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Abstract: Enhancing energy efficiency is one of the main challenges of today’s industrial robotics
and manufacturing technology. In this paper a task-related analysis of the energetic performance
of a 4-DOF industrial parallel robot is presented, and the optimal location of a predefined task with
respect to the robot workspace is investigated. An optimal position of the task relative to the robot can
indeed reduce the actuators’ effort and the energy consumption required to complete the considered
operation. The dynamic and electro-mechanical models of the manipulators are developed and
implemented to estimate the energy consumption of a parametrized motion with trapezoidal speed
profile, i.e., a pick-and-place operation. Numerical results provide energy consumption maps that can
be adopted to place the starting and ending points of the task in the more energy-efficient location
within the robot workspace.

Keywords: robotics; dynamic model; parallel robot; task-related analysis; energy efficiency

1. Introduction

The development of state-of-the-art robotics and industrial manufacturing systems requires the
adoption of high energy-efficient machines, especially when dealing with high speed operations
performed for long periods of time. The reduction of energy consumption is a fundamental and critical
aspect from both the economical and the ecological points of view. This is testified by the policies set
by the European Union, which aims at supporting the adoption of energy-efficient improvements in
order to reduce the energy consumption up to 30% by 2030 [1,2]. In this framework, the manufacturing
industry is responsible for a large amount of the overall worldwide energy consumption [3], and this
trend is foreseen to increase, given that the global annual sales of industrial robots is expected to grow
by +12% per year on average from 2020 to 2022 [4]. For these reasons, enhancing energy efficiency is
becoming a challenging problem for industrial engineers and academic researchers.

The importance of this topic is testified by a flourishing literature, which includes both theoretical
and experimental investigations on energy saving in automatic machines and robots [5]. Among the
several strategies that can be followed to achieve the goal of enhancing the energetic performance of a
manufacturing system, the main are: the proper choice of the robot architecture [6], the design of robots
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and machine with lightweight links and components [7–10], the substitution of traditional drives with
regenerative ones [11–13], and the exploitation of the system natural dynamics [14–16]. Energy saving
can also be achieved by optimizing the motion time and properly planning the trajectories that the
machine will follow [17–19]. Examples of trajectory planning strategies, with the aim of reducing the
torque or energy expenditure of robot actuators, comprise the analytical analysis of standard primitives
for point-to-point motions [20,21], the exploitation of kinematic redundancy [22,23], and the adoption
of algorithms for motion design with constrained paths [24–26].

Energy efficiency can also be enhanced by evaluating the performance of the robot throughout
its workspace and by optimizing the location of the task with respect to the base of the manipulator.
The positioning of the robot with respect to the required task is indeed essential not only for the
correct execution of the operation, such as for example in robotic painting [27–29] or pick-and-place
operations [15,30,31] but also to minimize the expenditure of energy required by the actuators.

In this context, several local and global performance metrics have been proposed in the literature
to investigate the behavior of industrial machines and robots. Local performance measures can indeed
be adopted to define possible relations between robot design feature and the task to be executed.
Moreover, local performance metrics can guide the choice of the position of the task relative to
the robot, but also provide an analysis of the performance of the manipulator with respect to its
workspace [32,33]. Examples of performance metrics for robot manipulators are given by [34,35],
where different indexes are applied to a SCARA robot and graphically visualized. Furthermore, in [36],
a task-dependent performance index is proposed, which explicitly accounts for both robot kinematics
and task geometrical features.

In this paper a task-related analysis of the energetic performance of a four-leg delta-like (4-RUU)
parallel manipulator is presented. The lightweight structure allows the robot to be employed for high-speed
operations, especially for pick-and-place purposes [36,37]. The dynamic and electro-mechanical models
of the manipulator are presented and adopted to estimate the actuators energy expenditure needed to
perform a predefined basic operation within the robot workspace. Numerical results provide energy
consumption maps that can be adopted as guidelines for the optimal robot positioning.

The work is the extended version of a preliminary conference paper presented in [38]. It is
organized as follows: Section 2 reports the kinematic and dynamic models of the robot, Section 3
introduces the electro-mechanical model of the actuators, and in Section 4 the task-dependent analysis
is described. Results are reported in Section 5, whereas Section 6 gives the conclusions of the work.

