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STRICHARTZ ESTIMATES FOR THE SCHRÖDINGER

EQUATION FOR THE SUBLAPLACIAN

ON COMPLEX SPHERES

VALENTINA CASARINO AND MARCO M. PELOSO

Abstract. In this paper we consider the sublaplacian L on the unit complex
sphere S2n+1 ⊂ Cn+1, equipped with its natural CR structure, and derive
Strichartz estimates with fractional loss of derivatives for the solutions of the
free Schrödinger equation associated with L. Our results are stated in terms of
certain Sobolev-type spaces that measure the regularity of functions on S2n+1

differently according to their spectral localization. Stronger conclusions are
obtained for particular classes of solutions, corresponding to initial data whose
spectrum is contained in a proper cone of N2.

1. Introduction and statement of the main results

In the last two decades the dispersive properties of evolution equations have
been extensively investigated and successfully applied in different contexts, such as
the local and global existence for non-linear equations, the well-posedness theory
in Sobolev spaces and the scattering theory. Dispersive and smoothing properties
are now essentially well understood for the Schrödinger equation in the Euclidean
setting, where both Lp −Lq bounds and Strichartz estimates have been proved for
a wide class of linear and non-linear problems.

In this paper, we study the dispersive properties of the free Schrödinger equation
associated with the sublaplacian L on the unit complex sphere S2n+1 in Cn+1,
n ≥ 1:

(1.1)

{
i∂tv + Lv = 0

v(0, z) = v0,

where v0 ∈ L2(S2n+1) and L denotes the sublaplacian, that is, the operator defined
by

(1.2) L := −
∑

1≤j<k≤n+1

MjkM jk + M jkMjk,

with Mjk := zj∂zk − zk∂zj . The operator L is a densely defined, self-adjoint,
positive, and subelliptic operator on S2n+1 [Ge] and it coincides with the real part
of the Kohn–Laplacian acting on functions [Lee]; see also [MPR]. The sublaplacian L
may be considered as the subriemannian analogue of the Laplace–Beltrami operator
on a Riemannian manifold; see e.g. [JeLee].

Our main result is a Strichartz estimate for the solution v of (1.1).
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Strichartz estimates are a family of space-time bounds on solutions of (1.1),
which provide a useful tool to control the norm of the solutions. In particular, using
the notation Lp

t Lq
x := Lp(It, Lq(Rn

x)), we bound the Lp
t Lq

x norm of v by means of
a suitable mixed Sobolev norm, denoted by ∥v0∥X (r,s) , of the initial datum.

In order to describe the mixed Sobolev spaces X (r,s), we start from the classical
decomposition of the space of square integrable functions on S2n+1,

(1.3) L2(S2n+1) =
∞⊕

ℓ,ℓ′=0

Hℓ,ℓ′ ,

with Hℓ,ℓ′ being the space of complex spherical harmonics of bidegree (ℓ, ℓ′) [ViK,
Ch. 11].

This decomposition is the joint spectral decomposition of L and the Laplace–
Beltrami operator ∆ on S2n+1, since the subspaces Hℓ,ℓ′ are eigenspaces both
for ∆ with eigenvalue µℓ,ℓ′ = (ℓ + ℓ′)(ℓ + ℓ′ + 2n), and for L with eigenvalue
λℓ,ℓ′ = 2ℓℓ′ + n(ℓ + ℓ′).

Now fix M > 1 and define

(1.4) V =
{
(ℓ, ℓ′) ∈ N2 : ℓ/M < ℓ′ < Mℓ

}
,

and E to be its complementary region in N2. Observe that when (ℓ, ℓ′) ∈ V , then
µℓ,ℓ′ ≈ λℓ,ℓ′ , while if (ℓ, ℓ′) ∈ E , that is, if ℓ′ ≤ ℓ/M or Mℓ ≤ ℓ′, then µℓ,ℓ′ grows as
max(ℓ, ℓ′)2, while λℓ,ℓ′ varies between max(ℓ, ℓ′) and max(ℓ, ℓ′)2.

Hence, we are led to introduce appropriate Sobolev-type spaces that measure the
regularity of functions differently according to their spectral localization. For r ≥ 0
we denote by W r(S2n+1) the standard non-isotropic Sobolev space, for instance
defined as the image of L2(S2n+1) under (I + L)−r/2.

We now define X (r,s)
M (S2n+1) as the space of all functions u ∈ L2(S2n+1), spec-

trally decomposed as u =
∑∞

ℓ,ℓ′=0 uℓ,ℓ′ , uℓ,ℓ′ ∈ Hℓ,ℓ′ , such that

∑

ℓ/M<ℓ′<Mℓ

uℓ,ℓ′ ∈ W r(S2n+1),

while the complementary sums
∑

ℓ′≤ℓ/M

uℓ,ℓ′ ,
∑

ℓ′≥Mℓ

uℓ,ℓ′ ∈ W s(S2n+1).

It may be seen as a natural fact that we need to consider a two-parameter scale
for the Sobolev spaces, since (1.3) is a two-indices decomposition of L2(S2n+1).

The Strichartz estimates that we are able to prove for solutions of (1.1) are

expressed in terms of X (r,s)
M norms and are derived as a consequence of some kind

of dispersive estimates. We denote by Q := 2n + 2 the homogeneous dimension of
S2n+1 (see also Section 2).

Theorem 1.1. Let S2n+1 denote the unit complex sphere in Cn+1 and let L be
the sublaplacian, defined by (1.2). Let p ≥ 2, q < +∞ satisfy the admissibility
condition

(1.5)
2

p
+

Q

q
=

Q

2
.
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Define

(1.6) sn :=

{
2[1 − 1/(n + 1)] , if n > 1,

4/3 , if n = 1.

Let M > 1 be fixed. Then, if I is any finite time interval and s ≥ s1 or s > sn for
n > 1, there exists a constant C = C(s, I, M) > 0 such that any solution v of (1.1)
satisfies the estimate

(1.7) ∥v∥Lp(I,Lq(S2n+1)) ≤ C ∥v0∥X (s/p,2/p)
M (S2n+1)

.

While there exists a vast literature on Strichartz estimates and their applica-
tion to the non-linear Schrödinger equation for the Laplace–Beltrami operator on
Riemannian manifolds (see the comments below), little is known in the case of the
sublaplacian on CR manifolds, even in the case of the Heisenberg group Hn. In-
deed, since the Heisenberg group Hn is biholomorphically equivalent to the unit
sphere S2n+1 with the north pole removed via the Cayley transform, Theorem 1.1
should be in particular compared with results concerning the Schrödinger equation
on Hn.

H. Bahouri, P. Gérard and C.-J. Xu in the seminal paper [BaGX] prove that
no global in time dispersive estimate may hold for solutions of the Schrödinger
equation on Hn; see also the more recent work by Gérard and S. Grellier [GG1,
GG2]. However, the same lack of dispersion occurs on S2n+1, and, in addition,
no local in time dispersive estimate can hold, as we shall observe in Section 3.
Nonetheless, we are able to prove local Strichartz estimates for the solutions of
(1.1) by substituting the dispersive estimate for the Schrödinger propagator eitL

by a family of dispersive estimates for the frequency localized operator eitLϕ(h2L).
This idea originally appeared in [BaCh] and [Tat], and has been successfully applied
in the work of Burq, Gérard and Tzvetkov [BuGT1,BuGT2]. In Theorem 3.1 we
prove such spectrally localized dispersive estimates by means of a careful analysis
of the oscillation of the infinite sum, depending on the two indices ℓ and ℓ′, that
defines the integral kernel of the operator eitLϕ(h2L). The proof of Theorem 3.1 is
quite delicate and occupies a good portion of the present paper. One might wonder
if the same technique could apply to the Heisenberg framework, and this topic will
be the object of further investigation.

It is interesting to compare our results with the known ones in the Riemann-
ian framework. Consider a Riemannian manifold (M, g) of dimension d and the
Schrödinger equation

(1.8)

{
i∂tu + ∆gu = 0,

u(0, x) = u0 ,

where ∆g denotes the Laplace–Beltrami operator on (M, g). Then Strichartz esti-
mates of solutions of (1.8) are usually of the form

(1.9) ∥u∥Lp([−T,T ],Lq(M)) ≤ C∥u0∥Hs(M) ,

where p, q, d satisy the scale-invariance condition

(1.10)
2

p
+

d

q
=

d

2
.

Here and in what follows, we denote by Hs the classical Sobolev space on M, which
may be defined as the image of L2(M) under (I + ∆g)−s/2. The key ingredient
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to prove (1.9) is given by some dispersive estimates, that is, estimates of the L∞

norm of solutions of (1.8) at a fixed time t.
When M = Rn, the theory is basically well established and one can choose s = 0

and T = ∞ in (1.9), thanks to the essential contributions by Strichartz, Ginibre
and Velo, and Keel and Tao [Str,GiV,KT].

When M is a generic Riemannian manifold, the situation is more involved and
the geometry, as it is well known, plays an essential rôle.

On compact manifolds the dispersive effect is generally weak. Nonetheless, Burq,
Gérard and Tzvetkov, generalizing the earlier work of J. Bourgain on tori [Bou1,
Bou2], proved an estimate like (1.9) on any compact and boundaryless manifold
M, with s = 1/p, with a loss of derivatives with respect to the flat Euclidean case,
but again with a gain of 1/p derivatives in comparison to the bounds indicated
by Sobolev embeddings [BuGT2]. Later, Blair, Smith and Sogge proved Strichartz
estimates with s = 4/3p both for a compact Riemannian manifold with boundary
and for a compact manifold M without boundary, endowed with a Lipschitz metric
g [BlSSo1] (see also [BlSSo2], where these results have been recently improved).

Then the spirit of Theorem 1.1 is that if the initial datum v0 is spectrally localized
in a proper angular sector V in N2 defined as in (1.4), then we are able to prove
a Strichartz estimate like (1.9), where the Hs norm of the initial datum at the
right-hand side is replaced by the standard non-isotropic norm W s/p, for any index
s such that s > 2[1 − 1/(n + 1)] if n > 1 or s ≥ 4/3 if n = 1. Thus there is a
gain of 2/(n + 1)p derivatives (2/3p in the one-dimensional case) in comparison to
the bounds indicated by non-isotropic Sobolev embeddings. If the initial datum v0

is spectrally localized in the complementary region, that is, for instance, if v0 =∑
0≤ℓ′≤ℓ/M hℓ,ℓ′ , hℓ,ℓ′ ∈ Hℓ,ℓ′ , then our techniques only lead to an estimate like

(1.9), with the Hs norm of the initial datum at the right-hand side replaced by the
standard non-isotropic norm W 2/p, thus providing no improvement with respect to
the Sobolev embedding.

The problem of optimality for Strichartz estimates is in general open, also in
the Riemannian set-up. As it is well known, the Strichartz estimate proved in
[BuGT2] is not sharp, unless in the case p = 2, in the class of compact Riemannian
manifolds, since J. Bourgain proved that for the flat torus (R/2πZ)2 the Strichartz
estimate holds for p = q = 2 with loss of ε derivatives, for every ε > 0 [Bou1,Bou2].
Moreover, Burq, Gérard and Tzvetkov were able to improve their intermediate
Strichartz estimates in some specific geometries, like spheres and Zoll surfaces
[BuGT3, BuGT4]. In our framework, some sharp bounds for the eigenfunctions
of the sublaplacian on S2n+1, recently proved by the first author [Ca1,Ca2], do not
suffice to prove the optimality in (1.7).

It is worth noticing that different approaches, which have been succesfully used
in the Riemannian context (we refer in particular to [BuGT3, BuGT2]), are pos-
sible and could be used to prove optimal bounds, at least for intermediate (p, q).
In particular, it would be interesting to prove multilinear estimates for spectral
projections associated to L on the complex sphere, as well as to prove intermediate
Strichartz estimates by following the Fourier analytic approach by Bourgain.

