons co-express more than just PDF we also examined whether the Pdf01

null mutation would alter dormancy levels at two photoperiods, LD8:16 and LD16:8. The

experiment was performed on the ls-tim background. Fig 2C reveals that there is a significant

genotype effect (p = 1.3 x 10−4) with Pdf01 mutants showing significantly elevated levels of

Fig 1. Enhanced activity of PDF-expressing neurons reduces dormancy levels. (A) Hypersensitization of PDF+ neurons (Pdf>Na+ChBac) and overexpression of PDF

(Pdf>Pdf) both result in a significant reduction of reproductive arrest. (B) Pan-neuronal overexpression of sNPF (elav>2xsNPF) leads to a significant decrease in the

proportion of arrested females. (C) Overexpression of sNPF in the PDF-expressing neurons (Pdf>2xsNPF) and in the small ventrolateral neurons (R6>2xsNPF) triggers

females to exit from dormancy. Numbers within bars refer to the number of dissected females considered in the dormancy assays. Data are presented as mean ± SEM.

ANOVA on arcsine transformations, followed by post-hoc Tukey HSD test. ���p<0.001, n.s. not significant.

https://doi.org/10.1371/journal.pgen.1008158.g001
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ovarian quiescence plus a significant photoperiodic effect (p = 6 x 10−6), with no significant

interaction, so the enhancement in dormancy occurs at both photoperiods equally. We also

examined the effects of overexpressing the PDF receptor (PDFR) in the IPC cells using dilp2
(p)-Gal4 [21,73] in a homozygous receptor mutant han background. This was compared to

parental controls (dilp2(p)-Gal4 and UAS-PDFR) that were both homozygous and heterozy-

gous for han, as well as the dilp2(p)>+ wild-type control. All six genotypes were placed on the

Fig 2. Inhibited neuronal activity of PDF+ neurons and impairment of sNPF signaling in the IPCs increase dormancylevels. (A) Expression of the

potassium channel Ork (Pdf>Ork) enhances incidence of gonadal arrest in the experimental flies compared to control females. (B) Genetic ablation of PDF-

expressing neurons (Pdf>hid) provokes a higher proportion of females entering dormancy compared to controls. (C) Pdf01 mutant females show enhanced

ovarian quiescence levels compared to a congenic wild-type control at both summer and winter photoperiods (see text). (D) PDFR overexpression in IPCs in a

han/han mutant background significant reduces dormancy compared to homozygous and heterozygous han/+ controls, but not compared to the wild-type

control dilp2 (p)>+, which also appears as one of the controls in Fig 2E. (E) Overexpression of a dominant negative form of sNPFR1 (UAS-sNPFR1-DN) in the

IPCs under the control of an early and a later-expressed IPC driver (dilp2(p)-Gal4 and Insp3-Gal4, respectively) increases dormancy levels. (F) Downregulation

of sNPFR1 with RNAi using the Insp3-Gal4 driver significantly enhances reproductive arrest compared to controls. Numbers within bars indicate the number

of dissected females considered in the dormancy assays. Data are presented as mean ± SEM. ANOVA on arcsine transformations, followed by post-hoc tests.
���p<0.001, ��p<0.01, �p<0.05, n.s. not significant.

https://doi.org/10.1371/journal.pgen.1008158.g002
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s-tim background. Fig 2D reveals that overexpression of PDFR causes a highly significant

reduction of dormancy (p<0.001) compared to all the corresponding han/han and han/+ con-

trols, but is not significantly different from the dilp2(p)>+ wild-type. Consequently, we

appeared to have rescued the mutant phenotype in this genetic background. The heterozygous

han/+ background controls also show a highly significant reduction of dormancy compared to

their corresponding homozygous mutant controls (both p<0.001) and the dilp2(p)>+ wild

type (p<0.01), further underscoring the dosage effect of PDFR on the phenotype. All of these

experiments are consistent with the view that the s-LNvs modulate dormancy levels via the

neuropeptides PDF and sNPF. However, since Pdf-Gal4 is also expressed in the non-circadian

PDF-Tri and PDF-Ab neurons [39,41], an influence of the latter cannot be excluded.

sNPFR1 signaling in the IPCs modulates reproductive arrest

The IPCs express sNPFR1 [54,57,68]; its activation by sNPF stimulates organismal growth by

promoting the transcription of insulin-like peptides genes [54]. To investigate whether

sNPFR1 signaling in the IPCs modulates ovarian arrest we expressed a dominant negative

form of the receptor (UAS-sNPFR1-DN) under the control of two IPCs-specific drivers: dilp2
(p)-Gal4 and InsP3-Gal4 [21,73]. The former drives gene expression from the 2nd larval instar,

the latter becomes active mainly after larval development [73].

Inhibition of sNFR1 from early larval stages (dilp2(p)>sNPFR1-DN) increased only mar-

ginally the proportion of dormancy (Fig 2E). However, when the receptor was repressed later

in development (InsP3>sNPFR1-DN), a significantly higher proportion of flies showed

gonadal arrest compared to controls (p<0.001; Fig 2E). Both drivers are specific for the 14

IPCs in the brain [21,73], so we speculate that different degrees of dormancy might reflect dif-

ferences in the strength of the drivers or compensatory phenomena that occur early in devel-

opment. We also used the InsP3 driver to knockdown sNPFR1. We observed a significant

increase in gonadal arrest in InsP3> SNPFR1 RNAi compared to the Gal4 (p = 0.017) and

UAS controls (p = 0.006) (Fig 2F). These results are consistent with our previous observations

regarding the antagonist nature of sNPF on this phenotype (Fig 1B and 1C), and also suggest a

role for sNPF signaling in the IPCs in the regulation of reproductive arrest.

