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Abstract— The heating neutral beam (HNB) systems at ITER
are designed to inject a total of 33 MW of either 1 MeV D0 or
870 keV H0 beams into the ITER plasma using two injectors
with a possible addition of a third injector later to increase
the injected power to ∼50 MW. The injectors operate in a
radioactive environment and should survive the life time of
ITER, placing thereby stringent requirements on material and
manufacturing choices. To ensure a smooth operational phase
of neutral beams at ITER, a neutral beam test facility is under
construction at Consorzio RFX, Padova, (hereinafter referred to
as RFX), and consists of two test beds. The 100-kV SPIDER
test bed will be used to optimize the source operation for
H and D beams. The 1-MV MITICA test bed is essentially
a full scale ITER prototype injector. The manufacturing and
operational experiences at MITICA will not only establish the
manufacturing processes of ITER HNB components but will
also allow validation of the operational space of the injectors
for ITER HNB. Operation of the two facilities is expected to
begin in 2016 and 2019, respectively. Currently, the experiments
on the ELISE facility, IPP Garching, with a half ITER sized
RF beam source are underway. The ITER relevant parameters
for the H beams have been achieved. Efforts are underway to
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optimize the same with D beams. The experimental database from
ELISE will be an important input for establishing the SPIDER
operation. This paper discusses the present status of the design
and development of the injectors for ITER and the progress on
the test facilities.

Index Terms— ELISE, MITICA, neutral beam (NB), Padova
Research on ITER Megavolt Accelerator (PRIMA), SPIDER.

I. INTRODUCTION

ITER uses a mix of auxiliary devices, such as the electron
cyclotron, ion cyclotron, and neutral beam (NB) [1], for

fulfilling the various requirements of heating, current drive,
plasma rotation, current profile control, impurity control,
and MHD control. The roles envisaged for NBs are heat-
ing, current drive, and plasma rotation. In addition, there
also exists a diagnostic NB (DNB) to diagnose the He ash
content using the charge exchange resonance spectroscopy
technique.

Over the years, NB systems with single or multiple ion
sources, with different extraction areas and a wide variety
of multigrid extractor and accelerator systems, have been
successfully used on various tokamaks and stellarators world-
wide to achieve the above roles. However, the ITER heating
NB (HNB) system is different from the existing ones in
terms of its beam requirements, dimensions, and configuration.
Coupled to this is the fact that at ITER these systems will
operate in a hostile radiation environment which makes the
systems radioactive and hands-on maintenance difficult. As a
result, the requirements of the various components have not
only to be conceived and implemented from their functionality
point of view but also have to take into account safety aspects
with low failure rates over the 20 year life time of ITER.
These considerations apply to many aspects of the design,
choice of materials, and manufacturing techniques. A rigorous
research and development (R&D) program to ensure timely
and successful delivery of NB systems to ITER with the above
mentioned requirements is being pursued at various test beds
under the aegis of the European and Japanese domestic agen-
cies (EUDA and JADA). This program is not only to establish
the manufacturing route of complex components meeting the
ITER desired quality standards but also to establish the design
in terms of its performance and beam delivery goals.

This paper describes, in brief, various aspects of R&D at
the component level and for the system as a whole in order
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Fig. 1. Layout of the beam lines in the ITER NB cell.

TABLE I

BEAM PARAMETERS REQUIRED AT ITER

to make the reader aware of the present status of the progress
on NBs.

II. HNB LAYOUT AND SPECIFICATIONS

Fig. 1 shows the layout of the HNB beam line in the
ITER NB cell. At present, two beam lines are coupled to the
two equatorial ports. An additional port is reserved port for
a third HNB as a future upgrade. The HNB-1 beamline has
a cross over in the duct region with the neighboring DNB
beam line. NBs are intended to be used in the H-He, D-D,
and D-T phases of ITER operation. The desired beam spec-
ifications for all the phases are listed in Table I. In order to
ensure the delivery of 16.5-MW per beam line NB power into
the ITER tokamak, a 40 MW of ion power is launched from
the beam source.