2. Model of the 4-DOF Parallel Robot

In this section the dynamic model of the 4-DOF parallel robot considered in this paper is recalled.
The robot, shown in Figures 1 and 2, allows three translations and one rotation of the end-effector
around its vertical axis. The end-effector is attached to a mobile platform, which is split into two parts
connected by two linkages, defining a four-bar linkage that allows a rotation of the end-effector within
±π/4 rad, as can be seen in Figure 3. The range of rotation of the fourth degree of freedom ϑ is then
amplified by means of a gearbox up to ±π rad.

The geometrical and dynamic parameters of the parallel robot used in this work are reported
in Tables 1 and 2, respectively. In particular, the parameters of the actuators considered in the
electro-mechanical model are collected in Table 2.
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Figure 1. The 4-DOF parallel robot and its workspace limits in mm.

2.1. Kinematics

The inverse kinematic relationship presented here allows to evaluate the joint variables
q = [q1 q2 q3 q4]

T from the end-effector pose X = [x y z ϑ]T . This relationship can be derived by
considering the closure equation of the mechanism:

rl,i
Trl,i = r2

l,i (1)

where
rl,i = Bi − Ai = [rl,ix rl,iy rl,iz]

T (2)

The coordinates of points Ai, as used in Equation (2), are evaluated starting from the fixed points
Pi, known from the robot geometry as functions of the joint variables qi and constant ru,i, as shown
in Figure 2. On the other hand, the coordinates of Bi are obtained from the end-effector pose X,
by considering the constants l, l1, h and h1 (Figure 3). Starting from Equation (2), the following system
of equations can be obtained:

Ii sin(qi) + Li cos(qi) + Ki = 0, i = 1, ..., 4 (3)

The constants Ii, Li and Ki depend on the geometry of the robot and on the end-effector pose [37].
They can be calculated as follows:

Ii = 2(z + ze − zPi) ru,i

Li = −
√

2(Mi sign(xPi) + Ni sign(yPi)) ru,i

Ki = M2
i + N2

i + (z + ze − zPi)
2 + r2

u,i − r2
l,i

(4)

where Mi and Ni are defined as:

Mi = x− εil − sign(yPi)
h
2

sin
ϑ

4
+ sign(xPi)∆li − xPi

Ni = y + sign(yPi)
h
2

cos
ϑ

4
+ sign(yPi)∆hi − yPi

(5)

[xPi yPi zPi]
T represents the coordinates vector of point Pi, whereas ze is the offset along the

z-axis between the end-effector plane and the plane that contains points Bi and Fi (see Figure 3).
Furthermore, ε = [1 0 0 1]T , ∆l = [l1 l2 l2 l1]T , and ∆h = [h1 h1 h1 h1]

T . The geometrical parameters are
shown in Figure 3 and their numerical values are reported in Table 1.
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Figure 2. Notation used in the model of the parallel robot.

The solution of the inverse kinematics for the i-th joint variable qi assumes the following form:

qi = 2 arcsin
(
−Ii ±

√
∆i

Ki − Li

)
, i = 1, ..., 4 (6)

where ∆i = I2
i − K2

i + L2
i .

By considering the forward kinematics of the 4-DOF parallel manipulator, which aims at
calculating the pose vector X by knowing the joint variables vector q, the problem leads to an
eight-order polynomial in the fourth variable ϑ. In this case, a numerical iterative scheme can solve the
problem more efficiently than by searching the solutions in an analytical way [37].

The inverse velocity kinematics defines the relationship between the velocity vector of the
end-effector Ẋ and the joint velocity vector q̇:

q̇ = Jq
−1 JX Ẋ = J−1Ẋ (7)

where J indicates the Jacobian matrix of the manipulator, and matrices Jq and JX are defined as:

Jq =


u1

T(ru,1 × rl,1) 0 0 0
0 u2

T(ru,2 × rl,2) 0 0
0 0 u3

T(ru,3 × rl,3) 0
0 0 0 u4

T(ru,4 × rl,4)

 (8)

JX =


xb1 yb1 zb1 − 1

8 ez
T(h× rl,1)

xb2 yb2 zb2 − 1
8 ez

T(h× rl,2)

xb3 yb3 zb3
1
8 ez

T(h× rl,3)

xb4 yb4 zb4
1
8 ez

T(h× rl,4)

 (9)

ui is the unit vector parallel to motor axis, h = F3 − F2, and ez is the vertical axis of the absolute
reference frame.