No evidence for the involvement of the DLPs in the regulation of dormancy

The dorsal-lateral peptidergic neurons (DLPs) are 6–7 bilaterally symmetric neurons in the

Pars Lateralis (PL) whose axons ends in the proximity of the IPCs [57]. The DLPs produce the

neuropeptides Corazonin (Crz) and sNPF through which they modulate the activity of the

IPCs, as the latter express the relevant receptors, CrzR (Corazonin Receptor) and sNPFR [57].

The DLPs affect survival, stress resistance and levels of circulating carbohydrates and lipids

[57,74]. Since diapause is associated with marked changes of these parameters, we questioned

whether the DLPs are involved in the regulation of this seasonal response. We used two DLP-

specific Crz-Gal4 driver lines, Crz1-Gal4 and Crz2-Gal4, to overexpress Na+ChBac and sNPF,

respectively. Both Crz1>Na+ChBac and Crz2>2xsNPF flies showed a reduction in the propor-

tion of females undergoing gonadal dormancy (p<0.001) compared to one of the parental con-

trols but not the other (S1 Fig). Therefore, although we cannot totally exclude an effect of the

DLPs on ovarian arrest we can conclude that their involvement, if any, is not as robust as that

observed for the PDF+ neurons.

Terminals of the s-LNvs overlap with fine processes from the IPCs

Next, we asked whether the dorsal terminals of the s-LNvs in the dorsal vicinity might be close

enough to the IPCs to enable such sNPF and PDF signaling. By performing ICC with anti-
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DILP2 and anti-PDF we could not see direct contacts overlapping between the s-LNvs and the

IPCs (Fig 3A). However, when we expressed GFP in the IPCs (dilp2(p)>GFP), we observed

that the dorsal projections of the s-LNvs are in close proximity to fine processes originating

from the IPCs (Fig 3B). To test whether these fine processes are dendrites, we expressed the

dendritic marker DenMark in the IPCs (dilp2(p)>DenMark) [75]. We found prominent label-

ing in the IPC processes, indicating that they are of dendritic origin (Fig 3C and 3D). This

explains why we could not see them by anti-DILP2 labeling.

IPCs respond to bath-applied PDF and sNPF

The IPCs are neurosecretory cells that are crucial for initiating seasonal responses

[13,17,19,20]. Since we have shown that PDF and sNPF have a modulatory effect on diapause

(Fig 1), and that PDF+ and sNPF+ neurons appear to contact the IPCs (Fig 3B)[57], we asked

whether the IPCs can respond directly to these neuropeptides. The PDF receptor signals pri-

marily via cAMP [59,61,76], whereas the signaling cascade following activation of the receptor

for sNPF uses cAMP, at least in part [77–79]. Thus, we expressed a genetically encoded fluores-

cence resonance energy transfer (FRET) based cAMP sensor in the IPCs (dilp2(p)>Epac1-
camps) to monitor real-time cAMP levels [62]. A similar experimental design had previously

been adopted with success to investigate the presence of the PDF receptor in clock neurons

[62].

We bath-applied 10 μM of synthetic PDF to acutely dissected fly brains. This resulted in a

slow rise in the intracellular amount of cAMP, measured as the average FRET signal between

100 and 1000 s after the application of the neuropeptide (light-blue curve and bar; Fig 4A and

4B). cAMP FRET signals were 10% ca. higher (100–1000 s; p<0.001) compared to the negative

(modified minimal hemolymph-like solution, HL3, light-grey curve and bar; Fig 4A and 4B)

control. A similar increment was also observed after presenting PDF together with the sodium

channel blocker tetrodotoxin (TTX, dark-blue curve and bar, 100–1000 s; p<0.001; Fig 4A and

4B). The latter prevents neuronal communication, suggesting that PDF activates the IPCs

directly. However, the short-term (100-200s) response to PDF was unchanged compared to

the negative control, either with or without TTX (Fig 4C and 4D).

Similar observations were made upon the application of 10 μM synthetic sNPF. This

resulted in a slow but significant cAMP increase in the IPCs either in the absence (yellow

curve and bar, 100–1000 s; p<0.001) or in the presence (orange curve and bar, 100–1000 s;

p<0.001) of TTX, reflecting a direct activation of the IPCs by sNPF (Fig 4E and 4F). Moreover,

as we saw for PDF, the short-term responses to sNPF did not differ from the negative control

(Fig 4G and 4H).

However, when we applied sNPF and PDF together (sNPF+PDF), at a concentration of 10

μM for each peptide, we recorded an increase in cAMP FRET signal, reaching a level ~15%

higher than that for the negative control (red, 100–1000 s; p<0.001; Fig 5A and 5B). Moreover,

the short-term response was particularly distinctive compared to the applications of single

peptides, revealing a ~8% increase in cAMP FRET signals (red curve and bar; 100–200 s;

p<0.01; Fig 5C and 5D). We repeated the experiment but halving the concentration of each

peptide to 5 μM (sNPF1/2+PDF1/2). This also resulted in a significant increase in cAMP (pink

curve and bar, 100–1000 s; p<0.05; Fig 5A and 5B). However, we noticed that following an ini-

tial increase, after 400 s the concentration of cAMP slowly declined (pink curve and bar; Fig

5A). Focusing on the short-term response, the co-application of (sNPF1/2+PDF1/2) resulted in

higher cAMP FRET signals compared to the bath treatment with single peptides; however, the

difference was statistically significant only with regard to PDF (100-200s; p<0.01; Fig 5C and

5D).
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Fig 3. The terminals of the PDF positive s-LNvs overlap with dendrites of the insulin producing cells (IPCs). (A)