We would also like to point out that the compact manifold S2n+1, beyond the
pioneering works of G. Folland and D. Geller [Fo1,Ge], has recently attracted a lot
of interest in connection with its CR structure; we refer, in particular, to the recent
papers [BrFM,BauW,CowKS] and to [Ca1,Ca2,CaP1].
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The paper is organized as follows. In Section 2 we start recalling the basic facts
about harmonic analysis on the complex sphere. Then we recall the definition of the
standard isotropic and non-isotropic Sobolev spaces on the sphere and introduce the
mixed Sobolev spaces. In Sections 3 and 4 we prove the basic dispersive estimates
for solutions of (1.1) localized at high frequencies. Our proof hinges on a repeated
use of the Poisson summation formula, specifically adapted in the key Lemma 4.4 to
our case. Following a classical approach, we then deduce in Section 5 the Strichartz
estimate (1.7) from the dispersive bounds. Optimality will be discussed in Section
6, where we also make a comment on other possible admissibility conditions.

We shall use the symbol C to denote constants which may vary from one formula
to the next, and ⌊x⌋ to denote the greatest integer at most x. The symbol ≈ between
two positive expressions means that their ratio is bounded above and below.

2. Preliminary facts and notation

In this section we recall some basic facts about spherical harmonics and their
relation to the the analysis on the complex sphere.

For n ≥ 1, we denote by Cn+1 the (n + 1)-dimensional complex space equipped
with the scalar product ⟨z, w⟩ := z1w̄1 + · · · + zn+1w̄n+1, z, w ∈ Cn+1, and by
S2n+1 the unit sphere in Cn+1,

S2n+1 =
{
z = (z1, . . . , zn+1) ∈ Cn+1 : ⟨z, z⟩ = 1

}
.

The sphere S2n+1 is a strongly pseudoconvex CR manifold and thus endowed
with subriemannian structure. The Carnot–Carathéodory distance associated with
the operator L is equivalent to the so-called Korányi distance d,

(2.1) d(z, w) := |1 − ⟨z, w⟩|1/2 ,

z, w ∈ S2n+1; see [Na].
The homogeneous dimension Q of S2n+1, that will play a relevant role in our

analysis, is given by Q := 2n + 2, since it is well known that Vol(B(z, r)) ∼ rQ,
where B(z, r) denotes the ball centered at z ∈ S2n+1 with radius r > 0.

2.1. Spherical harmonics and spectral projections. Consider the space
L2(S2n+1), equipped with the inner product

(f, g) :=

∫

S2n+1

f(z)g(z) dσ(z),

where dσ is the Lebesgue surface measure, which is invariant under the action of
the unitary group U(n + 1).

For non-negative integers ℓ, ℓ′, Hℓ,ℓ′ is the vector space of the restrictions to
S2n+1 of harmonic polynomials p(z, z̄), homogeneous of degree ℓ in z and of degree
ℓ′ in z̄. A function in Hℓ,ℓ′ is called a complex spherical harmonic of bidegree (ℓ, ℓ′).

When ℓ′ = 0, the space Hℓ,0 consists of holomorphic polynomials and H0,ℓ

consists of polynomials whose complex conjugates are holomorphic.
The subspaces Hℓ,ℓ′ have finite dimension dℓ,ℓ′ given by

(2.2) dℓ,ℓ′ := n
ℓ + ℓ′ + n

ℓℓ′

(
ℓ + n − 1
ℓ− 1

)(
ℓ′ + n − 1
ℓ′ − 1

)
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if ℓ, ℓ′ ≥ 1, and by

dℓ,0 = d0,ℓ :=

(
ℓ + n
ℓ

)

if ℓ or ℓ′ equals 0.
Moreover, the subspaces Hℓ,ℓ′ are U(n + 1)-invariant, pairwise orthogonal and

their sum is dense in L2(S2n+1); more explicitly, if we denote by the symbol πℓ,ℓ′

the orthogonal projector mapping L2(S2n+1) onto Hℓ,ℓ′ , then each function f ∈
L2(S2n+1) may be decomposed in a unique way as

(2.3) f =
+∞∑

ℓ,ℓ′=0

πℓ,ℓ′f ,

where the series converges unconditionally to f in the L2-topology.

A special role in Hℓ,ℓ′ is played by the so-called zonal functions. Let
{
Y ℓ,ℓ′

k

}
,

k = 1, . . . , dℓ,ℓ′ , be an orthonormal basis for Hℓ,ℓ′ . For (z, w) ∈ S2n+1 × S2n+1 set

Zℓ,ℓ′(z, w) :=

dℓ,ℓ′∑

k=1

Y ℓ,ℓ′

k (z)Y ℓ,ℓ′

k (w) .

Then, for all f ∈ Hℓ,ℓ′ we have

(2.4) f(z) =

∫

S2n+1

f(w)Zℓ,ℓ′(z, w) dσ(w) .

Since Hℓ,ℓ′ is finite dimensional, the above pairing makes sense for all f ∈L2(S2n+1).
For each fixed point w ∈ S2n+1, the function f(w) = Zℓ,ℓ′(·, w) is in Hℓ,ℓ′ and

is constant on the orbits of the stabilizer of w in U(n + 1), which is isomorphic to
U(n). In other words Zℓ,ℓ′(z, w) depends only on ⟨z, w⟩, and we write

(2.5) ⟨z, w⟩ = eiω cos θ, θ ∈ [0,π/2], ω ∈ [0, 2π) .

With an abuse of notation, we will also denote by Zℓ,ℓ′ the function depending on
the 1-dimensional complex variable ⟨z, w⟩, that is,

Zℓ,ℓ′
(
⟨z, w⟩

)
= Zℓ,ℓ′(z, w) .

An explicit formula for the zonal function Zℓ,ℓ′ ∈ Hℓ,ℓ′ , for ℓ′ ≥ ℓ ≥ 1, is given
by

(2.6) Zℓ,ℓ′(e
iω cos θ) =

dℓ,ℓ′

ω2n+1

ℓ!(n − 1)!

(ℓ + n − 1)!
eiω(ℓ′−ℓ)(cos θ)ℓ

′−ℓP (n−1,ℓ′−ℓ)
ℓ (cos 2θ) ,

where ω2n+1 denotes the surface area of S2n+1 and P (n−1,ℓ−ℓ′)
ℓ′ is the Jacobi poly-

nomial; see [Sz].
For the case ℓ′ < ℓ, it suffices to recall that Zℓ,ℓ′(z, w) = Zℓ′,ℓ(w, z).

Since P (n−1,ℓ)
0 ≡ 1, if ℓ′ = 0 the zonal function is given by

Zℓ,0(z, w) =
1

ω2n+1

(
ℓ + n

ℓ

)
⟨z, w⟩

ℓ
.

The following bound for the zonal functions is well known and appears in [Fo3].
For any z, w ∈ S2n+1 we have

(2.7) |Zℓ,ℓ′(z, w)| ≤ dℓ,ℓ′

ω2n+1
.
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Finally, it is easy to check that the orthogonal projector πℓ,ℓ′ may be written as

πℓ,ℓ′f(z) =

∫

S2n+1

f(w)Zℓ,ℓ′(z, w) dσ(w) .

2.2. Classical and non-isotropic Sobolev spaces. Recall the decomposition
(1.3) of L2(S2n+1). Each subspace Hℓ,ℓ′ is an eigenspace both for Laplace–Beltrami
operator ∆ with eigenvalue µℓ,ℓ′ := (ℓ + ℓ′)(ℓ + ℓ′ + 2n), and for L with eigenvalue
λℓ,ℓ′ := 2ℓℓ′ + n(ℓ + ℓ′). For these and other properties of L we refer the reader to
[Ge] and [RU].

The non-isotropic Sobolev spaces on the complex sphere can be defined in terms
of suitable powers of I + L or, equivalently, in terms of suitable powers of the
conformal sublaplacian D := L + n2

2 ; see, for instance, [Fo2]. More precisely, for
1 ≤ p ≤ ∞ we set

(2.8) W r,p(S2n+1) :=
{
f ∈ Lp(S2n+1) : (I + L)r/2f ∈ Lp

}
.

The operator (I + L)r/2 can be defined locally transferring the analogous operator
from the Heisenberg group via the Cayley transform; see [Fo2, § 3].

We will mostly deal with the case of L2-integrability, and we simply write W r

for W r,2. For functions in W r we have the identity

(I + L)r/2f =
+∞∑

ℓ,ℓ′=0

(1 + λℓ,ℓ′)
r/2πℓ,ℓ′f.

Then, W r is a Hilbert space under the inner product

(f, g)W r :=

∫

S2n+1

(I + L)r/2f (I + L)r/2g.

For s ≥ 0, we shall denote by Hs(S2n+1) the classical Sobolev space on S2n+1,
defined as in (2.8), with the operator I + L replaced by the operator I + ∆. In
particular, Hs is endowed with the norm

∥f∥Hs =
( ∞∑

ℓ,ℓ′=0

(
1 + µℓ,ℓ′

)s ∥πℓ,ℓ′f∥2
L2

)1/2
.

The following inclusions follow:

Hs ⊆ W s ⊆ Hs/2.

For both isotropic and non-isotropic Sobolev immersion theorems in a CR setting
we refer to the seminal papers [Fo2] and [FoSt], where results are proved in the
framework of Heisenberg groups. Anyway, it is not difficult to check that the same
inclusions hold on complex spheres.

2.3. Mixed Sobolev spaces. We now introduce a family of Sobolev-type spaces
that measure the regularity of functions differently according to their spectral lo-
calization.

Fix a constant M > 1 and define the proper cone V = VM in N2,

(2.9) V := {(ℓ, ℓ′) : ℓ/M < ℓ′ < Mℓ},

and the pair of edges E = EM ,

(2.10) E := {(ℓ, ℓ′) : ℓ′ ≤ ℓ/M or ℓ′ ≥ Mℓ}.
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We define the corresponding spectral projections

πV =
∑

ℓ/M<ℓ′<Mℓ

πℓ,ℓ′ and πE =
∑

ℓ′≤ℓ/M or ℓ′≥Mℓ

πℓ,ℓ′ .

We then introduce the corresponding spaces of spectrally localized functions:

L2
V(S2n+1) =

{
u ∈ L2(S2n+1) : u = πVu

}

and
L2

E(S2n+1) =
{
u ∈ L2(S2n+1) : u = πEu

}
.

We define the mixed Sobolev spaces X (r,s) = X (r,s)
M (S2n+1) as

(2.11) X (r,s) =
{
u ∈ L2(S2n+1) : πVu ∈ W r(S2n+1) and πEu ∈ W s(S2n+1)

}
,

with norm given by

∥u∥X (r,s) =
( ∑

(ℓ,ℓ′)∈V

(1 + λℓ,ℓ′)
r∥πℓ,ℓ′u∥2

L2 +
∑

(ℓ,ℓ′)∈E

(1 + λℓ,ℓ′)
s∥πℓ,ℓ′u∥2

L2

)1/2
.

Notice that the norm depends on M although it will not be explicitly indicated.
In general, given a function space Y ⊆ L2(S2n+1), we denote by YV and YE

respectively, the subspaces of Y of the functions that are spectrally localized in V
and E , respectively. Then, we have

X (r,s) = W r
V ∩ W s

E .

For the mixed Sobolev spaces X (r,s) we have the following elementary result
that gives embedding in the Lebesgue spaces and comparison with the classical
non-isotropic Sobolev spaces.

Proposition 2.1. Let M > 1 be fixed. Given r, s ≥ 0 the following properties hold
true:

(1) If min(r, s) > Q( 1
2 − 1

q ), then for all u ∈ C∞(S2n+1) we have

∥u∥Lq ≤ C∥u∥X (r,s) .

(2) If u ∈ C∞
V , then

∥u∥X (r,s) ≈ ∥u∥W r ≈ ∥u∥Hr ,

and, for min(r, s) > (2n + 1)( 1
2 − 1

q ),

∥u∥Lq ≤ C∥u∥X (r,s) .

(3) For all u ∈ C∞ such that πℓ,ℓ′u = 0 for min(ℓ, ℓ′) > M , we have

∥u∥X (r,s) = ∥u∥W r ≈ ∥u∥Hr/2 .

The constants involved in the above estimates depend on M .