The loss of power during its transport from the source to
the duct opening located at a distance of 25.5 m from the
grounded grid (GG) is due to 56% neutralization efficiency,
finite divergence of the beamlets, presence of a beam halo
(assumed to carry 15% of the accelerated ion power) with an
assumed divergence of 30 mrad [2], assembly tolerances and
misalignments, and reionization of the NB due to interactions
with the background gas in the beam line and the duct
between the injector and the tokamak. All these effects have
been taken into account in the physics design of the system.

Fig. 2. Layout of the HNB beam line.

Fig. 2 shows the layout of one of the HNBs. The ion source
and the beam line components (BLCs) [3], i.e., the electron
dump and the neutralizer, the residual ion dump (RID),
the calorimeter, the exit scraper, and the cryopumps, are
installed in two connected vacuum vessels, the beam source
vessel (BSV), and the beam line vessel (BLV), which in turn
are connected to the front end components (FECs), i.e., the
fast shutter, absolute valve, drift duct bellow, vacuum vessel
suppression system box (VVPSS box), connecting duct with
its liner, and the 6-m-long duct which contains several duct
liner (DL) panels. The vacuum vessels are surrounded by a
magnetic field reduction system consisting of a combination of
a passive magnetic shield (PMS) and active compensation and
corrections coils (ACCCs), which reduces the magnetic fields
from the tokamak [6] to acceptable levels within the beam,
typically, ∼1 Gauss in neutralizer region. The vertical center
of the GG is 1.44 m above the ITER tokamak machine center
line (MCL), and the beam is aimed downward at a nominal
angle of 49.2 mrad. In addition, the beam can be steered
upward or downward by 9 mrad with respect to the nominal
angle. The beam axis at the tangency point is located vertically
between −417 and +156 mm relative to MCL. Vertical tilting
angle is required for off-axis current drive and to avoid beam
excited toroidal Alvèn eigenmodes in the ITER plasma.

III. PRESENT STATUS

A. Status of the Physics Design Calculations

1) Design of the Front End Components and Duct Liner:
In addition to the BLCs, beam power is incident on the
FEC and DL of each of the two beam lines. It is necessary
to calculate the incident power and the power densities on
each of the component surfaces in order to establish a work-
ing mechanical design of these components. In addition to
direct beam interception, additional heat loads arise from the
interception of reionised beam atoms. The reionized particles
see the magnetic fields from ITER which change with the
changing operating scenario. The ions are deflected by the
magnetic field onto surfaces within the NB duct. Power
densities from the reionized ions are higher than those due
to the direct interception because of focusing effects due
to the variation in the magnetic fields. Calculation of the
power and the power densities requires the knowledge of the
operational gas profile and the magnetic fields along the beam
line for the foreseen ITER operating scenarios. To calculate the
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Fig. 3. HNB-1 gas profile for different gas inputs from tokamak.

Fig. 4. Worst case power and power density on ES and FEC.

gas profiles, the MCGF code from the Russian Federation [4]
has been modified to take into account all the gas sources,
i.e., gas from the ion source, the neutralizer, the tokamak, the
adsorbed gas molecules released from the surface of the com-
ponents, and the duct when beam is incident on those surfaces,
and, in the case of HNB 1, gas from the DNB. The calculated
gas profiles for the HNB 1 beam line, shown in Fig. 3, give
a reionzation loss of ∼8% for all the operational scenarios
from the entry of the RID to the duct exit. The considered
reionization cross sections from the ORNL red book [5] have
been increased by 30% to take into account the uncertainty
in the cross section values. Calculations to arrive at the worst
case estimates of power and power density [6] (Fig. 4) have
been carried out using the BTR code [7] from the Russian
Federation for various beamlet divergences, misalignments,
and beam tilting angles using the gas profiles and reionization
cross sections mentioned above.