Representative confocal image (overlay of Z-stacks through the entire brain) of a Hu-S fly brain double-stained with

antibodies against PDF (green) and DILP2 (magenta). The brain is outlined by a dashed line. Me = medulla. Scale

bar = 100 μm. (B) Representative confocal image of the dorsal part of dilp2(p)>GFP brains double stained with
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We also tested (sNPF+PDF+TTX) and found an increase of ~13% in the amount of cAMP

FRET signal compared to the negative control (magenta curve and bar, 100–1000 s; p<0.001;

Fig 5E and 5F). This response was not statistically different from single peptide applications in

the presence of TTX although in the interval 300–600 s the levels of cAMP for (sNPF+PDF

+TTX) were higher (Fig 5E and 5F). Interestingly, although there were no differences in

cAMP levels when comparing the application of sNPF+PDF with or without TTX in the

antibodies against PDF (green) and GFP (magenta) (overlay of 10 Z-stacks). Processes of the insulin producing cells

(IPCs) overlap with the terminals of the small ventrolateral neurons (s-LNv term) as can be seen in single confocal

stacks of 2 μm thickness (B1-B4). Every second single stack of the posterior part of (B) is shown from anterior to

posterior. White arrows indicate close proximity between IPCs and s-LNv terminals. Scale bar = 20 μm. (C-D) Labeling

of the IPCs with the dendritic marker DenMark [75] (dilp2(p)>DenMark) indicate that the IPC fibers contacting the s-

LNv terminals are of dendritic origin. Representative confocal images of two different brains are shown. Scale bar

10 μm.

https://doi.org/10.1371/journal.pgen.1008158.g003

Fig 4. Bath-applied PDF and sNPF induce cAMP increases in the IPCs. Live optical imaging in flies expressing a cAMP sensor in their IPCs

(dilp2(p)>Epac1camps). Average inverse FRET traces (CFP/YFP) in IPCs reflecting intracellular changes in cAMP levels. Substances were bath-

applied to freshly dissected fly brains at 100 s (indicated by black arrow). Application of 10−5 M adenylate cyclase activator NKH477 (NKH, dark

gray) induced a robust increase in cAMP, indicating that the general procedure was working. As a negative control, hemolymph-like saline (HL3)

was applied. (A) Bath-applied PDF (10−5 M) evokes cAMP increases in the IPCs (light blue), suggesting a possible functional connection between

PDF+ cells and IPCs. Similar increase was observed when PDF was applied in the presence of 2μM sodium channel blocker tetrodotoxin (TTX;

dark blue), indicating a direct connection. (B) Maximum inverse FRET changes quantified for each individual neuron and averaged for each

pharmacological treatment between 100–1000 s. (C) A close-up of the immediate changes in cAMP levels occurring from the application point

until 200 s. No significant changes can be observed when PDF or PDF+TTX were applied. (D) Maximum inverse FRET changes from 100–200 s.

(E) Bath-applied sNPF (10−5 M) generates cAMP rises in the IPCs (yellow). Similar increase occurs in the presence of TTX (orange), thus

suggesting a direct connection. (F) Maximum inverse FRET changes between 100–1000 s. (G) Magnification of the immediate changes between

100–200 s. (H) Maximum inverse FRET changes between 100–200 s. The legend shows the color code of the different treatments and the number

of neurons in the dissected brains (in parentheses) considered in this analysis. Data are shown as mean ± SEM. Kruskal-Wallis test followed by

Bonferroni-corrected Wilcoxon pairwise-comparisons. ���p<0.001, ��p<0.01, �p<0.05, n.s. not significant.

https://doi.org/10.1371/journal.pgen.1008158.g004

Regulation of dormancy in Drosophila

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008158 June 13, 2019 9 / 25

https://doi.org/10.1371/journal.pgen.1008158.g003
https://doi.org/10.1371/journal.pgen.1008158.g004
https://doi.org/10.1371/journal.pgen.1008158


interval 100–1000 s, the distinctive short term response disappeared in the presence of TTX

(Fig 5G and 5H). This suggests that the short-term response of the IPCs to the combined appli-

cation of (sNPF+PDF) is indirectly mediated by other cells.

We assessed whether the larger increase in cAMP levels induced in the IPCs by the co-

application of sNPF+PDF is a specific response. We co-applied sNPF with the following neu-

ropeptides: SDNFMRFamide (SDNFMRFa), adipokinetic hormone (AKH), Drosophila tachy-

kinin (DTK) and allatostatin-C (Ast-C). AKH and DTK were chosen because they are known

regulators of IPC activity [21,73,80,81]. When sNPF was co-applied with SDNFMRFa, AKH or

DTK, the levels of cAMP were significantly reduced compared to the sNPF+PDF co-applica-

tion (p<0.05, p<0.01, p<0.05, respectively) and were indistinguishable from the negative con-

trol (Fig 6). Conversely, the co-application of sNPF+Ast-C resulted in a significant increase in

the amount of cAMP but the addition of Ast-C alone was sufficient to evoke similar cAMP

responses in the IPCs (Fig 6). To our knowledge, no data are available on the distribution of

the Ast-C receptor in Drosophila, and no link between IPCs and Ast-C has been reported pre-

viously. In summary, our data show that the strong and rapid responses of the IPCs we

Fig 5. The co-application of PDF and sNPF increase the cAMP response. (A) Co-application of sNPF and PDF evokes large cAMP increases in the IPCs