Proof. (1) It suffices to recall the embedding theorems for the non-isotropic Sobolev
spaces W r. Theorem 5.15 in [Fo2] entails that if u ∈ C∞

V , then ∥u∥Lq ≤ C∥u∥W r,2

if r > Q( 1
2 − 1

q ). The result now follows easily.
Next, for u ∈ C∞

V we have

∥u∥2
(r,s) ≈

∑

ℓ/M<ℓ′<Mℓ

(1 + λℓ,ℓ′)
r∥πℓ,ℓ′u∥2

2 ≈
∑

ℓ/M<ℓ′<Mℓ

(1 + ℓ)2r∥πℓ,ℓ′u∥2
2

≈
∑

ℓ/M<ℓ′<Mℓ

(1 + µℓ,ℓ′)
r∥πℓ,ℓ′u∥2

2 .
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The second statement in (2) now follows from the classical embedding theorem for
the Sobolev space Hσ(S2n+1).

Finally, (3) follows at once since, for min(ℓ, ℓ′) ≤ M , (1 + λℓ,ℓ′) ≈ (1 + µℓ,ℓ′)1/2.
!

3. The dispersive estimate

In this section we study the dispersive properties for solutions of the Schrödinger
equation that are spectrally localized.

The solutions of (1.1) do not satisfy in general a dispersive estimate, either
globally (as constant solutions show for large t) or locally in time. A similar lack of
the dispersive effect was noticed by Burq, Gérard and Tzvetkov in the Riemannian
case on compact manifolds as well (see [BuGT2]).

Indeed, if we could prove a dispersive estimate of the form

∥eitL∥(L1(S2n+1),L∞(S2n+1)) ≤
C

|t|q0

for some q0 > 0 and for some t > 0, then the L∞ norm of eigenfunctions of the
sublaplacian should be controlled by the L1 norm, and this is not true in general
(see Theorem 3.1 in [Ca2], where bounds are proved for the L1 norm of zonal
functions).

However, it is possible to prove a family of dispersive estimates on small time
intervals related to the frequencies of the data that will suffice for the proof of the
Strichartz estimates (see [BaCh] and [Tat] for a first application of this idea).

In this paper, we are able to prove different dispersive estimates for data v that
are spectrally localized according to a double decomposition of the spectrum.

We introduce a spectral cut-off. Let ϕ be a non-negative smooth function with
support contained in the interval [a, b], with 0 ≤ a ≤ b < ∞. For h ∈ (0, 1], we
consider the operator

ϕ(h2L) : L2(S2n+1) → L2(S2n+1),

defined by the functional calculus for the sublaplacian.
Next, we fix a smooth cut-off function ψ with compact support in [1/M, M ],

where M > 1 is a (large) constant.

Theorem 3.1. Let ϕ,ψ be smooth cut-off functions defined as above. Let p, p′ be
such that 1

p + 1
p′ = 1, p ∈ [1, 2]. Then the following estimates hold:

(i) Let sn be as in (1.6) and let s > sn if n > 1, or s ≥ sn if n = 1. Then
there exist c, Cs > 0 such that for all v0 ∈ C∞(S2n+1), for all h ∈ (0, 1],

(3.1)∥∥∥
∑

ℓ,ℓ′≥0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)πℓ,ℓ′(v0)
∥∥∥

Lp′ (S2n+1)
≤ Cs

|t|Q/2( 1
p− 1

p′ )
∥v0∥Lp(S2n+1)

for all t ∈ Is := [−chs, chs].
(ii) Then there exists C > 0 such that for all v0 ∈ C∞(S2n+1), for all h ∈ (0, 1],

(3.2)∥∥∥
∑

ℓ,ℓ′≥0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)
(
1−ψ(ℓ′/ℓ)

)
πℓ,ℓ′(v0)

∥∥∥
Lp′ (S2n+1)

≤ Cs

|t|Q/2( 1
p− 1

p′ )
∥v0∥Lp(S2n+1)

for all t ∈ I2 := [−h2, h2].
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Remark 3.2. We point out that the index s which determines the length of the
time interval Is in (3.1) and (3.2) is subject to the following upper bound. For, the
kernel of the operator eitLϕ(h2L) is given by

Kh(t, z, w) =
∞∑

ℓ,ℓ′=0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)Zℓ,ℓ′(z, w) .

Reasoning as in [BuGT2], we have

∥eitLϕ(h2L)∥(L1,L∞) = ∥Kh(t, ·, ·)∥L∞(S2n+1×S2n+1)≥C∥Kh(t, ·, ·)∥L2(S2n+1×S2n+1)

≥ C
( ∞∑

ℓ,ℓ′=0

|ϕ(h2λℓ,ℓ′)|2dℓ,ℓ′
)1/2

≥ C

hn−1

( ∑

λℓ,ℓ′∼h−2

(ℓ + ℓ′)
)1/2

≥ C

hn−1

( ∑

ℓ∼h−2

ℓ
)1/2

=
C

hn+1
,

where in particular we used (2.2). Then estimates like (3.1) or (3.2) for p = 1 imply
|t| ≤ ch for some c > 0, that is, s ≥ 1.

Proof of Theorem 3.1. For all t ∈ R we have
∥∥eitLϕ(h2L)v0

∥∥
L2 ≤ C∥v0∥L2 .

Thus, as a consequence of the Riesz-Thorin Theorem and Young’s inequality, it
suffices to prove the following estimates:

(3.3)
∥∥∥

∑

ℓ,ℓ′≥0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)Zℓ,ℓ′

∥∥∥
L∞(S2n+1×S2n+1)

≤ C

|t|Q/2

for all |t| ≤ hs, where s > sn := 2[1 − 1/(n + 1)] and

(3.4)
∥∥∥

∑

ℓ,ℓ′≥0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)
(
1 − ψ(ℓ′/ℓ)

)
Zℓ,ℓ′

∥∥∥
L∞(S2n+1×S2n+1)

≤ C

|t|Q/2

for all |t| ≤ h2.
In order to prove Theorem 3.1 we break the proof of (3.3) and (3.4) into a few

steps, that now we summarize.

Step 1. We prove both estimates when (i) h ≥ ε0, where ε0 > 0 is a fixed constant
and (ii) when |t| ≤ h2. This second case proves in fact that both (3.3) and (3.4)
hold for these values of t and in particular establishes (3.2) in Theorem 3.1.

Step 2. Recalling (2.6) and (2.5), we prove (3.3) when ⟨z, w⟩ = eiω cos θ varies in a
fixed compact set of the unit disk, that is, when θ ∈ [ε1,π/2], for some ε1 > 0.

Step 3. Next, we assume that h2 ≤ |t| ≤ hs and 0 < h < ε0, and prepare to
estimate

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)Zℓ,ℓ′(z, w)
∣∣∣

when ⟨z, w⟩ varies outside the compact set fixed in Step 2, that is, when θ < ε1.

First we need to distinguish between the diagonal case ℓ = ℓ′ and the sums
over ℓ > ℓ′ and ℓ < ℓ′. To do this, we introduce an even cut-off function η0,
identically 1 for |ξ| ≤ 1/4 and identically 0 for |ξ| ≥ 1/2, and the two cut-off
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functions η±(ξ) = χ(0,+∞)

[
1−η0(±ξ)

]
, supported respectively on ℓ > ℓ′ and ℓ < ℓ′.

Accordingly, we decompose the sum above as

K0 + K+ + K−

by writing 1 = η0(ℓ′ − ℓ) + η+(ℓ′ − ℓ) + η−(ℓ′ − ℓ).
The estimate for K0 turns out to be trivial, while, in order to estimate K±, we

need another decomposition. Clearly, it suffices to consider the case of K+, which
is supported when ℓ′ > ℓ.

We need to distinguish between the cases θ ≤ 1/ℓ′ (recall that ℓ′ = max{ℓ′, ℓ})
and θ > 1/ℓ′. Thus we introduce a cut-off function χ1 supported in [0, 2], set
χ2 = 1 − χ2 and split K+ as K+

1 (ω, θ) + K+
2 (ω, θ), where, for j = 1, 2,

K+
j (ω, θ) :=

+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)η+(ℓ′ − ℓ)χj

(
(ℓ + ℓ′ + n)θ

)
Zℓ,ℓ′(z, w).

Step 4. Here we prove the estimate for K±
1 (ω, θ).

Step 5. Finally, we prove the estimate for K±
2 (ω, θ) and complete the proof of

Theorem 3.1.

Step 1. We begin proving that the estimate (3.3) is trivial in two cases: when h ≥ ε0

and in the low frequency case, that is, when |t| ≤ h2. In this case, the oscillations
of the exponential function are ineffective.

In [CaP1] the authors proved a restriction-type lemma for blocks of spectral
projections associated to the sublaplacian on S2n+1. A key ingredient in the proof
was the following estimate.

Lemma 3.3. Let 1 ≤ a < b be fixed. Then there exists a constant C > 0 depending
only on n such that

(3.5)
∑

λℓ,ℓ′∈(a,b]

(ℓ + ℓ′) ≤ Cb
(
b − a + log(b + 1)

)
.

Lemma 3.4. There exists a constant C > 0 such that the estimates (3.3) and (3.4)
hold in the following cases:

(i) when t ∈ I2,

(ii) when h ≥ ε0, for all t ∈ Is,

where I2 and Is are defined in Theorem 3.1.

Proof. For z, w ∈ S2n+1, |t| ≤ h2, using (2.7) and Lemma 3.3 we have
∣∣∣

∑

a/h2<λℓ,ℓ′<b/h2

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)Zℓ,ℓ′(z, w)
∣∣∣

≤
∑

a/h2<λℓ,ℓ′<b/h2

dℓ,ℓ′

ω2n+1
≤

∑

a/h2<λℓ,ℓ′<b/h2

λn−1
ℓ,ℓ′ (ℓ + ℓ′)

≤ C

h2n−2

∑

a/h2<λℓ,ℓ′<b/h2

(ℓ + ℓ′) ≤ C

|h|2n+2
,

for a suitable positive constant C.
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If |t| ≤ h2, conclusion (i) follows at once. If h ≥ ε0, (ii) also follows at once,
since

h−(2n+2) ≤ ε−2
0 h−2n ≤ ε−2

0 |t|−Q/2 .

This proves the lemma. !

Observe that this lemma in particular proves the estimate contained in (3.4)– in
fact this is the trivial part of the estimate, and it provides no improvement with
respect to the Sobolev embedding theorem.

Step 2. The dispersive estimate (3.1) also follows easily when ⟨z, w⟩ varies in a
compact subset of the unit disk, as a consequence of the following result. First we
recall the following estimates for Jacobi polynomials (see e.g. [BoCl, page 231]):

(3.6)
∣∣∣P (α,β)

ℓ (cos θ)
∣∣∣ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cℓα if 0 ≤ θ ≤ π
2 ,

Cℓ−1/2θ−α− 1
2 if 0 < θ ≤ π

2 ,

Cℓ−1/2|π − θ|−β− 1
2 if π

2 ≤ θ < π,

Cℓβ if π
2 ≤ θ ≤ π.

Lemma 3.5. Let 0 < ε1 < π
2 be fixed and set

Kε1 :=
{
(z, w) ∈ S2n+1 × S2n+1 : ⟨z, w⟩ = eiω cos θ, ω ∈ [0, 2π] , θ ∈ [ε1,π/2]

}
.

Then, there exists C > 0 such that

(3.7) sup
(z,w)∈Kε1

∣∣∣
∑

ℓ,ℓ′≥0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)Zℓ,ℓ′(z, w)
∣∣∣ ≤

C

|t|Q/2
.

Proof. The proof is simple since again in this case we do not need to consider the
oscillations of the kernel. By symmetry in the parameters ℓ and ℓ′, in (3.7) it
suffices to consider the case ℓ′ ≥ ℓ.