Finally, the inverse acceleration analysis computes the relationship between the acceleration
vector of the end-effector Ẍ and the acceleration vector of joint variables q̈. This formulation can be
obtained by differentiating Equation (7) with respect to time:

q̈ = J−1Ẍ + Jq
−1( J̇X − J̇q J−1)Ẋ (10)

2.2. Dynamics

The dynamics of the 4-DOF parallel robot can be computed using the Lagrangian approach
together with some simplifications. The main hypothesis of the dynamic model is to consider the
inertia of the small arm negligible and to approximate the distributed mass of each arm with two
lumped masses positioned at the extremities of the link, as shown in Figure 4. A further hypothesis
simplifies the two bars of the mobile platform, which is split into two parts that can only translate
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relative to each other, with two lumped masses located at each extremity, as reported in Figure 3.
These lumped masses are indicated with mC = mD = mplat/2 + 2mc [37].

The inverse dynamics of the manipulator aims at calculating the torque required for the motion
of the parallel robot by knowing the position, velocity and acceleration of the joint variables. The total
torque τ required by the actuators is the sum of the contributes given by (a) the actuating system
(actuators and upper arms) τact, (b) the end-effector platform τplat, and (c) the payload τp. The first
contribution can be written as:

τact = Iact q̈ + gMarm cos(q) + fs + Fvq̇ (11)

where Iact = diag([Ieq Ieq Ieq Ieq]) is the inertia matrix, Ieq = K2
r Iact + Ia + Ic, Kr is the reduction

ratio, Ia = 1/3 mar2
u,i and Ic = mcr2

u,i. The matrix Marm = diag([meq meq meq meq]), where the
diagonal terms are expressed as meq = maru,i/2 + mcru,i, comprises the contributions of the upper
arm and the point mass. The constant g represents the gravitational acceleration. Friction effects
are taken into account with the Coulomb and viscous friction forces fs = fs sign(q̇) and Fv =

diag([ fv fv fv fv]). Equation (11) can be rewritten by substituting q̈ with the expression of the
inverse acceleration problem (Equation (10)) as function of the velocity Ẋ and acceleration Ẍ of the
end-effector as:

τact = Iact J−1Ẍ + Iact Jvel
−1Ẋ + gMarm cos(q) + fs + Fvq̇ (12)

with Jvel
−1 = Jq

−1( J̇X − J̇q J−1).

Figure 3. Model of the mobile platform.

Figure 4. Model of the arm.

The second torque contribution, given by the mobile platform, can be expressed by:

τplat = JT MplatẌ + 2JT MCG (13)

where matrices Mplat and MC account for the dynamic contributions of the point masses C and D
(please see [16,37] for further details).



Machines 2020, 8, 10 6 of 14

The third torque contribution is given by the payload applied to the end-effector and can be
written as:

τp = JT Mp(Ẍ + G) (14)

where matrix Mp contains on the main diagonal the mass mp and the inertia Ip of the considered load.
At the end, the complete expression for the torque required by the robot actuators to steer the

end-effector is given by:

τ = [Iact J−1 + JT(Mplat + Mp)]Ẍ + JT(Mplat + Mp)G + Iact Jvel
−1Ẋ + gMarm cos(q) + fs + Fvq̇ (15)

Table 1. Geometrical parameters of the parallel robot.

Parameter Value Parameter Value

OPi 0.275 m l 0.081 m
ru,i 0.375 m l1 0.044 m
rl,i 0.825 m l2 0.025 m
zPi 0.105 m h 0.110 m
ze 0.087 m h1 0.025 m

Table 2. Dynamic parameters of the parallel robot.

Parameter Symbol Value Parameter Symbol Value

motor torque constant Kt 0.99 Nm/A reduction ratio Kr 50
motor back-emf constant Ke 0.61 V · s/rad gearbox inertia Ir 5.70 · 10−6 Kg m2

winding resistance R 2.81 Ω upper arm mass ma 1.85 Kg
motor inertia Im 1.62 · 10−4 Kg m2 point mass (arm) mc 0.24 Kg
static friction coefficient fs 0.109 Nm platform mass mplat 3.50 Kg
viscous friction coefficient fv 1.62 · 10−4 Nm · s/rad load mass mp 0.10 Kg
driver efficiency ηd 0.90 load inertia Ip 8.33 · 10−4 Kg m2

gravitational acceleration g 9.81 m/s2 point mass (platform) mC 2.23 Kg

3. Electro-Mechanical Model

The electro-mechanical model of the actuators of the robot is developed by assuming that brushless
DC motors are used as in [23,31]. The torque exerted by the j-th motor τm,j = τj/Kr is proportional to
the current ij(t) drawn by the motor itself as:

τm,j(t) = Kt ij(t) (16)

being Kt the motor torque constant. Then, the armature model describes the voltage drop vj(t) across
the j-th motor of the manipulator as follows:

vj(t) = R ij(t) + Ke q̇m,j(t) (17)

where R is the resistance of the motor windings, Ke is the back-emf constant, whereas q̇m,j = q̇j Kr

indicates the velocity of the j-th motor shaft. By taking into account the efficiency of the
driver ηd, the instantaneous electric power drawn by the j-th robot actuator is given by the
voltage-current product:

Pe,j(t) =
vj(t) ij(t)

ηd
(18)

The electric power Pe,j takes positive values when the energy is drawn from the drive unit, whereas it
takes negative values when the energy flows from the actuators to the drive unit. If regenerative drives
are assumed, the instantaneous electric power can be divided into consumed power Pc,j and braking
recovered power Pr,j (Pe,j = Pc,j − Pr,j), which are computed as follows:

Pc,j =

{
Pe,j if Pe,j ≥ 0
0 if Pe,j < 0

Pr,j =

{
0 if Pe,j ≥ 0
−Pe,j if Pe,j < 0

(19)
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Finally, the overall energy consumption Ee, as well as the consumed and recovered energies Ec and Er,
can be obtained by integrating the corresponding electric power of the four actuators of the robot over
the time period T:

Ee =
4

∑
j=1

∫ T

0
Pe,j dt Ec =

4

∑
j=1

∫ T

0
Pc,j dt Er =

4

∑
j=1

∫ T

0
Pr,j dt (20)

The regenerated energy can be stored in a capacitor or it can be shared by the other drivers connected
to the same electrical bus. On the other hand, if the motor drives do not support regeneration [39], as it
is assumed in this work, the current drawn from the actuators to the drive units during the deceleration
phases is dissipated in a braking resistor. Therefore, only the contribution given by Pc is considered.

4. Task-Dependent Analysis

In this section the task-dependent analysis of the 4-DOF parallel manipulator that is used in
this paper as a method for the enhancement of the energetic performance of the robot is carried out.
The analysis, which is based on the formulations of the dynamic and electro-mechanical models of the
manipulators presented in Sections 2 and 3, takes into consideration a basic task: the translation of the
end-effector along a linear path, defined by a fixed total displacement L. This task can be related to a
common pick-and-place operation, which is commonly performed by high-speed parallel robots in
industry. The rotation of the fourth degree of freedom ϑ is not taken into account in this work, since
preliminary tests show a limited influence of ϑ on the overall energy consumption, due to the limited
inertia of the load.

The motion law chosen for the execution of the assigned task is a trapezoidal speed profile, with a
fixed total time T = 0.150 s. The acceleration and deceleration times t1 and t3 are chosen equal to T/3,
a condition that corresponds to the minimum-energy solution for the chosen speed profile for constant
inertia systems [21]. The trajectory is planned in the operational space in order to keep the length of
the path fixed for the purposes of the energetic analysis.

Under these hypotheses, the path of the end-effector of the parallel manipulator can be
located within the robot workspace in countless ways. Figure 5 shows a graphical overview of the
parametrization chosen to represent the task in a plane xOy parallel to the robot base. The center of the
path is defined by the cylindrical coordinates (d, φ) of point C, where d represents the distance between
C and the base of the robot O and φ the angle between the x-axis and the segment d. Furthermore,
the angle θ represents the orientation of the path with respect to the segment d. The end-effector
coordinates in the operational space can be defined from the initial pose PA to the final pose PB
as follows:

PA = [cx − r cos(θ + φ) cy − r sin(θ + φ) zA ϑA]
T

PB = [cx + r cos(θ + φ) cy + r sin(θ + φ) zB ϑB]
T (21)

where C = [cx, cy]T = [d cos(φ), d sin(φ)]T , r = L/2, zA = zB, since the path is parallel to the robot
base, and ϑA = ϑB = 0.

The energy consumption maps, reported in the next section, are computed in three different cases,
described in Table 3.

Table 3. Description of the three considered scenarios.

Case z [m] φ [rad] θ [rad] d [m] L [m]

(1) −0.80 [0, π/2] [0, π] [0, 0.650] 0.150
(2) [−0.730,−1.230] 0.00 [0, π] [0, 0.350] 0.150
(3) [−0.730,−1.230] 0.00 [0, π] 0.00 0.350
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Figure 5. Top view of the path parametrization. Only the upper arms of the robot are shown.