(red), which remain significant even when concentrations of peptides are halved (rose). (B) Maximum inverse FRET between 100–1000 s. (C, D) Immediate

cAMP responses (100–200 s) reveal a large, rapid increase due to the sNPF+PDF co-application. (E) Co-application of sNPF and PDF induces cAMP increases

in the IPCs also in the presence of TTX (magenta), and this response seems to be larger in the time interval of 200–600 s than the effect triggered by the

application of the single peptides with TTX. (F) Maximum inverse FRET changes from 100–1000 s. (G) The effect of the sNPF+PDF co-application seems to

be, at least partially, due to a direct activation of the IPCs. The initial increase is apparently reduced when TTX is present (magenta). (H) Maximum inverse

FRET changes from 100–1000 s. The legend shows the color code of the different treatments and the number of neurons in the dissected brains (in

parentheses) considered in this analysis. Data are shown as mean ± SEM. Labeling as in Fig 4.

https://doi.org/10.1371/journal.pgen.1008158.g005
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Fig 6. Co-application of sNPF with other Drosophila peptides suggests that sNPF and PDF may have a unique interaction. (A) Average

inverse FRET traces (CFP/YFP) of IPCs reflecting intracellular cAMP changes. 10−5 M synthetic sNPF was co-applied with PDF, SDNFMRFa,

AKH (adipokinetic hormone), DTK (Drosophila tachykinin), Ast-C (Allatostatin-C) /10-5M for each/ or 10−5 M Ast-C was added alone. The

black arrow indicates the application point of the different substance. NKH: adenylate cyclase activator, used as positive control. HL3:

hemolymph-like saline, used as negative control. (HL3) (B) Maximum inverse FRET changes quantified for each individual neuron and

averaged for each treatment from 100 s until 1000 s. Statistical comparison revealed that co-application of sNPF with SDNFMRFa, AKH, and

DTK resulted in a significant decrease of cAMP levels compared to the sNPF+PDF co-application. sNPF+Ast-C led to a significant increase in
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observed are unique to the co-application of PDF and sNPF. In particular, they are not caused

either by the combination of other peptides or by receptor cross-activation due to high peptide

doses applied.

To verify whether the responses to PDF were mediated by its receptor, we carried out the

treatment in the PDFR-null (han) [59] background (han; dilp2(p)>Epac1camps). The applica-

tion of PDF in the mutant no longer evoked an increase of cAMP (light-blue; 100–1000 s; Fig

7A–7D), and surprisingly, neither did sNPF (yellow curve and bar; 100–1000 s; Fig 7A–7D).

The rapid increase in cAMP levels induced by the co-application of sNPF+PDF was also oblit-

erated in the mutant (red curve and bar; 100–200 s; Fig 7C and 7D). To test whether sNPF acts

via PDFR, we rescued PDFR expression in the IPCs in the han mutant background (han; dilp2
(p)>PDFR; Epac1camps). In these flies, IPCs strongly responded to PDF, but not to sNPF. It is

therefore unlikely that sNPF signals via PDFR (Fig 7E–7H). We observed a slight increase in

cAMP ~400s after sNPF application, but this was not significantly different from the negative

controls (yellow curve and bar; 100–1000 s; Fig 7E and 7F). The fast response to sNPF was

completely absent (yellow curve and bar; 100–200 s; Fig 7G and 7H). This shows that the

absence of the response to sNPF in the han mutant cannot be directly attributed to the loss of

PDFR.

sNPF but not PDF increases Ca2+ levels in the IPCs

In several cell types PDF signals primarily through cAMP rather than calcium [59,61,76]. Here

we tested whether PDF or sNPF affect the level of intracellular Ca2+ in the IPCs by expressing

the genetically encoded Ca2+ sensor GCaMP3.0 (dilp2(p)>GCaMP3.0) [82] Incubating PDF

with freshly dissected brains did not produce change in Ca2+ levels, which were indistinguish-

able from the negative control (Fig 8). However, the bath application of sNPF induced a small

but significant increase in the Ca2+ signal (100-200s, 3.4 ± 2.8%, p<0.05). This was still detect-

able in the presence of TTX (100-200s, 5.4 ± 3.5%, p<0.05), suggesting that this response is

not mediated by interneurons but is due to the direct activation of the IPCs by sNPF (Fig 8).

Discussion

Genetic manipulations of PDF-expressing neurons modulate dormancy

We have constitutively activated the PDF+ neurons with Na+ChBac [69] and observed a signif-

icant reduction in levels of gonadal arrest (Fig 1A). Since this treatment increases membrane

excitability, it likely increases release of both PDF and sNPF, whose overexpression also led to

a significant reduction in dormancy (Fig 1B and 1C). Manipulations with opposite effect,

namely reduction of membrane excitability of the PDF+ neurons through overexpression of

the K+ channel Ork [72] or induction of cell death by overexpression of the pro-apoptotic gene

hid, resulted in an enhanced dormancy response (Fig 2A and 2B). Furthermore, the Pdf0

mutant showed a significantly elevated response compared to controls and overexpressing

PDFR in the IPCs significantly reduced gonadal arrest on both heterozygous and homozygous

mutant han backgrounds to wild-type levels. These results consistently support a model where

PDF and SNF act to antagonise dormancy, possibly by enhancing dILP expression. When we

expressed a dominant negative form of the sNPF receptor in the IPCs, or downregulated the

the level of cAMP, however similar change was observed in the case of Ast-C application alone. (C) A close up of the immediate cAMP level

changes occurring from the application point until 200 s. (D) Maximum inverse FRET from 100 s until 200 s. The legend indicates the color

code of the different treatments and the number of neurons in the dissected brains (in parentheses) considered in this analysis. ���p<0.001,
��p<0.01, �p<0.05, n.s. not significant.

https://doi.org/10.1371/journal.pgen.1008158.g006
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receptor with RNAi, higher dormancy induction was observed especially when using a driver

that is active later in development (Fig 2E and 2F). Numerous sNPF-expressing neurons can

potentially target the IPCs, including the PDF+ sLNvs and the DLPs. However, the manipula-

tions of the DLPs did not affect reproductive quiescence (S1 Fig).