Assume first that θ ∈ [ε1,
π
4 ]. In this case, for (z, w) ∈ Kε1 , we have, using the

first inequality in (3.6) and (2.2),
∣∣∣
∑

ℓ,ℓ′≥1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)Zℓ,ℓ′(z, w)
∣∣∣

≤ C
∑

ℓ,ℓ′≥1

dℓ,ℓ′

ℓn−1
(cos θ)ℓ

′−ℓ
∣∣∣P (n−1,ℓ′−ℓ)

ℓ (cos 2θ)
∣∣∣

≤ C

h2n−2

∑

a/h2≤λℓ,ℓ′≤b/h2

(ℓ + ℓ′)(cos θ)ℓ
′−ℓ

≤ C

h2n−2

( ⌊c/h⌋∑

ℓ=0

⌊c/h⌋∑

ℓ′−ℓ=0

(ℓ′ − ℓ)(cos θ)ℓ
′−ℓ +

⌊c/h⌋∑

ℓ=0

2ℓ

⌊c/h⌋∑

ℓ′−ℓ=0

(cos θ)ℓ
′−ℓ

)
≤ C

h2n
,

since θ ∈ [ε1,π/4].
Next, when θ ∈ [π/4,π/2), we observe that the sum vanishes when θ = π/2 and

then we split it into two parts. Recalling that we are assuming ℓ ≤ ℓ′ we set

E1 =
{
(ℓ, ℓ′) ∈ N2 : a/h2 < λℓ,ℓ′ < b/h2, ℓ > 1/|π − 2θ|

}
,

E2 =
{
(ℓ, ℓ′) ∈ N2 : a/h2 < λℓ,ℓ′ < b/h2, ℓ ≤ 1/|π − 2θ|

}
.
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Then we have∣∣∣
∑

ℓ′≥ℓ≥1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)Zℓ,ℓ′((z, w))
∣∣∣

≤
∑

(ℓ,ℓ′)∈E1

ϕ(h2λℓ,ℓ′)
∣∣Zℓ,ℓ′((z, w))

∣∣ +
∑

(ℓ,ℓ′)∈E2

ϕ(h2λℓ,ℓ′)
∣∣Zℓ,ℓ′((z, w))

∣∣

=: S1 + S2 .

Using the last inequality in (3.6) we have

S1 ≤ C
∑

(ℓ,ℓ′)∈E1

dℓ,ℓ′

ℓn−1
(cos θ)ℓ

′−ℓ
∣∣∣P (n−1,ℓ′−ℓ)

ℓ (cos 2θ)
∣∣∣

≤ C
∑

(ℓ,ℓ′)∈E1

dℓ,ℓ′

ℓn−1
(π/2 − θ)ℓ

′−ℓℓℓ
′−ℓ

≤ C

h2n−2

⌊c/h⌋∑

ℓ=0

⌊c/h⌋∑

ℓ′−ℓ=0

( 1

ℓn−1
(ℓ′ − ℓ) 2−(ℓ′−ℓ) +

1

ℓn−2
2−(ℓ′−ℓ)

)

≤ C

h2n
.

An analogous bound may be proved for S2 using the third inequality in (3.6);
we finally obtain (3.7). !

4. The main estimate

Step 3. Now we turn to the estimate (3.1). As a consequence of what has been
proved in Steps 1-2, from now on we may assume that h is sufficiently small, and
precisely that 0 < h < ε0, and that t ∈ A where

(4.1) A :=
{
t : h2 ≤ |t| ≤ chs

}
.

Recall also that, because of the presence of the cut-off function ψ in (3.1), we
may consider the parameters ℓ, ℓ′ to be such that 1/M < ℓ′/ℓ ≤ M , where M > 1
is a fixed (large) constant.

Starting from (3.3) we now wish to show that for every κ > 0 there exists C > 0
such that

(4.2) sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)Zℓ,ℓ′(z, w)
∣∣∣ ≤ C

1

h2n+κ
,

for all t ∈ A, where

Ω =
{
(z, w) ∈ S2n+1 × S2n+1 : ⟨z, w⟩eiω cos θ, where 0 ≤ θ ≤ ε1 , ω ∈ [0, 2π)

}
.

We shall need to differentiate the proof between the cases n = 1 and n > 1 only
at the end of Step 5, so that we will not distinguish between different values of n
until Proposition 4.11.

We notice that we may assume t > 0, since passing to the complex conjugate in
(4.2) would change Zℓ,ℓ′ into Zℓ′,ℓ.

It turns out to be convenient to further simplify the problem by separating the
cases ℓ = ℓ′, ℓ < ℓ′ and ℓ > ℓ′.

We can do this by introducing yet another cut-off function. We let η0 be an
even cut-off function, identically 1 for |ξ| ≤ 1/4 and identically 0 for |ξ| ≥ 1/2.
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Then we write 1 = η0(ξ) + η−(ξ) + η+(ξ), where η±(ξ) =
(
1 − η0(ξ)

)
χ[0,+∞)(±ξ).

Accordingly, we decompose the sum in (4.2) as

(4.3) K0 + K+ + K− .

It is easy to estimate K0, since it coincides with the sum in (4.2) restricted to
the diagonal terms ℓ = ℓ′, and in this case the sum reduces to a summation in one
variable.

Lemma 4.1. For all t ∈ A we have

(4.4) sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)η0(ℓ− ℓ′)Zℓ,ℓ′(z, w)
∣∣∣ ≤ C

1

h2n
.

Proof. We easily check that

sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)η0(ℓ− ℓ′)Zℓ,ℓ′(z, w)
∣∣∣

= sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ=1

eitλℓ,ℓϕ(h2λℓ,ℓ)Zℓ,ℓ(z, w)
∣∣∣

≤ C
∣∣∣
+∞∑

ℓ=1

ϕ(h2λℓ,ℓ)(λℓ,ℓ)
n−1ℓ

∣∣∣ ≤ C
1

h2n

for all t ∈ A. !

We are left with the estimate of K±(ω, θ), where

K±(ω, θ) :=
∞∑

ℓ,ℓ′=0

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)η±(ℓ′ − ℓ)ψ(ℓ′/ℓ)Zℓ,ℓ′(z, w) .(4.5)

Our proof of (4.2), with the inner sum replaced by K±, hinges on Lemma 4.2
below and on Lemma 4.4, which will be proved in Step 4.

First, we need a representation of the Jacobi polynomials P (α,β)
d showing ex-

plicitly the dependence on the parameters. To this end, we use a very precise

representation of P (α,β)
d due to A. Fitohui and M. M. Hamza [FiH]. We denote by

Jν the Bessel function of order ν.

Lemma 4.2. Let α > − 1
2 , β > −1, and d be a positive integer. Then

(4.6)
(
sin θ

)α+1/2(
cos θ

)β+1/2
P (α,β)

d (cos 2θ)

=
Γ(d + α + 1)

d!
θ1/2

(
m∑

p=0

θpQ2p(β, θ)
Jα+p(Nθ)

Nα+p
+ θm+1Rm,N (θ)

)
,

where N := 2d + α+ β + 1, the functions Q2p(β, θ) are polynomials of degree 2p in
β and analytic in θ ∈ [0,π/2), and

(4.7) Rm,N = O
(
N−(α+m+3/2)

)
,

as N → +∞, uniformly in θ ∈ [0, π
2 − ε̃], ε̃ > 0 being arbitrary.
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Proof. This is just a restatement of Theorem 4 in [FiH]; notice however that the
parentheses are missing on the right-hand side of (6.6) in [FiH]. By formula (6.6)
in [FiH], setting x = 2θ and Bp(x) = Q2p(β, θ) (and calling N what is called 2N in
[FiH]), we immediately obtain (4.6).

Next, the functions Bp(x) are recursively defined by

(4.8) B0(x) = 1,
(
xp+1Bp+1(x)

)′
= −1

2
xp

(
B

′′

p (x)+
1 − 2α

x
B

′

p(x)+χ(x)Bp(x)
)
,

where

χ(x) =

(
1

4
− α2

)(
1

4 sin2(x/2)
− 1

x2

)
+

(
1

4
− β2

)
1

4 cos2(x/2)
,

and it turns out that the Bp(x) are analytic for x ∈ [0,π) (see Section 6.3 in [FiH]).
From the recursive relation (4.8) it is easy to see that the functions Bp are

polynomials of degree 2p in the index β. (We point out that, for our purposes, the
dependence on α is not relevant, since α = n−1, and it is not related to the indexes
ℓ, ℓ′, while β = |ℓ′ − ℓ|.) In fact, the recursive relation can be restated by saying
that

−2Bp+1 = Hp+1

(
(L + χ)Bp

)
,

where Hp+1 is the integral operator (3.3) in [FiH], independent of α and β, and L
is the differential operator given by Lu = u′′ + 1−2α

x u′. Now, the statement about
the dependence on β follows easily by induction. Hence, Q2p(β, θ) is a polynomial
of degree 2p in β and analytic in θ ∈ [0, π

2 ).
The statement about the remainder term Rm,N (θ) is explicit in Theorem 4 (see

formula (6.6) again) in [FiH]. !
We are going to apply Lemma 4.2 so that we observe that in our case α = n− 1,

d = min{ℓ, ℓ′} and β = |ℓ′ − ℓ|; hence N = ℓ + ℓ′ + n.
In what follows we denote by gj , g̃j′ polynomials of degree j, j′ resp., in the

indicated variables, that again may have a different expression from one line to the
next. Then, we write

ℓ + ℓ′ + n

ℓ′

(
ℓ′ + n − 1
ℓ′ − 1

)
=(ℓ + ℓ′ + n)

(ℓ′ + n − 1)!

ℓ′!n!
= Ngn−1(ℓ

′)(4.9)

and

(4.10)
Γ(ℓ + n)

ℓ!
= g̃n−1(ℓ) .

Then, using (2.6), (4.9) and (4.10), writing ⟨z, w⟩ = eiω cos θ, in the case ℓ′ ≥ ℓ
we have

Zℓ,ℓ′(z, w) =
n

ω2n+1
Ngn−1(ℓ

′) eiω(ℓ′−ℓ)
(
sin θ

)−n+1/2(
cos θ

)−1/2
g̃n−1(ℓ)θ

1/2

×
(

m∑

p=0

θpQ2p(β, θ)
Jn−1+p(Nθ)

Nn−1+p
+ θm+1Rm,N (θ)

)

= b(θ)eiω(ℓ′−ℓ)Ngn−1(ℓ
′)g̃n−1(ℓ)

×
(

m∑

p=0

θ2pQ2p(β, θ)
Jn−1+p(Nθ)

(Nθ)n−1+p
+ θm−n+2Rm,N (θ)

)
,(4.11)

where b denotes an entire function of θ.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2646 VALENTINA CASARINO AND MARCO M. PELOSO

If ℓ ≥ ℓ′ we simply switch the roles between ℓ and ℓ′ in the formula above.
Then, in order to estimate (4.2) it suffices to bound the modulus of

ei[tλℓ,ℓ′+ω(ℓ′−ℓ)]ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)η±(ℓ− ℓ′)Ngn−1(ℓ
′)g̃n−1(ℓ)

×
(

m∑

p=0

θ2pQ2p(β, θ)
Jn−1+p(Nθ)

(Nθ)n−1+p
+ θm−n+2Rm,N (θ)

)
.

We need to distinguish the cases when Nθ remains bounded and when it is
bounded from below. Then, let χ1 be a smooth cut-off function with compact
support such that 0 ≤ χ1 ≤ 1, χ1(x) = 1 for 0 ≤ x ≤ 1 and χ1(x) = 0 for x ≥ 2,
and set χ2 = 1 − χ1. Therefore, for j = 1, 2 we write

(4.12) K±
j (ω, θ) :=

∑

a/h2<λℓ,ℓ′<b/h2

ei[tλℓ,ℓ′+ω(ℓ′−ℓ)]ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)

× η±(ℓ− ℓ′)Ngn−1(ℓ
′)g̃n−1(ℓ)χj(Nθ)

×
(

m∑

p=0

θ2pQ2p(β, θ)
Jn−1+p(Nθ)

(Nθ)n−1+p
+ θm−n+2Rm,N (θ)

)
.

Remark 4.3. We observe that the eigenvalue λℓ,ℓ′ = 2
[
(ℓ + n/2)(ℓ′ + n/2) − n2/4

]

and we set

(4.13) k = ℓ +
n

2
, k′ = ℓ′ +

n

2
.