Case (1) analyses the energy consumption of the manipulator in a plane with fixed distance from
the robot base. This case applies when the task is bounded to be placed at a fixed distance z from the
robot base, e.g., when operating together with a conveyor belt. The variables of the problem are the
angles φ and θ, as well as the distance d. In particular, d ranges from 0 to 0.650 m, which represents
the workspace limit in the upper part of the truncated cone (Figure 1). The angle φ spans over the
range [0, π/2], whereas θ varies in [0, π], to cover all possible solutions without repetitions imposed
by the symmetry of the robot (Figure 5), even if the robot end-effector is not perfectly symmetrical
with respect to the x and y-axis. This introduces negligible differences in the consumed energy that,
for the sake of simplicity, have not been considered in this work.

In Case (2) the angle φ is fixed and the analysis is carried out for several values of z, thus spanning
operations performed at different heights. The angle θ and the distance d are varied as well. In this
case, d is varied only between 0 and 0.350 m, since this is the workspace bound in the lower part of the
truncated cone. This scenario allows to evaluate the energetic performance of the parallel manipulator
with respect to the vertical positioning of the task. In both Cases (1) and (2), the length of the path is
equal to L = 0.150 m.

Finally, Case (3) analyses the energetic expenditure in a simpler scenario, in which a path length
equal to L = 0.350 m is considered. This path spans a half cylindrical volume that has a base equal to
the area of the lower workspace of the robot. In this case, φ is fixed and the only variables taken into
account are the vertical coordinate z and the angle θ. All tasks intersect the central point (x, y) = (0, 0),
as d is set to zero. The execution time is set to T = 0.150 s in all the three cases.

Figure 6 reports an example trajectory obtained for φ = 0.00 rad, d = 0.325 m, θ = π/3 rad,
and z = −1.00 m fixed. The position, velocity, and acceleration of the x and y end-effector coordinates
measured in the operative space are shown. Figure 7 reports the values of the kinematic variables of
the actuated joints and the torque vectors when performing the very same trajectory.

5. Results

Numerical results are obtained by implementing the kinematic, dynamic, and electro-mechanical
models of the parallel robot in Matlab, using a laptop running Windows 10 Pro with an Intel i7-8565U
CPU and 16 GB of RAM. By considering the path parameterization described in Section 4, the
task-related analysis allows to obtain the energy consumption maps reported in Figures 8–10. Each
map takes about 20 s to be calculated by the software. Each point of the maps corresponds to the
energy consumption of a path. Furthermore, in each map a red cross indicates the minimum-energy
point.The energy consumption maps for Case (1) are reported in Figure 8, whereas Table 4 reports the
minimum and maximum energy solutions for each of the maps. Figure 8 is split into six maps, each one
corresponding to a different value of φ within the limited range [0, π/2]. Spanning for the remaining
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range [π, 2π] would result in almost identical energy values, as a consequence of the symmetry of the
task and of the robot design.

By looking at the maps of Figure 8, it can be seen that for small and large values of the angle θ ,
i.e., if the task is parallel to the segment d, the energy consumption increases by increasing the distance
d. On the other hand, when the task is parallel to the y axis, i.e., θ is close to π/2, it is generally advised
to operate far from the center of the operative space, as the overall energy consumption is smaller
in such an area. The minimum-energy point is found for values of θ close to 1.7 rad for all the cases,
except for map (d), in which the minimum is located at θ close to π. The energy consumption for
Case (1) within the six maps assumes a minimum in map (f) for φmin = 1.57 rad, θmin = 0.597 rad,
and dmin = 1.67 m. The values of energy in this scenario assumes the value of Emin = 8.01 J. Table 4
also reports the maximum energy solutions and the percentage energy reduction obtained with the
minimum-energy point with respect to the worst case scenario Emax for each map. The maximum
percentage energy reduction is obtained in map (f) and it corresponds to a value of 68.7%.

The energy consumption maps for Case (2) are shown in Figure 9. In these maps, the
dependence of energy consumption on the vertical coordinate z can be appreciated. In the first
map, which represents a task located within the upper limit of the workspace, the minimum energy
consumption (Emin = 9.91 J) is achieved for the maximum value of d and for θ = 1.93. By increasing
the vertical distance between task and robot base, the energy consumption generally decreases, as
shown in Table 5, and therefore it is advised to avoid working close to the upper limit of the workspace.
When operating on planes far from the robot base, as in Figure 9d–f, it is better to operate close to the
axis of symmetry of the robot. The overall minimum-energy solution is found in map (f) for values
of zmin = −1.23 m, dmin = 3.14 m and θmin = π rad and takes the value Emin = 6.12 J, as reported in
Table 5. The maximum percentage energy reduction with respect to the worst case of Emax, equal to
20.2 J, is obtained in the same map and reaches the value of 69.6%.