One puzzling aspect of the results is that they appear, at least superficially, to contradict a

recent study in which Pdf01 females showed relatively low levels of dormancy and did not

reveal a photoperiodic effect [83]. The LD cycles used in these experiment were LD16:8 versus

LD10:14 so not as extreme as ours and this might have had a damping effect on any photoper-

iodicity. Furthermore, the low dormancy levels of the mutant females suggested that the muta-

tion might have been on the s-tim background. A congenic wild-type was not compared to the

mutant, so it is difficult to predict whether such a control would have had lower levels of repro-

ductive arrest which would be consistent with our findings. In addition, the further stress of

starvation was incorporated into the experimental paradigm. It would therefore be of interest

to examine whether our results, which suggest that the neuropeptides released by clock cells

Fig 7. The responses of the IPCs to PDF and sNPF are absent in the PDF receptor mutant han, but only the response to PDF is mediated by the PDF

receptor. (A-D) Live imaging in han mutants expressing a cAMP sensor in their IPCs (han; dilp2(p)>Epac1camps). In the mutant background, the effects

of both neuropeptides are abolished. (A-B) Maximum inverse FRET changes from 100–1000 s. Short-term responses are all abrogated in han flies. (C-D)

Maximum inverse FRET changes from 100–200 s. (E-H) Live imaging in han mutants with the PDF receptor rescued in the IPCs. The expression of han in

the IPCs induces very strong responses to PDF but not to sNPF (E-F) Maximum inverse FRET changes from 100–1000 s. (G-H) Maximum inverse FRET

changes from 100–200 s. Labeling as in Fig 4.

https://doi.org/10.1371/journal.pgen.1008158.g007
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antagonise reproductive quiescence, can be generalized under a variety of different unfavour-

able environmental conditions.

The IPCs respond to PDF and sNPF

Using a whole brain ex-vivo preparation, we observed that the IPCs responded to bath-applica-

tions of sNPF and PDF with increasing cAMP levels. The responses persisted when synaptic

connections with the rest of the brain were inhibited by TTX, suggesting a direct effect on the

IPCs of these neuropeptides (Fig 4A–4H). Expression of sNPFR1 in the IPCs had already been

described [53,54,57,68]. Interestingly, sNPFR1 couple to more than one Gα-protein subtype,

since both excitatory (through Gsα [77,78]) and inhibitory effects (through Goα [79]) on

cAMP levels have been documented. In addition, sNPF can signal by suppressing Ca2+ in

some circadian clock clusters [42] and peptidergic PTTH neurons [84]. Here, we found that

sNPF increased Ca2+ levels in the IPCs showing that it can also have activating Ca2+ effects.

Similar multiple G-protein coupling has also been reported for the neurokinin-1 and -2 recep-

tors [85,86], as well as for the glucagon receptor in human atrial membranes [87].

The expression of the PDFR in the IPCs is less well-characterized. A previous study using

fluorescent in situ hybridization reported prominent PDFR expression in the PI. However, it

did not identify the PDFR positive cells [60]. Moreover, another study suggested that the

cAMP responses evoked in the IPCs by PDF are not as robust as those registered in clock neu-

rons [62]. Possibly, lower ligand efficacy might simply reflect less PDFR in these cells. The

Fig 8. The neuropeptide sNPF induces a small increase in the intracellular Ca2+ level, while PDF has no effect. Left

panel: Average changes in GFP fluorescence of IPCs reflecting intracellular changes in Ca2+ levels. Substances were

bath-applied to freshly dissected fly brains at ~100 s (indicated by a black arrow). The cholinergic agonist

carbamylcholine (1 mM CCh) was used as positive control, which induced a robust increase in Ca2+, indicating that

the general procedure was working. As a negative control, hemolymph-like saline (HL3) was applied. Application of

10–5 M synthetic PDF peptide did not alter Ca2+ levels, while 10–5 M sNPF induced a small but significant increase in

Ca2+ levels. This calcium response seems to be due to direct activation of the IPCs, since it was not blocked in the

presence of the sodium channel blocker TTX (2μM). Right panel: Maximum Ca2+ changes (%) for each individual

neuron were calculated and averaged for each pharmacological treatment from 100 s until 200 s. Statistical comparison

revealed significant increases in Ca2+ levels compared to the negative control (HL3) for CCh, sNPF and sNPF+TTX,

while PDF had no effect. Data are presented as mean ± SEM. The color code of the different treatments and the

number of neurons [n] and dissected brains (n) considered in this analysis are shown below the panels. Kruskal-Wallis

test followed by Bonferroni-corrected Wilcoxon pairwise-comparisons. ���p<0.001, �p<0.05, n.s. not significant.

https://doi.org/10.1371/journal.pgen.1008158.g008
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strong cAMP responses we observed after driving PDFR in han mutants under control of

dilp2(p)-Gal4 supports this conclusion (Fig 6E–6H). On the other hand, there are 14 IPCs in

the PI which show heterogeneous protein and neuropeptide composition [29,88], and rhyth-

mic electrophysiological parameters [33]. Thus, it is possible that, like the s-LNvs [89], the

responsiveness of the IPCs to PDF is also influenced by time of day. In any case, here we found

significant cAMP increasing effects of PDF on the IPCs.