Notice that we may consider the quantities gn−1, g̃n−1 as functions of k, k′ resp.,
and write N = k + k′. We adopt the convention that if n is odd, then the symbol∑

k,k′≥1 shall denote the sum over a suitable subset of N shifted by 1/2.

Moreover, the condition h2λℓ,ℓ′ ∈ suppϕ becomes

ah

h2
≤ kk′ ≤ bh

h2
,

where we set

ah =
a

2
+

h2n2

4
and bh =

b

2
+

h2n2

4
.

For simplicity of notation we take 0 < a′ ≤ ah and b′ ≥ bh for all h ≤ 1. We also
set c′ =

√
b′.

The cut-off function ϕ(h2λℓ,ℓ′) can be written as

ϕ(h2λℓ,ℓ′) = ϕ
(
h2(2kk′ − n2/2)

)
=: ϕh(h2kk′) .

We remark that Lemma 4.4 holds true if the cut-off function ϕ is replaced by a
family of functions ϕε converging in the Schwartz norms to ϕ as ε → 0. Since the
dependence on h of ϕh is ineffective, with an abuse of notation, we again write ϕ
to denote the functions ϕh.

The cut-off function ψ(ℓ/ℓ′), supported when 1/M ≤ ℓ/ℓ′ ≤ M , is changed into

ψ
(
(k − n/2)/(k′ − n/2)

)
=: ψ̃(k, k′) .

Observed that ψ̃ is a cut-off function having support contained in the set {1 ≤
k/k′ ≤ M}. Finally, notice that the support condition of ϕ implies that

n/2 ≤ k, k′ ≤ c′/h .
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With the change of parameters (4.13), the quantity β remains unchanged, and
the phase function t[λℓ,ℓ′ + ωβ] becomes 2t[kk′ + ωβ − n2/4] and we may absorb
the factor 2 in the parameter t.

Step 4. We now wish to estimate the modulus of K±
1 (ω, θ), as defined in (4.12).

We will consider the case of K+
1 , the other one being completely analogous.

It suffices to estimate the modulus of
m∑

p=0

(
∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)ψ̃(k, k′)χ1(Nθ)η+(k′ − k)Ngn−1(k
′)g̃n−1(k)

× θ2pQ2p(β, θ)
Jn−1+p(Nθ)

(Nθ)n−1+p

)

+
∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)χ1(Nθ)

× Ngn−1(k
′)g̃n−1(k)θm−n+2Rm,N (θ)

=:
m∑

p=0

K1,+
p (ω, θ) + K1,+

R (ω, θ) .

(4.14)

Since Rm,N (θ) = O
(

1
Nn+m+1/2

)
uniformly for θ ∈ [0, π

2 − ε1], for ε1 > 0, we can

easily estimate the modulus of the error term K1,+
R (ω, θ, N) by simply taking the

modulus inside the sum. Observing that x 3→ xn−1ϕ(x) is also a smooth function
with compact support, and choosing m = max(n − 2, 0),

∣∣K1,+
R (ω, θ)

∣∣ =
∣∣∣

∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)χ1(Nθ)

× Ngn−1(k
′)g̃n−1(k)θm−n+2Rm,N (θ)

∣∣∣

≤ C

h2n−2

⌊c′/h⌋∑

k=n/2

⌊c′/h⌋∑

k′=n/2

∣∣∣ϕ(h2kk′)(h2kk′)n−1 1

Nn+m−1/2

∣∣∣

≤ C

h2n−2

⌊c′/h⌋∑

k=n/2

⌊c′/h⌋∑

k′=n/2

1

(k + k′)1/2

≤ C

h2n−1/2
,(4.15)

uniformly in ω and θ ∈ [0, ε1]. Therefore, with m = max(n − 2, 0) we have

(4.16)
∣∣K1,+

R (ω, θ)
∣∣ ≤ C

h2n−1/2

for all n ≥ 1.

We turn to the estimate of the main term in (4.14), with m = max(n − 2, 0).
In order to take advantage of the oscillations of the kernel we need the following

estimate for oscillating sums. We denote by f̂(ξ) the Fourier transform of an
integrable function f and defined by f̂(ξ) =

∫
R f(x)e−2πixξdx.
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Lemma 4.4. Let ϕ ∈ C∞
0 (R), suppϕ ⊆ [a, b], 0 < a < b < ∞, and let σ be a

symbol in S0. Let µ ∈ R and set dist(µ,Z) ≥ δ, for some δ > 0. Then for every
L > 1 there exists a positive constant CL > 0, depending only on ϕ and σ, such
that for δ, ε > 0 with 0 < ε ≤ δ, we have that

(4.17)
∣∣∣
∑

k∈Z

e2πiµkϕ(εk)σ(k)
∣∣∣ ≤ CL max

{
εL−1

δL
, 1

}
,

as ε → 0.

Proof. Let ψ, τ be such that ϕ = ψ̂, σ = τ̂ .
We consider first the case σ = 1. By the classical Poisson summation formula

∣∣
∑

k∈Z

e2πiµkϕ(εk)
∣∣ =

∣∣
∑

k∈Z

e2πiµkψ̂ε(k)
∣∣ =

∣∣
∑

k′∈Z

ψε(k
′ + µ)

∣∣

≤ CL

ε

∑

k′∈Z

1
(
1 + |k′+µ|

ε

)L ,(4.18)

where ψε(x) = ε−1ψ(ε−1x).
We may assume |µ| ≤ 1

2 , so that dist(µ,Z) = |µ| ≥ δ and

∑

k′∈Z

1
(
1 + |k′+µ|

ε

)L
≤ 1

(
1 + |µ|

ε

)L
+ 2

∫ +∞

−∞

1
(
1 + |x+µ|

ε

)L
dx

≤ 1
(
1 + δ

ε

)L + 2ε

∫ +∞

−∞

1
(
1 + |y|

)L dy .

Therefore,

∣∣
∑

k∈Z

e2πiµkϕ(εk)
∣∣ ≤ CL

ε

(
1

(
1 + δ

ε

)L
+ 2ε

∫ +∞

−∞

1
(
1 + |y|

)L
dy

)

≤ CL
εL−1

(
ε + δ

)L + C

≤ CL max

{
εL−1

δL
, 1

}
,

proving (4.17) in the case σ = 1.
Next we suppose that σ belongs to classical symbol class S0. Notice that

ϕ(εk)σ(k) = ψ̂ε(k)τ̂(k) =
(
ψε ∗ τ )̂(k) =

((
ψ ∗ τ1/ε

)
ε

)̂
(k) .

Thus we may repeat the previous arguments as in (4.18) to obtain
∣∣
∑

k∈Z

e2πiµkϕ(εk)σ(k)
∣∣ =

∣∣
∑

k∈Z

e2πiµk
((
ψ ∗ τ1/ε

)
ε

)̂
(k)

∣∣

=
∣∣
∑

k′∈Z

(
ψ ∗ τ1/ε

)
ε
(k′ + µ)

∣∣

≤ CL

ε

∑

k′∈Z

1
(
1 + |k′+µ|

ε

)L ,(4.19)

where CL does not depend on ε as long as the Schwartz norms of (ψ ∗ τ1/ε) are

uniformly bounded in ε. This happens if and only if the Schwartz norms of
(
ψ∗τ1/ε

)̂
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are uniformly bounded in ε, as ε → 0. Now
(
ψ ∗ τ1/ε

)̂
(x) = ψ̂(x)τ̂1/ε(x) = ϕ(x)σ(x/ε) .

Since σ ∈ S0, it is straightforward to check that

∣∣∣Dj
x

(
ϕσ(·/ε)

)
(x)

∣∣∣ =
∣∣∣

j∑

j′=0

cj′ϕ(j−j′)(x)
1

εj′ σ
(j′)(x/ε)

∣∣∣

≤ C
j∑

j′=0

∣∣ϕ(j−j′)(x)
∣∣ 1

εj′
1

(1 + |x|/ε)j′

≤ C
j∑

j′=0

∣∣ϕ(j−j′)(x)
∣∣ 1

(εj′ + a)j′ ,

since suppϕ ⊂ [a, b] and a > 0. The statement now follows. !

Remark 4.5. It is worth noticing that, by choosing as a symbol σ a smooth cut-
off function with compact support, the estimate (4.17) may be proved also for
truncated sums.

Lemma 4.6. For N = k′ + k and β = |k′ − k| set

σ1(k, k′) = η+(k′ − k)ψ̃(k, k′)θ2pQ2p(β, θ)
Jn−1+p(Nθ)

(Nθ)n−1+p
χ1(Nθ) .

Then σ1 is a symbol of order 0 in k′, depending on the parameters θ and k, with
norm uniformly bounded in such parameters.

Proof. We wish to show that, considering k′ = ξ as a continuous parameter, σ1 is
a smooth function of ξ and, for each non-negative integer k, there exists a positive
constant C = Ck, independent of k and θ ∈ [0,π/2 − ε1], such that

∣∣∂k
ξ σ1(ξ)

∣∣ ≤ C(1 + |ξ|)−k .

Notice that since k′ ≥ 1 we may assume that we have extended σ1 to be identically
0 when ξ ≤ 1/2.

Since the Bessel function Jν of integral order ν is analytic and has a zero of order
ν at the origin, it is clear that σ1 is smooth and bounded uniformly in θ. Moreover,
recall from Lemma 4.2 that Q2p(β, θ) is a polynomial of degree 2p in β and analytic
in θ ∈ [0, π

2 ). Hence, since χ1(Nθ) = 0 for Nθ ≥ 2, we have that, on the support of
χ1, θ ≤ 2/N ≤ C/ξ, implying that

|θ2pQ2p(β, θ)| ≤ C
|Q2p(β, θ)|

N2p
,

which is bounded, as ξ → +∞, uniformly in θ.
Next we consider the derivatives. If the derivative falls on the factor θ2pQ2p(β, θ)

we simply lower the degree of the polynomial of ξ and then obtain the estimate

∣∣∂ξ
[
θ2pQ2p(β, θ)

]∣∣ ≤ C
1

ξ
,

as ξ → +∞, uniformly in θ, as we required.
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It the derivative falls on the factor Jn−1+p(Nθ)
(Nθ)n−1+p , since the derivative of the Bessel

function of order ν satisfies the identity J ′
ν(z)− ν

z Jν(z) + Jν−1(z), again we obtain
that ∣∣∣∂ξ

[Jn−1+p(Nθ)

(Nθ)n−1+p

]∣∣∣ ≤ C
(
θ +

1

N

)
≤ C

1

ξ
,

as ξ → +∞, uniformly in θ.
If the derivative falls on χ1 it produces an extra factor θ, which is less than C/ξ.
Hence, ∣∣∂ξσ1(ξ)

∣∣ ≤ C(1 + |ξ|)−1,

as |ξ| → +∞, uniformly in θ.
Finally, if the derivative falls on ψ̃ it produces a factor of the order of k/ξ2 which

is less than or equal to C/|ξ|, as ξ → +∞.
The argument can be repeated for all higher order derivatives, so the lemma is

proven. !

We wish to apply Lemma 4.4, and this leads us to analize the phase function
tkk′ + ω(k′ − k). Recall that A has been defined in (4.1) and that, as observed
earlier, by passing to the complex conjugate, we may assume t > 0. We then
introduce the set of indices in N2:

V =
{
(k, k′) : k, k′ ≥ n/2, a′/h2 ≤ kk′ ≤ b′/h2, 1/M ≤ k/k′ ≤ M , |k−k′| ≥ 1/2

}
.

We set moreover

(4.20) V+ = V ∩ {(k, k′) : k′ > k} and V− = V ∩ {(k, k′) : k′ < k}.

Finally, we introduce the space of parameters (t,ω)

R := [h2, hs] × [0, 2π) ⊂ A × [0, 2π).

Lemma 4.7. On V+ we set µ(k) := (tk + ω)/2π and µ′(k′) = (ω − tk′)/2π. Then
there exist a constant 0 < γ < 1 and two regions RI , RII in the (t,ω)-space such
that R ⊆ ∪RI and for all (t,ω) ∈ Ri, i ∈ {I, II}, one between the following two
conditions:

(I) dist(µ(k),Z) ≥ γtk for all (k, k′) ∈ V+;

(II) dist(µ′(k′),Z) ≥ γtk′ for all (k, k′) ∈ V+

holds.
An analogous statement holds in the case of V−.