The resulting map for Case (3) is shown in Figure 10, and the minimum and maximum energy
solution are shown in Table 6. This task refers to a 0.35 m translation centered in (x, y) = (0, 0); it spans
a half cylinder by varying z and θ in [0, π]. The data in Figure 10 show that the required energy
generally decreases by increasing the vertical coordinate z and that it takes lower values for low values
of θ. The minimum-energy point is found for zmin = −1.18 m, θmin = 0.00 rad and corresponds to
an energy expenditure of Emin = 39.4 J. It should be noted that the energy consumption map is not
perfectly symmetrical with respect to θ = π/2, since the center point of the end-effector coordinates
(point D) is not positioned in its center of mass, as shown in Figure 3. The percentage of energy
reduction with respect to the worst case scenario (Emax = 73.8 J) reaches the value of 46.6%.

Table 4. Minimum and maximum energy solutions for Case (1). ∗Energy reduction w.r.t. Emax.

map φ [rad] dmin [m] θmin [rad] Emin [J] dmax [m] θmax [rad] Emax [J] En. red. [%]∗

(a) 0.000 0.650 1.73 8.11 0.650 0.000 22.8 64.4
(b) 0.314 0.597 1.73 8.16 0.650 0.000 23.1 64.7
(c) 0.628 0.358 1.60 9.00 0.650 0.000 23.8 62.2
(d) 0.942 0.199 2.95 9.24 0.650 0.257 24.7 62.7
(e) 1.26 0.610 1.73 8.56 0.650 0.192 25.1 65.9
(f) 1.57 0.597 1.67 8.01 0.650 0.064 25.6 68.7
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Figure 6. Example trajectory (φ = 0.00 rad, d = 0.325 m, θ = π/3 rad, and z = −1.00 m fixed): position,
velocity, and acceleration of the x and y end-effector coordinates (ϑ are not taken into account).
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Figure 7. Example trajectory (φ = 0.00 rad, d = 0.325 m, θ = π/3 rad, and z = −1.00 m): position,
velocity, acceleration, and torque of the actuated joints.

Table 5. Minimum and maximum energy solutions for Case (2). ∗Energy reduction w.r.t. Emax.

Map z [m] dmin [m] θmin [rad] Emin [J] dmax [m] θmax [rad] Emax [J] En. red. [%]∗

(a) −0.73 0.350 2.12 9.91 0.100 0.834 14.5 31.7
(b) −0.83 0.350 1.92 8.43 0.350 0.000 11.0 23.1
(c) −0.93 0.129 2.24 7.52 0.350 0.000 10.1 25.8
(d) −1.03 0.000 0.77 6.70 0.350 0.000 10.1 33.4
(e) −1.13 0.036 1.60 6.28 0.350 0.000 11.3 44.6
(f) −1.23 0.086 3.14 6.12 0.350 0.000 20.2 69.6
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Figure 8. Energy consumption maps for Case (1).
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Figure 9. Energy consumption maps for Case (2).

Table 6. Minimum and maximum energy solution for Case (3). ∗Energy reduction w.r.t. Emax.

zmin [m] θmin [rad] Emin [J] zmax [m] θmax [rad] Emax [J] En. red. [%]∗

−1.18 0.000 39.4 −0.730 2.05 73.8 46.6
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Figure 10. Energy consumption map for Case (3).

6. Conclusions

In this work a task-dependent energetic analysis of a 4-DOF parallel manipulator has been
presented. The aim of the analysis is the estimation of the energetic performance of the robot when
executing a simple task, i.e., a pick-and-place operation along a linear path. The task has been
parametrized and the influence of the location of the starting and ending points within the robot
workspace has been studied and summarized in energy consumption maps. The dynamic and
electro-mechanical models of the manipulators have been developed and implemented to estimate
the energy consumption of the robot actuators during the motion. Results indicate the best robot-task
relative positioning, which can be applied in industrial environment for energy efficiency.

The numerical model implemented in this work can be used as an offline tool to guide the
placement of a task within the robot workspace. The applicability of the method is general and the
analysis can be extended to other tasks and to other manipulators as well.

Future developments of the work will see the implementation of an optimization routine to
compute the minimum-energy location of a task within the whole robot workspace. Furthermore,
future studies will consider the task-related analysis of more complex tasks and the extension of the
study to the case of a task nonaligned with the base of the parallel manipulator.
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