When we applied sNPF and PDF together, the short-term (100–200 s) response of the IPCs

to the combined peptides was greater than the sum of their separate activities, pointing to a

synergistic effect between the two molecules (Fig 5A–5D). Similar interactions were not

observed when sNPF was co-applied with other Drosophila neuropeptides, suggesting that the

interaction of sNPF and PDF is specific. Nevertheless, the addition of TTX dampened the

short-term response, suggesting that additional cells participate in the synergism between

sNPF and PDF (Fig 5E–5H). Interestingly, han mutants lacking PDFR did not respond to

PDF, sNPF or sNPF+PDF co-application (Fig 7A–7D). For sNPF, these results are puzzling,

but since the rescue of PDFR in the IPCs only restored the response to PDF but not to sNPF,

we conclude that sNPF does not act via PDFR. Still, we cannot completely exclude a cross-talk

between PDFR and sNPFR1. For instance, there is evidence that GPCRs can engage in homo-

or hetero-oligomeric complexes, resulting in cooperativity (reviewed in [90]). Alternatively, an

interaction downstream of the receptors may occur, for example at the level of the signalo-

somes. PDFR and sNPFR associate with specific and different signalosomes that may have

enhancing or opposing effects on cAMP levels [76–79,91]. However, further studies are

required to investigate these possibilities using experimental settings that are closer to physio-

logical conditions than bath applications of peptides. Interestingly, sNPF (produced in the s-

LNvs and in a subset of dorsal lateral neurons) and PDF interact on clock neurons and set the

phase of their cytosolic Ca2+ rhythms according to neuron cluster [42]. PDF primarily regu-

lates Ca2+ rhythms in the LNd and DN3 clusters, while sNPF orchestrates that of the DN1 [42].

Thus, the two signaling pathways act dynamically to facilitate the right timing of circadian

neuronal activities. Similar complex regulation could also influence the seasonal clock system.

While the Pdf mRNA and protein do not cycle, it has been reported that PDF cycles at the

nerve terminals with a circadian rhythm [39]. Thus, we presume that the daily rhythmic stimu-

lation of the IPCs under normal summer conditions of warm days and long photoperiods

maintains the expression of dILPs and suppresses dormancy. A simple model would have low

temperatures and short photoperiods reducing the expression of PDF and sNPF from the

sLNvs terminals, which might be expected to reduce IPC activation and enhance reproductive

arrest levels. This could mean that the transcription/translation of these neuropeptides could

be reduced under colder conditions, or alternatively, that their release was reduced from the

sLNv terminal. This scenario might imply higher levels of PDF within the sLNv soma if it is

sequestered there. Alternatively, the receptors for PDF and SNPF on the IPCs might be less

sensitive to their ligands at lower temperatures, which would have the same effect on repro-

ductive arrest. Future studies are required to examine the dynamic nature of PDF/SNPF and

receptor expression under simulated winter conditions.

PDF and sNPF–most likely from the s-LNvs can maintain D. melanogaster, originally a

tropical species, in the reproductive state. However, it is intriguing that high-latitude Drosoph-
ila species such as D. montana, D. littoralis, D. ezoana and D. virilis lack PDF in the s-LNvs

[92–95]. These species have a high incidence of reproductive arrest even under long-day-

lengths, an adaptation to the low temperatures even under summer photoperiods at these

clines. For example, D. ezoana enters diapause when day-length falls below 16 hours [96].

Although we do not know whether the s-LNvs of the high-latitude species still express sNPF,

we speculate that the lack of PDF-signaling to the IPCs of these species might facilitate the
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termination of the reproductive state under short-day condition, and induce ovarian arrest

[97]. The role of the s-LNvs as a source of PDF and sNPF may thus provide the entry point

into the neuronal mechanism that allows D. melanogaster to detect the environmental condi-

tions that predispose them to reproductive dormancy.

Materials and methods

Fly stock and Maintenance

Flies were reared at 23˚C, 70% relative humidity, under 12-hour light/12-hour dark cycles (LD

12:12) on cornmeal standard food. The following, previously described fly strains were used:

Hu-S Dutch natural population [37], han5304 [59], UAS-PDFR [59], gal1118 Gal4 enhancer

trap [98], R6-Gal4 [70], UAS-Epac1camps [62], UAS-hid [99], UAS-Pdf [41], and UAS-Den-
Mark [75]. InsP3-Gal4 was a gift from Michael J. Pankratz [73], dilp2(p)-Gal4 (p, precocious)
was a gift from Eric J. Rulifson [21], UAS-2xsNPF [53] and UAS-sNPFR1-DN [54] were kindly

provided Kweon Yu. Out of these lines, we newly combined han5304; dilp2(p)-Gal4, han5304;;
UAS-Epac1camps, and han5304;UAS-Epac1camps/CyO;UAS-PDFR. The transgenic line Pdf-
LexA,LexAop-CD4::GFP11/CyO;UAS-CD4::GFP1-10/TM6b for GRASP was a gift from François

Rouyer. UAS-OrkΔ-C (designated as UAS-Ork [72]) and UAS-Na+ChBac [69]) were gifts from

Michael B. O’Connor. Pdf01 mutants were backcrossed for 8 generations to a natural wild-type

ls-tim line from The Netherlands [37]. The following lines were ordered from Bloomington

Drosophila Stock Center: Canton-S wild-type strain (#1), Crz1-Gal4 (#51976), Crz2-Gal4

(#51977), ElavC155-Gal4 (designated as elav-Gal4, #458), Pdf-Gal4 (#6900), UAS-CD8-GFP
(BDSC #5137), and Oregon-R (#2376; used as control for experiments with han mutant).

In order to use a control in which the specific transgene (Gal4 or UAS) was in the same

condition of heterozygosis as in the experimental line, we have crossed all the parental lines to

the w1118 strain (generic genotype w1118;P-element/+). In Drosophila, two allelic variants of the

timeless circadian clock gene (s-tim/ls-tim) were found to significantly influence reproductive

arrest: ls-tim allele promotes reproductive quiescence at every photoperiod [37,38]. Consider-

ing this modulatory effect, controls were generated according to the tim allele of the UAS and

Gal4 strains used in the experiments (see below for PCR timeless genotyping), with the help of

w1118; s-tim (gift from Matthias Schlichting) and w1118; ls-tim (from our lab) lines that express

either the s- or ls-tim isoform.