Proof. We begin by observing that (k, k′) ∈ V+ implies that 1 ≤ k < k′ ≤ ⌊c′/h⌋
so that, for t ∈ [h2, hs], we have

(4.21)
h2

2π
≤ 1

2π
tk ≤ 1

2π
tk′ ≤ chs−1 ≤ c1/(4π),

if h ≤ ε0 is sufficiently small and for some positive, small enough c1.
Let RI = {(t,ω) ∈ [h2, hs] × [0, 2π) : 0 < c1 < ω < 2π − c1}, with c1 as above.

Then (I) holds for (t,ω) ∈ RI since for m an integer,

∣∣ tk + ω

2π
− m

∣∣ ≥
∣∣ ω
2π

− m
∣∣− c1

4π
≥ c1

4π
.

Replacing ω by 2π − ω we may assume now that −c1 < ω < c1. In this case,
notice that dist(µ,Z) = 1

2π |tk + ω| and dist(µ′,Z) = 1
2π |tk′ − ω|.
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Then, if ω > 0, we have that tk+ω
tk ≥ 1, so that in this case (I) holds.

If ω < 0, we then have that tk′−ω
tk′ ≥ 1, so that in this case (II) holds. !

Proposition 4.8. There exists a constant C > 0 such that

∣∣K1,+
p (ω, θ)

∣∣ ≤ C
1

|t|n+1
,

uniformly in ω and θ ∈ [0, ε1], for all |t| ∈ [h2, chs].

Proof. Recall the definition of K1,±
p (ω, θ) introduced in (4.14).

Using Lemma 4.6 we have that

K1,+
p (ω, θ) =

∑

k,k′≥1

ei[tkk′+ω|k′−k|]ϕ(h2kk′)Ngn−1(k
′)g̃n−1(k)σ1(k

′) .

Notice that gn−1(k′)g̃n−1(k) = kn−1k′n−1+ lower order terms. Thus, we es-
timate the higher order terms, the other ones being estimated in a similar way,
giving rise to a better bound. Hence, it suffices to estimate

(4.22)
∣∣∣

∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)Nkn−1k′n−1
σ1(k

′)
∣∣∣,

and we distiguish two cases according to whether condition (I) or (II) in Lemma
4.7 holds, respectively.

Case (I). We assume that dist(µ(k),Z) ≥ γtk for all (k, k′) ∈ V+ and for some
0 < γ < 1, so that |tk + ω| ≥ 2πγtk for all k ≥ 1. Starting from (4.22), we wish to
estimate

∣∣∣
⌊c′/h⌋∑

k=n/2

⌊c′/h⌋∑

k′=n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)Nkn−1k′n−1
σ1(k, k′)

∣∣∣

≤ C

h2n

⌊c′/h⌋∑

k=n/2

1

k

∣∣∣
⌊c′/h⌋∑

k′=n/2

eik′[tk+ω]ϕ(h2kk′)
(
h2kk′)n

σ1(k, k′)
∣∣∣

+
C

h2n−2

⌊c′/h⌋∑

k=n/2

k
∣∣∣
⌊c′/h⌋∑

k′=n/2

eik′[tk+ω]ϕ(h2kk′)
(
h2kk′)n−1

σ1(k, k′)
∣∣∣ .(4.23)

Notice that it suffices to bound the first sum on the right-hand side of (4.23) above.

We now apply Lemma 4.4 to the inner sum of the first term on the right-hand
side of (4.23) above, with

µ = [tk + ω]/2π, δ = γtk ≥ γh2k = ε,

and cut-off function x 3→ xnϕ and with the aid of Lemma 4.6.
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Hence we obtain that for every L > 1 the right-hand side of (4.23) is less than
or equal to a constant times

CL

h2n

⌊c′/h⌋∑

k=n/2

1

k
max

(
εL−1

δL
, 1

)
≤ C

h2n

⌊c′/h⌋∑

k=n/2

1

k

(
(h2k)(L−1)

(tk)L
+ 1

)

≤ C

h2n

(
h2(L−1)

tL

⌊c′/h⌋∑

k=n/2

1

k2
+ log(1/h)

)

≤ C

(
1

tn+1
+

1

h2(n+κ)

)
,

for any given κ > 0, if we choose L = n + 1.
Therefore, for t such that h2 ≤ t ≤ hs for every s > sn, we have

1

h2(n+κ)
≤ C

t2(n+κ)/s
≤ C

tn+1
.

Hence, for all t ∈ A we obtain

(4.24)
∣∣K1,+

p (ω, θ)
∣∣ ≤ C

1

|t|n+1
.

This proves the statement in Case (I).

Case (II). We now assume that dist(µ′(k′),Z) ≥ γtk′ for all (k, k′) ∈ V+ and for
some 0 < γ′ < 1, so that |tk′ − ω| ≥ 2π(h2k′)γ

′
, all k′ ∈ N. In this case, again we

start from (4.22), apply Lemma 4.4 to the inner sum with

µ = [tk′ − ω]/2π, δ = γtk′ ≥ γh2k′ = ε,

and cut-off function xnϕ and with the aid of Lemma 4.6.

We have that

∣∣∣
∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)Nkn−1k′n−1
σ1(k, k′)

∣∣∣

≤ C

h2n

⌊c′/h⌋∑

k′=n/2

1

k′

∣∣∣
⌊c′/h⌋∑

k=n/2

eik[tk′−ω]ϕ(h2kk′)
(
h2kk′)n

σ1(k, k′)
∣∣∣

+
C

h2n−2

⌊c′/h⌋∑

k′=n/2

k′
∣∣∣
⌊c′/h⌋∑

k=n/2

eik[tk′−ω]ϕ(h2kk′)
(
h2kk′)n−1

σ1(k, k′)
∣∣∣.(4.25)
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As in the previous case we may limit ourselves to consider the first sum in (4.25),
the estimate for the latter one being analogous. We have

1

h2n

⌊c′/h⌋∑

k′=1

1

k′

∣∣∣
⌊c′/h⌋∑

k=1

eik[tk′−ω]ϕ(h2kk′)
(
h2kk′)n

σ1(k, k′)
∣∣∣

≤ C

h2n

⌊c′/h⌋+1∑

k′=1

1

k′

(
(h2k′)(L−1)

(tk′)L
+ 1

)

≤ C

h2n

(
h2(L−1)

tL

⌊c′/h⌋∑

k′=1

1

k′2
+ log(1/h)

)

≤ C

(
1

tn+1
+

1

h2(n+κ)

)
,

choosing L = n + 1, for any κ > 0.
Arguing as in (4.24) in Case (I), for h2 ≤ |t| ≤ hs we obtain

(4.26)
∣∣K1,+

p (ω, θ)
∣∣ ≤ C

1

|t|n+1
.

The result now follows. !

Step 5. Finally, we wish to estimate the modulus of K±
2 (ω, θ), as defined in (4.12).

Again, we consider only the case of K+
2 .

In this case, it turns out that it suffices to take m = 0. We introduce the same
spectral decomposition as in (4.3). Thus, we are led to consider the remainder term

∣∣K2,+
R (ω, θ)

∣∣ =
∣∣∣

∑

k,k′≥n/2

ei[tkk′+ω(k′−k)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)χ2(Nθ)

× Ngn−1(k
′)g̃n−1(k)θm−n+2Rm,N (θ)

∣∣∣

≤ C

h2n−2

⌊c′/h⌋∑

k=n/2

⌊c′/h⌋∑

k′=n/2

∣∣∣ϕ(h2kk′)(h2kk′)n−1 θm−n+2

Nn+m−1/2

∣∣∣

≤ C

h2n−2

⌊c′/h⌋∑

k=n/2

⌊c′/h⌋∑

k′=n/2

θm+3/2

(Nθ)n−1/2Nm
,

so that, by choosing m = 0, we obtain

(4.27)
∣∣K2,+

R (ω, θ)
∣∣ ≤ C

h2n

for all n ≥ 1, uniformly in ω and θ ∈ [0, ε1].
Thus, for j = 2 we are led to consider the main term in (4.12), that is,

Υ+(ω, θ) :=
∑

k,k′≥n/2

ei[tkk′+ω|k′−k|]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)χ2(Nθ)

× Ngn−1(k
′)g̃n−1(k)

Jn−1(Nθ)

(Nθ)n−1
.(4.28)
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Recall that in this case we have that Nθ ≥ 1. Then we use the asymptotic
expansion of the Bessel function Jν

Jν(x) =
1

x1/2
ρ1(x)eix +

1

x1/2
ρ2(x)e−ix + O(x−3/2),

for some bounded functions ρj , and write Υ+(ω, θ) = Υ1 + Υ2 + Υ3, where, for
j = 1, 2,

(4.29) Υj(ω, θ) =
∑

k,k′≥n/2

ei[tkk′+ω(k′−k)±θ(k+k′)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)

× Ngn−1(k
′)g̃n−1(k)

1

(Nθ)n−1/2
ρj(Nθ)χ2(Nθ)

and

Υ3(ω, θ) =
∑

k,k′≥1

ei[tkk′+ω(k′−k)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)

× Ngn−1(k
′)g̃n−1(k)

1

(Nθ)n−1
χ2(Nθ)O

(
(Nθ)−3/2

)
.

Lemma 4.9. For N = k′ + k, and β = k′ − k, set

σ2(k, k′) = ψ̃(k, k′)η+(k′ − k)
1

(Nθ)n− 1
2

χ2(Nθ)R(Nθ),

where

(4.30) R(Nθ) =

{
ρj(Nθ) for Υj , j = 1, 2 ,

(Nθ)1/2 O
(
(Nθ)−3/2

)
for Υ3.

Then σ2 is a symbol of order 0 in k′ (k resp.), depending on the parameters θ
and k (k′ resp.), with norm uniformly bounded in such parameters.

Proof. As in Lemma 4.6 we wish to show that, considering k′ = ξ as a continuous
parameter, σ2 is a smooth function of ξ and, for each non-negative integer m, there
exists a positive constant C = Cm, independent of k and θ ∈ (0, ε1), such that

∣∣∂m
ξ σ2(ξ)

∣∣ ≤ C(1 + |ξ|)−m,

and we may assume that we have extended σ2 to be identically 0 when ξ ≤ 1/2.
Since χ2(Nθ) = 0 for Nθ ≤ 1 it follows that σ2 is smooth and bounded as

ξ → +∞, uniformly in θ and k.
Next we consider the derivatives. It the derivative falls on the factor 1

(Nθ)n− 1
2

(or on 1
(Nθ)n−1 in the case of ΥR), using the condition Nθ ≥ 1 we easily obtain,

respectively, that
∣∣∣∂ξ

[ 1

(Nθ)n− 1
2

]
χ2(Nθ)ψ̃(k, k′)η+(k′ − k)

∣∣∣ ≤ C
1

N
≤ C

1

ξ

and ∣∣∣∂ξ
[ 1

(Nθ)n−1

]
χ2(Nθ)ψ̃(k, k′)η+(k′ − k)R(Nθ)

∣∣∣ ≤ C
1

N
≤ C

1

ξ
,

as ξ → +∞, uniformly in θ.
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If the derivative falls on ρj(Nθ), by means of formula (15) in [St, p. 338] we
observe that

∣∣∣∂ξ
[∑

k

ak,j(ξθ)
−k

]
ψ̃(k, k′)η+(k′ − k)

1

(Nθ)n− 1
2

χ2(Nθ)
∣∣∣ ≤ C

1

ξ
,

where ak,j , j = 1, 2, are suitable coefficients.
If the derivative falls on χ2, we notice that χ′

2(ξ) = 0 unless 1 ≤ ξ ≤ 2, so that
∣∣∣

1

(Nθ)n− 1
2

∂ξ
[
χ2(Nθ)

]
ψ̃(k, k′)η+(k′ − k)

∣∣∣ ≤ Cθ ≤ C
1

N
≤ C

1

ξ
,

and the same is true when R(Nθ) is defined as in the latter case of (4.30).
Finally, if the derivative falls on the remainder term O

(
(Nθ)−3/2

)
in the latter

case of (4.30), we have
∣∣∣

1

(Nθ)n−1
χ2(Nθ)ψ̃(k, k′)η+(k′ − k)∂ξ

[
O
(
(Nθ)−3/2

)]∣∣∣ ≤ C
1

N
≤ C

1

ξ
.