2) Multigrid Multiaperture Accelerator of the Beam Source:
An optimal design of the accelerator system to be coupled
to the beam source is necessary to produce beams with the
characteristics listed in Table I. Based on the experimental
studies, a multigrid multiaperture (MAMuG) accelerator sys-
tem [8] has been chosen over the alternative single gap, single
aperture (SINGAP) accelerator system [2]. The MAMuG
is a seven grid system consisting of a plasma grid (PG),
an extraction grid (EG), four acceleration grids (AG1 to AG4),
and the GG. There are five acceleration stages of ≈200 kV
each and with 88-mm gaps. The PG–EG gap is 6 mm. Each
grid is an assembly of four segments arranged vertically
with each segment having four beam groups. A total of
1280 apertures are arranged in 16 beam groups, with each
beam group having a 5 × 16 aperture matrix [8]. Besides the

optimization of aperture shapes, distances, and voltages, the
accelerator design has also considered the effects due to
magnetic fields from the ion source, the electron suppression
magnets embedded in the EG, and the permanent magnets
embedded in the acceleration grids that help distribute the
power to the grids from the secondary electrons. The PG
filter field [9] is produced by a combination of currents
flowing through the PG and return bus bars so as to have
an optimal ∫Bdl in the source while having a minimal field
in the RF driver plus a long range field of ≈1 mT in the
accelerator. In addition, they are the effects of space charge
repulsion between beamlets within a beamlet group and the
interaction between neighboring beamlet groups which must
be taken into account. Furthermore, optimal beamlet steering
is required for good transmission to the ITER plasma. The
requirements include geometrical aiming of beamlet groups in
the vertical and horizontal directions to the exit of the NB duct
and the aiming of beamlets within each group horizontally at
the horizontal center of the exit of the appropriate channel in
the RID. Extensive design calculations, done in a collaboration
between RFX, CEA, and ITER IO, have led to the final con-
figuration of the accelerator [8], [17]. The beamlet deflection
due to the permanent magnets in the EG is compensated by the
use of a vertical array of deflection compensation permanent
magnets, also embedded in the EG [9]. The effect of the
space charge repulsion of the outer most beamlets and between
beam groups is overcome by the effective use of kerbs on
the downstream side of the EG. The horizontal aiming of
beam groups is ensured by machining the segments to incline
the beamgroups horizontally and the aiming of the beamlets
within each beam group is achieved with kerbs mounted on
the successive acceleration grids. This concept does not lead
to a proper aiming of the beamlets 2 and 4 of the five
horizontal beamlets but the misaiming of ≈1.4 mrad does not
lead to any substantial transmission loss. The aiming in the
vertical direction is achieved by inclining the segments with
respect to the vertical direction. A very important aspect of
the design is the control of electrons leaking from the acceler-
ator such that the loads onto the cryopumps are acceptable,
i.e., ≈10 kW to the 80 K surfaces and <200 W to the
6.5 K surfaces. This is done by creating magnetic fields in
the extractor and accelerator that deflect the electrons onto
the grid. The field is created by a combination of permanent
magnets in the EG and AGs and by tuning the PG filter
field to create a long range field of ≈1 mT throughout the
extractor and the accelerator. The dumping of electrons on the
grids results in high power loads on the grids. The 14-mm
apertures on the AG1 and AG2 and 16-mm apertures on AG3,
AG4, and GG help to limit the power of the dumped electrons
to ∼2 MW per grid. The grid thickness, however, is increased
from 10 to 17 mm to keep the consequent out of plane bending
to an acceptable value of ∼0.6 mm.