Dormancy assay

All fly stocks and crosses used for dormancy assays were maintained at 23˚C in LD 12:12.

Newly eclosed flies (within 5 h post-eclosion) were placed in plastic vials, and immediately

subjected to 12˚C in LD 8:16. After 11 days, flies were killed in abs EtOH, and ovaries of

females were dissected in PBS. Dormancy levels were scored by considering the absence of

yolk deposition in the ovarian follicles [7]. These data were presented as the proportion of

females with ovarian arrest among all the dissected individuals. On average, 5 replicates of

n>60 flies were dissected for each genotypes.

Immunocytochemistry

Flies were reared at 23˚C in LD 12:12, and newly eclosed individuals were placed in short days

(LD 8:16) at different temperatures (12, 18, 23˚C) for 11 days. Females were collected at ZT1

(Zeitgeber Time 1, 1 h after light-on), and immediately fixed in 4% paraformaldehyde (PFA) in

PBS for 100 min at room temperature (RT). After 3 washes in PBS, brains were dissected in

ice-cold PBS, fixed in PFA 4% for 40 min at RT, and subsequently washed 6 times in PBS
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containing 0.3% Triton X-100 (PBS-T). Next, samples were permeabilized in 1% PBS-T, fol-

lowed by an overnight blocking step in 1% bovine serum albumin (BSA) in 0.3% PBS-T at

4˚C. Afterwards, brains were incubated in primary antibody solution (diluted in 0.1% BSA,

0.3% PBS-T) for 3 days at 4˚C. After 6 washes in 1% BSA in 0.3% PBS-T at RT, another block-

ing step was performed in 1% BSA in 0.3% PBS-T at 4˚C, followed by hybridization with the

secondary antibody (diluted in 0.1% BSA, 0.3% PBS-T) overnight at 4˚C. The primary anti-

bodies used in this study: mouse anti-GFP (1:500; Thermo Fisher Scientific), rabbit-anti-GFP

(1:1000; A6455, Invitrogen) and anti-PDF (1:5000; mAb C7, Developmental Study Hybridoma

Bank, donated by Justin Blau), rabbit anti-DILP2, anti-sNPF recognizing the sNPF propeptide

(for both 1:2000; Jan A. Veenstra [100,101]). The secondary antibodies used: Alexa Fluor 488

(goat anti-mouse, 1:250) Cy3 (goat anti-rabbit, 1:500) (Thermo Fisher Scientific), DyLight488

(goat-anti-rabbit 1:250) and DyLight649 (goat anti-mouse, 1:250) (Jackson ImmunoResearch,

Dianova). Staining was visualized adopting either a semi-confocal (Nikon Eclipse 80i equipped

with a QiCAM Fast Camera using the Image ProPlus software) or confocal microscope (ZEISS

LSM700 running ZEN Lite software or Leica SP8).

Live optical imaging in the insulin producing cells

To real-time monitor cAMP or Ca2+ concentration changes in the IPCs, live optical imaging

was performed using the genetically encoded cAMP sensor, Epac1-camps [62] and the geneti-

cally encoded Ca2+ sensor GCaMP3.0 [82]. Relying on the UAS-GAL4 binary system [102],

the sensors were expressed specifically in the IPCs (dilp2(p)>Epac1-camps or dilp2(p)>
GCaMP3.0). Female flies, maintained at 25˚C in LD 12:12, were anesthetized on ice before

brain dissections in cold hemolymph-like saline (HL3 [103]) and mounted at the bottom of a

cap of a plastic Petri dish (35x10 mm, Becton Dickenson Labware, New Jersey) in HL3 with

the dorsal surface up. Brains were allowed to recover from dissection 15 min prior to imaging.

Live imaging was conducted by using an epifluorescent imaging setup (VisiChrome High

Speed Polychromator System, ZEISS Axioskop2 FS plus, Photometrics CoolSNAP HQ CCD

camera, Visitron Systems GmbH) Visitron Systems GmbH) using a 40x dipping objective

(ZEISS 40x/1.0 DIC VIS-IR). IPCs were brought into focus and regions of interest were

defined on single cell bodies using the Visiview Software (version 2.1.1, Visitron Systems,

Puchheim, Germany). Time-lapse frames were imaged with 0.2 Hz and 4x binning by exciting

the CFP fluorophore of the cAMP sensor with 434/17 nm light or the GFP fluorescence of

GCaMP3 with 488/10 nm light. For cAMP imaging, CFP and YFP emissions were separately

detected using a Photometrics DualView2 beam splitter. After measuring baseline FRETs for

~100 s, substances were bath-applied drop-wise using a pipette, and imaging was performed

for 1000 s. The neuropeptides used in this study were applied in a final concentration of 10 μM

in 0.1% DMSO in HL3. The water-soluble forskolin derivate NKH477 (10 μM, Sigma Aldrich)

or the cholinergic agonist carbamylcholine (1mM, Sigma Aldrich) served as positive controls

in cAMP and Ca2+ imaging, respectively, while HL3 alone with 0.1% DMSO was used as nega-

tive control. In the case of tetrodotoxin (TTX) treatments, brains were incubated for 15 min in

2 μM TTX in HL3 prior to imaging and substances were co-applied together with 2 μM TTX.