Hence, ∣∣∂ξσ2(ξ)
∣∣ ≤ C(1 + |ξ|)−1,

as |ξ| → +∞, uniformly in θ.
The argument can be repeated for all higher order derivatives. In particular,

when the derivatives involve the term O
(
(Nθ)−3/2

)
, we may use formula (8),

p. 334 in [St], proving that this term behaves like a symbol of the expected order.
Thus the lemma is proven. !

In the case of Υ+ we still need to use the oscillation of the phase and hence
Lemma 4.4. Let RI , RII be as in Lemma 4.7. Since the phase in this case is
tkk′ +ω(k′−k)±θ(k+k′), and θ > 0, we write θ̃ = ±θ and let |θ̃| vary in [1/N, ε1].
We then introduce the space of parameters (t,ω, θ),

Rθ :=
{
(t,ω, θ̃) ∈ [h2, hs] × [0, 2π) × (−ε1, ε1) : |θ̃| < tN/M1 or |θ̃| > M1Nt

}
,

where M1 > 2(1 + M) is a large constant.

Lemma 4.10. Let θ be such that 1 ≤ N |θ̃|. Let V+ be defined as in (4.20). For
(k, k′) ∈ V+, set µ2 = (tk +ω+ θ̃)/2π and µ′

2 = (tk′ −ω+ θ̃)/2π. Then, there exist
a constant γ > 0 and finitely many regions in Rθ such that for all (t,ω, θ̃) belonging
to one of these regions, at least one between the two conditions

(III) dist(µ2,Z) ≥ γtk for all (k, k′) ∈ V+,

(IV) dist(µ′
2,Z) ≥ γtk′ for all (k, k′) ∈ V+

holds.

Proof. We begin observing that if either |θ̃| < tN/M1 or |θ̃| > M1Nt, then there
exists a constant C > 0 such that

(4.31) |tk + θ̃| ≥ Ctk and |tk′ + θ̃| ≥ Ctk′ .

Then we split the proof into a few cases.

Case 1. Let Rθ,I := {(t,ω, θ̃) ∈ Rθ : 0 < c1 < ω < 2π − c1

}
, where c1 > 10ε1 is a

small constant. Then (III) holds for (t,ω, θ̃) ∈ Rθ,I since

dist(µ2,Z) ≥ dist(ω/2π,Z)− tk

2π
− |θ|

2π
≥ c1

2π
− tk

2π
− ε1

2π
≥ c1

( 1

2π
− 1

20π

)
− tk

2π
≥ γtk ,

for all k = 1 , . . . , c′/h, as a consequence of (4.21).
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Hence, possibly replacing ω by 2π − ω, we may assume that |ω| ≤ c1, that
dist(µ2,Z) = |tk + ω + θ̃|/2π and that dist(µ′

2,Z) = |tk′ − ω + θ̃|/2π. Notice that
now we may assume that θ̃ < 0 since otherwise (III) holds on RI and (IV) on RII ,
where RI , RII are defined in Lemma 4.7.

Case 2. Let Rθ,II := {(t,ω, θ̃) ∈ Rθ : |ω| < c2t
}
, where c2 > 0 is a small constant.

If (t,ω, θ̃) ∈ Rθ,II , then (III) holds for all (k, k′) ∈ V+, since

|tk + ω + θ̃| ≥ |tk + θ̃| − |ω| ≥ t(Ck − c2) ≥ γtk ,

provided that c2 is small enough.

Case 3. Next suppose c2t ≤ |ω| ≤ c1. If ω > 0, then, if tk + θ̃ > 0, (III) holds. If
tk + θ̃ < 0, we first observe that |θ̃| > M1tN . Indeed, if |θ̃| < tN/M1, then

|θ̃| <
1

M1
t(k + k′) ≤ 1

M1
tk(1 + M) ≤ tk

2
,

since we chose M1 > 2(1 + M). Thus tk + θ̃ > 0, contradicting the hypothesis.

Now it is easy to conclude that condition (IV) holds, since

tk′ + θ̃ < tk′ − M1tN < 0 ,

so that
|tk′ + θ̃ − ω| = ω + |tk′ + θ̃| ≥ Ctk′.

If ω < 0, then, if tk + θ̃ < 0, (III) holds as a consequence of (4.31). If tk + θ̃ > 0,
we notice that |θ̃| < 1

M1
tN . Then condition (IV) holds, since

tk′ + θ̃ > tk′ − 1

M1
tN > tk′(1 − 1

M1
) − M

M1
tk′ > 0,

provided that M1 > 1 + M , so that |tk′ + θ̃ − ω| = |ω| + tk′ + θ̃ ≥ Ctk′. !
Proposition 4.11. There exists a constant C > 0 such that, for all |t| ∈ A when
n > 1, and for all h2 ≤ |t| ≤ Ch4/3 when n = 1,

∣∣Υj(ω , θ)
∣∣ ≤ C

1

|t|n+1

uniformly in ω and θ ∈ [0, ε1], for j = 1, 2.

Proof. Recall that Υj have been defined in (4.29). Next, we fix a smooth cut-off
function Ψ with compact support in [1/M1, M1], where M1 > 1 is a (large) constant.
For j = 1, 2 we decompose Υj by setting

Υj(ω, θ) =
∑

k,k′≥1

ei[tkk′+ω(k′−k)±θ(k+k′)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)

× χ2(Nθ)
Ngn−1(k′)g̃n−1(k)

(Nθ)n−1/2
ρj(Nθ)

[
1 −Ψ(θ/tN)

]

+
∑

k,k′≥1

ei[tkk′+ω(k′−k)±θ(k+k′)]ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)

× χ2(Nθ)
Ngn−1(k′)g̃n−1(k)

(Nθ)n−1/2
ρj(Nθ)Ψ(θ/tN)

=: Υj,1(ω, θ) + Υj,2(ω, θ),(4.32)
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We also have

Υ3(ω, θ) =
∑

k,k′≥1

ei[tkk′+ω(k′−k)]ϕ(h2kk′)N(kk′)n−1σ2(k, k′) .

For Υj,1 we argue as in the proof of Proposition 4.8 and divide into the cases in
which (III) or (IV) hold, respectively. If, for instance, (III) holds, then as in the
proof of Case (I) in Proposition 4.8, we have

|Υj,1(ω, θ)| ≤ C

h2n−2

⌊c′/h⌋∑

k=1

∣∣∣
⌊c′/h⌋∑

k′=1

eik′[tk+ω+θ̃]ϕ(h2kk′)N(h2kk′)n−1σ2(N)
∣∣∣

≤ C

h2n

⌊c′/h⌋∑

k=1

1

k

⌊b′/(h2k)⌋+1∑

k′=⌊a′/(h2k)⌋

eik′[tk+ω±θ]ϕ(h2kk′)(h2kk′)nσ2(N)
∣∣∣

+
C

h2n−2

⌊c′/h⌋∑

k=1

k

⌊b′/(h2k)⌋+1∑

k′=⌊a′/(h2k)⌋

eik′[tk+ω±θ]ϕ(h2kk′)(h2kk′)n−1σ2(N)
∣∣∣

≤ C

h2n+κ
,

for any κ > 0, uniformly in ω and θ ∈ [0, ε1], by proceeding as in the proof of (4.24)
by means of Lemma 4.10. The proof in the case in which condition (IV) holds is
analogous to the proof of (4.26) in Proposition 4.8, and it is omitted.

Finally we estimate Υj,2. In this sum we take advantage of the fact that θ/tN
is bounded above and below from zero. We have

|Υj,2(ω, θ)| ≤ C
∑

k,k′≥1

ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)χ2(Nθ)
N2n−1

(Nθ)n−1/2
Ψ(θ/tN)

≤ C
∑

k,k′≥1

ϕ(h2kk′)ψ̃(k, k′)η+(k′ − k)
N2n−1

(N2t)n−1/2

≤ C

tn−1/2

∑

k,k′≥1

ϕ(h2kk′)ψ̃(k, k′)

≤ C

tn−1/2h2
≤ C

tn+1+1/n−1/2
,

since t ≤ hs, so that h−2 ≤ t−2/s < t−(n+1)/n. Thus when n = 1

|Υj,2(ω, θ)| ≤ C

t2

for all h2 ≤ |t| ≤ ch4/3, while if n > 1

|Υj,2(ω, θ)| ≤ C

tn+1

for all |t| ∈ A. Finally, we observe that Υ3 may be treated as the sum in (4.22) by
means of Lemma 4.7, so that

∣∣Υ3(ω, θ)
∣∣ ≤ C

1

|t|n+1
,

uniformly in ω and θ ∈ [0, ε1], for all |t| ∈ [h2, chs]. !
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Thus, as a consequence of the decompositions (4.14) and (4.28), of Propositions
4.8 and 4.11, by also using (4.16) and (4.27), if n > 1 in (4.12) we obtain

∣∣K±
1 (ω, θ) + K±

2 (ω, θ)
∣∣ ≤ C

|t|n+1
,

uniformly in ω and θ ∈ [0,π/2 − ε1], so that we finally get (4.2), that is,

sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)Zℓ,ℓ′(z, w)
∣∣∣ ≤ C

1

h2n+κ
,

for all t ∈ A, n > 1. When n = 1, as a consequence of Proposition 4.11 we get

sup
(z,w)∈Ω

∣∣∣
+∞∑

ℓ,ℓ′=1

eitλℓ,ℓ′ϕ(h2λℓ,ℓ′)ψ(ℓ′/ℓ)Zℓ,ℓ′(z, w)
∣∣∣ ≤ C

1

t2

for all |t| ∈ [h2, ch4/3].
This concludes the proof of Theorem 3.1. !

5. The Strichartz estimate

In this section we complete the proof of Theorem 1.1.
Following a classical pattern we invoke a result by Keel and Tao [KT]. Consider

the family of operators

U(t) := χJ (t) eitL ϕ(h2L) ,

where t ∈ R, h ∈ (0, 1], χJ denotes the characteristic function of the interval J and
|J | ≈ hα, where, if n > 1, we will select either α = s > sn (with sn given by (1.6))
or α = 2. If n = 1, we will select either α ≥ 4/3 or α = 2.

Then U(t) satisfies the energy estimate ∥U(t)∥(L2,L2) ≤ C for some positive
constant C and the following untruncated decay estimate:

∥U(t)U(τ )∗v0∥L∞∥χJ (t − τ )ei(t−τ)Lϕ(h2L)v0∥L∞

≤ C

|t − τ |Q/2
∥v0∥L1(S2n+1)

for all t, τ ∈ R, t ̸= τ . Hence Theorem 1.2 in [KT] yields the following result.

Proposition 5.1. For any fixed ϕ ∈ C∞
0 (R+), there exists a constant C > 0

such that for all h ∈ (0, 1], for any interval J of length |J | ≤ hα and for all
v0 ∈ C∞(S2n+1) the following estimate holds:

(5.1)
(∫

J
∥eitL ϕ(h2L)v0∥p

Lq dt
)1/p

≤ C∥v0∥L2

for all pairs (p, q) ̸= (2, +∞), satisfying (1.5), where α = 2 if v0 ∈ C∞
E and α > sn

if v0 ∈ C∞
V , and E , V are defined in (2.9) and (2.10). Here C depends only on p, q, n

and s.

Finally, in order to prove the Strichartz estimate (1.7) we shall need an easy
consequence of the Littlewood–Paley decomposition for the sublaplacian L on the
complex sphere. More precisely, we shall use the following result.
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Theorem 5.2. Let ψ̃ ∈ C∞
0 (R+) and ψ ∈ C∞

0 (R) such that

(5.2) ψ̃(λ) +
∞∑

j=1

ψ(2−2jλ) = 1 , λ ∈ R.