Out of plane bending, aperture misalignments, magnetic
field nonuniformities, and inaccuracy of the magnet locations
can cause unwanted steering of individual beamlets. The
steering due to aperture displacement has been determined to
be 2 mrad/mm for the EG lens and 0.6 mrad/mm for the GG.
For the intermediate acceleration grids, the apertures do not
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Fig. 5. Top view of the ELISE source at IPP Garching.

form electrostatic lenses as the electric fields upstream and
downstream the aperture are almost the same. The results of
the calculations are summarized in [8]. Recent assessments on
the acceptable aperture misalignment by IO have shown that
misalignments of ±0.2 mm on the EG apertures and ±0.5 mm
on the GG apertures with respect to the nominal beam axis are
acceptable in terms of the ability to predict the beam bending
angle from the beam profiles measured on the calorimeter and
in obtaining the desired transmission of 16.5-MW per HNB
to ITER. A measurement accuracy of the beam tilting angle
of ±1 mrad is needed in order to determine the position of
beam power deposition in the plasma with the desired accu-
racy. These calculations take into account all steering effects,
both in the horizontal and vertical directions. Furthermore, a
1-mm-thick Mo layer coating on the Cu back plate helps to
minimize sputtering caused by the back streaming positive ions
which are the result of ionization of background gas mainly
by D− and D0 [10].

B. Present Status on the Various Test Beds

1) ELISE, IPP Garching: The ITER specified beam current
densities have been achieved with single driver-based RF
negative ion sources, 1/8th the size of the ITER sources [11].
As an intermediate step before operating the eight driver-based
ITER source, a half sized source with four drivers has been
set up on the ELISE facility at IPP Garching [12]. The aim
of the experiments at ELISE is to establish the technique of
coupling RF power to two drivers fed by a single RF generator
as planned for the ITER sources, and to achieve ITER relevant
plasma and beam parameters for both H and D beams. ELISE
incorporates the operational experiences on first generation
multiple driver source, RADI [13], and includes increased
diameter RF drivers for a uniform illumination of the grid
areas and electromagnetic shield around each driver to avoid
damage to the Faraday screen. Fig. 5 shows the top view of
the ELISE source with four drivers and the shields around
each driver. The schematic of the ELISE experimental set up
is shown in Fig. 6.

Over the past year, the extensive experiments on this
source have been performed, both in the volume and surface
production modes with Caesium seeding of the ion source
for both H and D beams. The magnetic filter field in the
source is generated by flowing current through PG and a
set of return leads, a concept similar to the one planned on

Fig. 6. Cut view of the ELISE experimental test bed.

TABLE II

ELISE PERFORMANCE AND ITER REQUIREMENT

ITER sources. The experiments have shown that tuning the
source for H beams with the desired electron to ion ratio is
a bit easier and quicker as compared with the single driver
sources. However, operation with D beams still needs further
investigation as the electron to ion ratio is not only higher
than the desired value but also increases with time due to
increasing extracted electron current. Table II summarizes
the best parameters obtained so far with the ELISE source
compared with the ITER requirements. The numbers in the
parenthesis in the ITER column point to the parameters for
the H beams during the H-H and H-He ITER phases.

2) PRIMA Facility at RFX Padova Italy: The Padova
Research on ITER Megavolt Accelerator (PRIMA) [14]
facility (also called the NBTF) is being set up with two main
aims:

1) characterizing a full sized ITER ion source to its desired
performance (SPIDER test bed: 100-kV operation H and
D beams) [15];

2) establishing a full scale prototype beam line similar to
the ITER HNB beam line (MITICA test bed: 1-MV D
beams and 870-keV H beams) [16], [17].

It is envisaged that the design of the MITICA beam line
components, their layout, the materials used, and the manufac-
turing technologies used will be, as far as possible, identical to
their HNB counterpart to mitigate any risks and to establish the
route to manufacturing of the HNB components. The facility
(Fig. 7) involves a total area of 17 500 m2, of which 7400 m2

are covered, and the maximum building height is 26.4 m at
the location of the injectors installation.
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Fig. 7. PRIMA site building at RFX, Padua, Italy.