Inverse Fluorescence Resonance Energy Transfer (iFRET) was calculated over time according

to the following equation: iFRET = CFP/(YFP-CFP�0.357) [62]. Thereby, raw CFP and YFP

emission data were background corrected; in addition, YFP data were further corrected by

subtracting the CFP spillover into the YFP signal, which was determined as 0.357 (35.7% of the

CFP signal). Next, iFRET traces of individual neurons were normalized to baseline and were

averaged for each treatment. Finally, maximum iFRET changes were calculated for individual

neurons to quantify and contrast response amplitudes of the different treatments. The
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following synthetic neuropeptides were used in this study: pigment dispersing factor (PDF:

NSELINSLLSLPKNMNDAa; Iris Biotech GmbH), short neuropeptide F-1 (sNPF-1: AQRSP
SLRLRFa; Iris Biotech GmbH), adipokinetic hormone (AKH: pQLTFSPDWa, NovoPro Biosci-

ence), allatostatin-C (Ast-C: pEVRYRQCYFNPISCF, gift from Paul H. Taghert), Tachykinin 4

(DTK-4: APVNSFVGMRa, gift from Paul H. Taghert), dFMRFamide 4 (SDNFMRFa, gift from

Paul H. Taghert).

Intracellular Ca2+ level

For Ca2+ imaging, brains expressed the GCamp3.0 sensor in the insulin producing cells (dilp2
(p)>GCaMP3.0) [104]. The preparation of the brain samples was the same as in the case of

cAMP imaging, and the same microscope was used with a modified setup, measuring GFP

fluorescence without a beam splitter. The cholinergic agonist carbamylcholine (1 mM CCh)

was used to generate rapid Ca2+ increases (Nakai et al. 2001). After subtraction of background

fluorescence, changes in fluorescence intensity were calculated for each ROI as Δ(F/F0) =

[(Fn—F0)/F0] x 100 with Fn as fluorescence intensity at time point n and F0 as the baseline fluo-

rescence calculated prior to the application of the different substances to the brain.

PCR for timeless genotyping

To ensure genetic homogeneity for the tim locus, between the experimental flies and their cor-

responding controls, all the strains used in this study were genotyped in order to identify the

tim allele present in their genome (summarized in S1 Table). The genomic DNA was extracted

from individual adult females (10 flies per genotype) by homogenizing them in 50 μl of extrac-

tion buffer (Tris HCl pH = 8.2 10 mM, EDTA 2 mM, NaCl 25 mM); after addition of 1 μl of

Proteinase K (10 mg/ml) samples were incubated at 37˚C for 45 min, followed by 3 min at

100˚C. The tim region containing the polymorphic site was amplified using a reverse primer

(5’-AGATTCCACAAGATCGTGTT-3’) and two different forward primers (ls-tim: 5’-TGGAA
TAATCAGAACTTTGA-3’; s-tim: 5’-TGGAATAATCAGAACTTTAT-3’) that allow selective

amplification of the different tim alleles [37].

qRT-PCR assays

Larvae of the following genotypes: Act>sNPFR1-RNAi, Act>+ and +>sNPFR1-RNAi, were

reared under standard conditions at 23˚C and LD12:12 until eclosion. Newly eclosed female

flies were collected and subsequently exposed to low (12˚C) or high (23˚C) temperature and

short photoperiod (8h:16hL:D) for 11 days. mRNA was isolated from whole bodies of 10

females. mRNA was reverse-transcribed with SuperScript II First-Strand Synthesis SuperMix

(Invitrogen). PCRs were performed on a CFX96 Touch Real Time PCR Detector System (Bio

Rad) with GoTaq qPCR Master Mix (Promega), using the following primers: sNPFR- F: 50-
CGACCATCAGATGCACCA -30, R: 50-CGTCCGTCTCGTCTGTCC -30; rp49 F: 50- ATCGGT
TACGGATCGAACAA-30, R: 50- GACAATCTCCTTGCGCTTCT-30. The results are shown as

relative expression ratios obtained with the 2-ΔΔCt method ± SEM. RP49 was used as reference.

Results are shown in S2 Fig.

Statistics

Data were analysed with R statistical software (version 3.0.1, www.r-project.org) and plotted

using GraphPad Prism 6 software. In the case of normally distributed data (Shapiro-Wilk nor-

mality test, p>0.05), statistical significance was tested by one- or two-way ANOVA with post-
hoc Tukey’s HSD tests, while data that were not normally distributed were analyzed by
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Wilcoxon or Mann-Whitney test. In the case of multiple comparisons, raw p-values were fur-

ther adjusted using Bonferroni correction, and these corrected p-values served as significance

levels. When analyzing dormancy assays, all data were transformed to arcsine. For simplicity,

figures in the Results section show untransformed data (dormancy, %).

Supporting information

S1 Table. The timeless background of the Drosophila strains used in this study, determined

by genotyping PCR. ls = long and short allelic variant; s = short allelic variant.

(TIFF)

S2 Table. Numerical data on which each graph was based, and pertinent statistical signifi-

cance values.

(XLSX)

S1 Fig. Genetic manipulation of the dorsal-lateral peptidergic neurons has no effect on

dormancy. (A) Hypersensitization of DLPs through the expression of a bacterial sodium chan-

nel (Crz1>Na+ChBac) does not alter quiescence levels (no difference from the Gal4 control).

(B) Overexpression of sNPF in the DLPs does not influence the dormancy (no difference from

the UAS control). Numbers within bars refer to the number of dissected females considered in

the assays. Data are presented as mean ± SEM. ANOVA on arcsine transformations, followed

by post-hoc Tukey HSD test. ���p<0.001, n.s. not significant.

(TIFF)

S2 Fig. qRT-PCR of dsRNAi knockdown of sNPFR1 at 23˚C (A) and 12\C (B).

(TIFF)
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