Then for 2 ≤ q < ∞ there exists a constant Cq such that

(5.3) ∥f∥Lq(S2n+1) ≤ Cq

(
∥ψ̃(L)f∥Lq(S2n+1) +

(+∞∑

j=1

∥ψ(2−2jL)f∥2
Lq(S2n+1)

)1/2)
,

for f ∈ Lq(S2n+1).

This result and the Littlewood–Paley decomposition are of independent interest
(see the recent paper [Bouc] for a discussion of analogous inequalities in the Rie-
mannian case) and may be easily deduced from the multiplier theorem in [CowKS].

End of the proof of Theorem 1.1. Let v0 ∈ C∞
V , v0 ∈ C∞

E respectively, and α = s >
sn, α = 2 respectively.

By writing [−1, 1] =
⋃N

k=1 Jk, with Jk intervals, |Jk| ≈ hα and N ≈ h−α, we
have

∫ 1

−1
∥eitL ϕ(h2L)v0∥p

Lq dt ≤
N∑

k=1

∫

Jk

∥eitL ϕ(h2L)v0∥p
Lq dt

≤ CN∥v0∥p
L2

≤ Ch−α∥v0∥p
L2 ,

so that

(5.4)
(∫ 1

−1
∥eitL ϕ(h2L)v0∥p

Lq dt
)1/p

≤ Ch−α/p∥v0∥L2 .

Now, let ϕ̃ ∈ C∞
0 (R+) be such that ϕ̃ ϕ = ϕ. Then (5.4), with ϕ replaced by ϕ̃ and

the initial datum ϕ(h2L)v0, gives

(∫ 1

−1
∥eitL ϕ̃(h2L)ϕ(h2L)v0∥p

Lq dt
)1/p

≤ Ch−α/p∥ϕ(h2L)v0∥L2 ,

that is,

(5.5)
(∫ 1

−1
∥eitL ϕ(h2L)v0∥p

Lq dt
)1/p

≤ Ch−α/p∥ϕ(h2L)v0∥L2 .

We now apply Theorem 5.2 to f = v(t) = eitLv0 and then we take the Lp-norm
with respect to the variable t on [−1, 1] and obtain that

∥v∥Lp([−1,1],Lq(S2n+1))

≤ C
(
∥v0∥L2(S2n+1) +

∥∥∥
(+∞∑

j=1

∥eitLψ(2−2jL)v0∥2
Lq(S2n+1)

)1/2∥∥∥
Lp([−1,1])

)
.
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Next, let v0 be any function in C∞(S2n+1). Since p ≥ 2, by Minkowski’s integral
inequality we have

∥∥∥
( +∞∑

j=1

∥eitLψ(2−2jL)v0∥2
Lq(S2n+1)

)1/2∥∥∥
Lp([−1,1])

≤
( +∞∑

j=1

(∫ 1

−1
∥eitLψ(2−2jL)v0∥p

Lq(S2n+1)dt
)2/p

)1/2

≤
( +∞∑

j=1

(∫ 1

−1
∥eitLψ(2−2jL)πVv0∥p

Lq(S2n+1)dt
)2/p

)1/2

+

( +∞∑

j=1

(∫ 1

−1
∥eitLψ(2−2jL)πEv0∥p

Lq(S2n+1)dt
)2/p

)1/2

≤ C
( +∞∑

j=1

2(2js/p)∥ψ(2−2jL)πVv0∥2
L2(S2n+1)

)1/2

+ C
(+∞∑

j=1

2(4j/p)∥ψ(2−2jL)πEv0∥2
L2(S2n+1)

)1/2

≤ C∥v0∥X (s/p,2/p) ,

where we used, in particular, the Strichartz estimate (5.5) for the spectral trunca-
tions. This yields (1.7). Analogous arguments lead to

∥∥∥
(+∞∑

j=1

∥eitLψ(2−2jL)v0∥2
Lq(S3)

)1/2∥∥∥
Lp([−1,1])

≤ C∥v0∥X (s/p,2/p)

for all s ≥ 4/3, when n = 1. !
The following result follows at once from the Strichartz estimates (1.7) and the

Minkowski inequality.

Corollary 5.3. If p and q satisfy 2
p + Q

q = Q
2 , p ≥ 2, q < ∞, then for all T > 0

and for all s > sn, sn defined by (1.6), if n > 1, or for all s ≥ 4/3 if n = 1, there
exists C = C(p, T, s) such that for every f ∈ L1([−T, T ], X s/p,2/p) we have

(5.6)
∥∥
∫ t

0
ei(t−t′)Lf(t′)dt′

∥∥
Lp([−T,T ],Lq(S2n+1))

≤ C∥f∥L1([−T,T ],X (s/p,2/p)).

6. Final remarks

6.1. Discussion of optimality. Strichartz estimates proved in Theorem 1.1 are,
in general, not sharp. To study optimality, we may use some sharp estimates for
the joint spectral projections πℓ,ℓ′ , proved by the first author in [Ca1,Ca2].

More precisely, consider an eigenfunction of the sublaplacian L corresponding to
the eigenvalue N = λℓ,ℓ′ , and then take the solution of the homogeneous Schrödinger
equation v(t, z) = e−itλℓ,ℓ′v0, with initial datum v0 = hℓ,ℓ′ . Here hℓ,ℓ′ is a spherical

harmonic in Hℓ,ℓ′ such that

(6.1) ∥hℓ,ℓ′∥Lq(S2n+1) ≥
1

C

(
λℓ,ℓ′ + 1

)α(1/q,n)(
ℓ + ℓ′ + 1

)β(1/q,n)∥hℓ,ℓ′∥L2(S2n+1),
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where

α(1/q, n) =

{
n( 1

2 − 1
q ) − 1

2 if q ≥ 2 2n+1
2n−1 ,

1
2

(
1
q − 1

2

)
if 2 ≤ q ≤ 2 2n+1

2n−1 .

and

β(1/q, n) =

{
1
2 if q ≥ 2 2n+1

2n−1 ,

(n + 1
2 )
(

1
2 − 1

q

)
if 2 ≤ q ≤ 2 2n+1

2n−1 .

We refer to Theorem 3.1 and Proposition 3.4 in [Ca2] for the details.
Then we have

∥v∥Lp(I,Lq(S2n+1)) =

(∫

I

(∫

S2n+1

∣∣∣e−itλℓ,ℓ′ hℓ,ℓ′(z)
∣∣∣
q
dσ(z)

)p/q
dt

)1/p

= ℓ(I)1/p
∥∥hℓ,ℓ′

∥∥
Lq(S2n+1)

≥ 1

C

(
λℓ,ℓ′ + 1

)α(1/q,n)(
ℓ + ℓ′ + 1

)β(1/q,n)∥hℓ,ℓ′∥L2(S2n+1).

Now if (ℓ, ℓ′) ∈ V , for some fixed proper cone V , defined as in (2.9), and if p, q
satisfy the admissibility condition (1.5), then

∥v∥Lp(I,Lq(S2n+1)) ≥
1

C
(λℓ,ℓ′ + 1)α+β/2∥hℓ,ℓ′∥L2(S2n+1) ≈ ∥v0∥Wα+β/2(S2n+1) .

It is easy to check that s/p > sn/p > α+β/2 so that this estimate does not provide
the sharp bound.

If (ℓ, ℓ′) ∈ E , where E is defined as in (2.10), then

∥v∥Lp(I,Lq(S2n+1)) ≥
1

C
(λℓ,ℓ′ + 1)α+β∥hℓ,ℓ′∥L2(S2n+1)

≥ 1

C

(
λℓ,ℓ′ + 1

) 2n
pQ ∥hℓ,ℓ′∥L2(S2n+1) ≈

1

C
∥v0∥W 4n/pQ(S2n+1).

Now observe that
4n

pQ

2

p

(
1 − 1

n + 1

)
= sn , for n > 1 ,

so that

∥v∥Lp(I,Lq(S2n+1)) ≥
1

C
∥v0∥

W
2
p (1−1/(n+1))

for all (p, q) satisfying (1.5). Anyway, in Theorem 1.1 we proved that if (ℓ, ℓ′) ∈ E ,
then the critical index is 2/p, instead of sn. In other words, the index s > 2

p

[
1− 1

n+1

]

in Theorem 1.1 would be sharp, up to the loss of ε derivatives, if we were able to
prove an estimate like (1.7) with the space X (s/p,2/p)(S2n+1) replaced by W s/p.

6.2. Comparison with other subriemannian frameworks. As recalled in the
Introduction, it has been proved in [BaGX] that no (global in time) dispersive
estimate may hold for solutions of the Schrödinger equation on Hn. Anyway, the
situation seems to be less rigid on the reduced Heisenberg group hn, defined as
hn : Cn × T, with product

(z, eit)(w, eit′) :=
(
z + w, ei(t+t′+ℑm zw̄)) ,

with z, w ∈ Cn, t, s ∈ R, due to the compacteness of the center. We point out that
there is an intimate connection between the reduced Heisenberg group and the unit
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complex sphere, since hn turns out to be a contraction of S2n+1 (see [CaCi] for
more details about the construction of this contractive map). A detailed discussion
of (local in time) dispersive estimates and of Strichartz estimates for solutions of
the Schrödinger equation on hn requires some additional care and will be presented
elsewhere.

6.3. Discussion of the admissibility conditions. Admissibility condition (1.5)
has been directly inspired by the scale invariance condition (1.10) on a Riemannian
compact manifold of dimension d (which in turn has been inherited by the euclidean
space Rd), with the dimension d replaced by the homogeneous dimension Q. Any-
way, on the CR sphere the notion of dilation, which leads to (1.10) in the euclidean
context, is not intrinsic. An interesting possibility could be investigating scaling
conditions in the subriemannian framework of the reduced Heisenberg group, where
dilations are well defined as λ◦(z, t) = (λz1, . . . ,λzn,λ2t), and then importing them
on S2n+1.
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développements en harmoniques sphériques (French), Trans. Amer. Math. Soc. 183
(1973), 223–263. MR0338697 (49 #3461)

[Bouc] Jean-Marc Bouclet, Littlewood-Paley decompositions on manifolds with ends (English,
with English and French summaries), Bull. Soc. Math. France 138 (2010), no. 1, 1–37.
MR2638890 (2011e:42020)

[Bou1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and
applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct.
Anal. 3 (1993), no. 2, 107–156, DOI 10.1007/BF01896020. MR1209299 (95d:35160a)

[Bou2] J. Bourgain, Exponential sums and nonlinear Schrödinger equations, Geom. and Funct.
Anal. 3 (1993), 157–178. MR1209300 (95d:35159)

[BrFM] T. Branson, L. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s in-
equalities on the CR sphere, Ann. Math. (2) 177 (2013), no. 1, 1–52. MR2999037

[BuGT1] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, The Schrödinger equation on a
compact manifold: Strichartz estimates and applications (English, with English and
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summaries), Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 6, 719–751, DOI
10.1016/S0012-9593(97)89937-5. MR1476294 (98i:35026)

[CowKS] Michael G. Cowling, Oldrich Klima, and Adam Sikora, Spectral multipliers for the Kohn
sublaplacian on the sphere in Cn, Trans. Amer. Math. Soc. 363 (2011), no. 2, 611–631,
DOI 10.1090/S0002-9947-2010-04920-7. MR2728580 (2011i:42018)

[FiH] A. Fitouhi and M. M. Hamza, A uniform expansion for the eigenfunction of a singular
second-order differential operator, SIAM J. Math. Anal. 21 (1990), no. 6, 1619–1632,
DOI 10.1137/0521088. MR1075594 (92a:33006)

[Fo1] G. B. Folland, The tangential Cauchy-Riemann complex on spheres, Trans. Amer. Math.
Soc. 171 (1972), 83–133. MR0309156 (46 #8266)

[Fo2] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark.
Mat. 13 (1975), no. 2, 161–207. MR0494315 (58 #13215)

[Fo3] G. B. Folland, Spherical harmonic expansion of the Poisson-Szegő kernel for the ball,
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and French summaries), Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 5, 761–810.
MR2721876 (2012b:37188)

[GG2] Patrick Gérard and Sandrine Grellier, Invariant tori for the cubic Szegö equation, Invent.
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