Fig. 8. Vacuum vessel for SPIDER source at RFX.

The buildings for the PRIMA facility are nearing com-
pletion. Besides housing the SPIDER and the MITICA test
beds, it also has space allocated for auxiliary systems, such as
the power supplies, gas, cryogenics, vacuum, and hydraulics.
An agreement related to work organization on site according
to Health and Safety Italian Codes was signed in June 2014
and has a joint client responsibility between Consorzio RFX
and EUDA.

a) SPIDER: The SPIDER facility consists of an eight
driver RF negative ion source coupled to a three stage
accelerator housed in a vacuum vessel along with numer-
ous diagnostics. The diagnostics include Langmuir probes,
thermocouples, a carbon tile-based calorimeter STRIKE, vari-
ous optical diagnostics, and an Indian domestic agency (INDA)
supplied ion dump, which is also instrumented with thermo-
couples. The contract for the manufacturing of the ion source,
the accelerator and the vacuum vessel for the facility are being
managed by EUDA with a consortium of companies, which
include THALES France, CECOM Italy, ZANON Italy, and
GALVANO–T Germany and their subcontractors. The vacuum
vessel (Fig. 8) has been delivered to RFX, assembled, and
tested. The auxiliary systems, such as the cooling, gas, power
supplies, and the control and data acquisition system, are
expected to be assembled by the end of 2015. The various
components of the SPIDER beam source are currently being
manufactured after completion of several prototype activities.
The assembly and integration activity of the source, auxiliary,
and diagnostic systems in the vacuum vessel is expected to be
completed by Q2 of 2017 and followed by the experimental
phase. The power supplies for SPIDER are to be procured
by EU and INDA. The modules, transformers, and electronic
control cubicles corresponding to the INDA scope of 100-kV
acceleration grid power supplies have been procured and tested
in India as per test procedures mutually agreed between the
INDA and the IO. Delivery of the same to the PRIMA site is

Fig. 9. CAD view of the MITICA source by RFX.

expected in first half of 2016. The ion source extractor power
supplies procured by EU have been delivered at RFX site.

During the course of SPIDER source manufacturing and
interaction with the vendors, several experiences relevant to
the manufacture of the ITER and the MITICA beam sources
have been made. These include the increase in the size of the
RF transmission lines under vacuum from 1 5/8 to 3 1/8 in to
accommodate the expected operational temperature of 150 °C
during high power, long pulse operation. Another important
issue is the estimate on the best achievable alignment of the
successive apertures between the three grids of the accel-
erator as the actual manufacturing tolerances are becoming
known.

b) MITICA: The MITICA facility will house a prototype
1-MV full scale beam line which includes the eight driver
RF negative ion source and the BLCs. Fig. 9 shows the
cut view of the mechanical design of the MITICA beam
source [11], [12], which takes into account of the results of
the calculations mentioned in Section III-B for the extractor
and accelerator, the experimental data from the ELISE test
bed, and the manufacturing experience on the SPIDER beam
source. For example, electrostatic shield has been incorporated
around each driver based on the experience from RADI
and ELISE and experience from the manufacturing of the
SPIDER ion source led to modifications to the design of the
plasma box.

The design of the BLCs has been finalized and reviewed
at ITER. These include the neutralizer and electron dump, the
RID, the calorimeter, and the exit scraper. Detailed thermo-
mechanical design calculations using the heat loads calculated
using the BTR code have helped to finalize the flow parameters
of the cooling water required for these components, and to
assess the mechanical stresses and out of plane or in plane
bending of the various components. As the MITICA BLCs
are also considered as a route to establish the ITER BLCs,
the design has also been assessed for ITER relevant off normal
conditions in the form of several load cases, such as the loss
of coolant, loss of vacuum, loss of voltage, seismic events,
and so on, either individually or in combination. Structural
design criterion for ITER invessel components (SDC-IC) [18],
and reliability, availability, maintainability, and inspectabil-
ity (RAMI) analysis [19] verifications have been carried out
on all the components of MITICA components to ensure that
survival of the component under cyclic loading for the full
ITER life time. The technical specifications related to the
manufacture of MITICA beam source have been finalized
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by RFX and the call for tender launched in Q4 of 2015.
By the end of 2015, all the tenders will be launched and most
procurements assigned. The contract for the manufacture of
the MITICA vacuum vessel has been awarded.

The installation phase of the first MITICA components,
i.e., transmission line and high voltage power supplies com-
ponents, will start in December 2015 and will continue until
spring 2017. This will be followed by the integrated commis-
sioning of all plant and interlocks with data acquisition and
control system and by the PS integrated tests. The MITICA
beam source will be installed in 2019, followed by the first
experimental phase. For the MITICA test bed, the power
supply procurement is shared between the EUDA and the
JADA. All JADA supplies [20] are currently under manufac-
turing by Japanese firms in line with the original planning.
In particular, the −1.3-MV 10-mA dc generator to be used to
test the voltage holding of the high voltage transmission lines
and the high voltage deck has been manufactured and fully
tested.

C. Prototype Development

Successful development of several prototypes has been car-
ried out to verify the design and establish the manufacturing of
different components. The experience gained is being utilized
in defining the technical specification documents for each of
the components. The prototype developments performed by
RFX include high voltage post insulators for the accelerator
and the source, dis-similar metal jointing techniques, deep
drilling over 2-m lengths, and swirl tape insertion and fixation
in the tubes for the calorimeter panels. An ITER relevant
CODAC system has also been prototyped using the similar
platforms as those envisaged for ITER [21]. The manufactur-
ing of the 1.6-m diameter ceramic rings for the HV bushing
and prototype developments related to the HV shields to be
used in the bushing are some of the successful prototype
activities carried out by JADA.

D. Front End Components and Duct Liner

Detailed design for the FECs along with the BLV, BSV,
PMS, and ACCC has been developed and the preliminary
design review completed. It incorporates the results of cal-
culations mentioned in Section III-A, SDC-IC validation for
ITER envisaged load cases and RAMI analysis. The final
design review for the DL has been completed and the complete
CAD model and the 2-D drawings are expected by the end
of 2015. The components will be procured by EUDA and
the procurement arrangements are expected to be signed in
early 2016. The built to print design for the exit scraper and
the VVPSS box has been developed, which will be procured
by the INDA. The study of the absolute valve, to be procured
by EUDA, is on-going at VAT with the final design review
expected in late 2016.

E. Nuclear Safety Requirements

Detailed calculations related to the nuclear analysis of the
NB cell have been carried out to map the dose rates in the

different regions of the cell. In order to achieve the acceptable
level of the shutdown dose rate of <100 µSv/h in all areas
where the human access is foreseen, the design of the PMSs
has been modified by filling the interspace between the shields
with 10-cm-thick polyethylene and by shielding external faces
with 1–2.5-cm-thick lead.

IV. CONCLUSION

The present status of the physics and design activities
related to the development of the HNB for ITER has been
described in brief and includes the progress of the experi-
ments at the ELISE test facility and the design, construction,
procurement, setting up, and testing activities for the SPIDER
and MITICA test beds at the PRIMA facility. The experi-
mental experience from the test beds is expected to shorten
significantly the commissioning time of the injectors on ITER.
The extensive diagnostic capability at these test beds is also
expected to establish the operational limits for ITER injectors.
That should allow operation at higher performance than would
otherwise be the case. The present planning allows for the
procurement activities of the HNB ITER components to finish
by Q2 of 2026. The manufacturing and the installation phase
are expected to be over by Q4 of 2026 and will be followed by
the commissioning and experimental phase to deliver beams
to ITER in time with the H-He phase of ITER.
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