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Abstract: This paper describes a method for reducing the energy consumption of industrial robots
and electrically actuated mechanisms performing cyclic tasks. The energy required by the system
is reduced by outfitting it with additional devices able to store and recuperate energy, namely,
compliant elements coupled in parallel with axles and regenerative motor drives. Starting from
the electromechanical model of the modified system moving following a predefined periodic path,
the relationship between the electrical energy and the stiffness and preload of the compliant elements
is analyzed. The conditions for the compliant elements to be optimal are analytically derived. It is
demonstrated that under these conditions the compliant elements are always beneficial for reducing
the energy consumption. The effectiveness of the design method is verified by applying it to two
test cases: a five-bar mechanism and a SCARA robot. The numerical validations show that the
system energy consumption can be reduced up to the 77.8% while performing a high-speed, standard,
not-optimized trajectory.

Keywords: energy efficiency; industrial robot; regenerative drives; compliant elements; springs;
cyclic tasks

1. Introduction

The ever-growing awareness of the negative consequences on the environment of the energy needs
of manufacturing systems has led to the study and development of methodologies to reduce energy
consumption. Industrial robots make up a significant part on the total electrical energy consumed
in the manufacturing sector [1]. Studies to reduce the energy consumption of these systems have
been recently reviewed by Carabin et al. [2]. Two main categories have been identified: software and
hardware solutions.

The software approaches rely mainly on the optimization of system motion planning and,
therefore, require a modification of just the software that handles the robotic operations. Improvements
in energy efficiency can be achieved by optimizing the location of the task with respect to the base of
the manipulator [3] or by exploiting the system intrinsic or functional kinematic redundancy [4–6].
Other approaches are based on the trajectory optimization toward minimizing the energy consumption
of point-to-point [7], multipoint [8] trajectories, and maximizing the energy sharing in multi-axis robots
provided with a common Direct Current (DC) bus [9,10].

The energy efficiency enhancement by means of hardware solutions is obtained by introducing
physical modifications to the system. An example of hardware solution is the lightweight design of
the system and its components [11] by means of, e.g., the use of novel materials [12]. The energy
efficiency of an industrial robot can be improved by replacing its traditional drives with regenerative
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drives [13–16]. These devices convert the braking energy of the system into regenerative electric energy
that is returned to the system when required, instead of dissipating it as heat. Another way to store
energy for transferring it to the system consists in providing the system with energy-storing devices
such as flywheels [17] or compliant elements as, e.g., springs.

The adoption of springs is by far most used in robotic systems with respect to flywheels. They are
typically installed at robot joints in a serial or parallel connection [18], see Figure 1. The serial
arrangement generally requires to substitute stiff actuators with compliant ones. Such a configuration
is typically adopted to reduce force peaks due to impacts as for example in human–robot interaction.
Conversely, the parallel configuration does not require the substitution of the original actuators,
resulting in an easier and cheaper installation.

actuator serial spring

link 
i + 1link i 

(a)

actuator

parallel spring

link i + 1
link i 

(b)

Figure 1. Serial (a) and parallel (b) spring configuration as shown in Scalera et al. [19].

The addition of springs to robotic systems for reducing the actuator effort was first adopted for
gravity balancing [20,21]. Gravity balanced robots are more energy efficient than non-equilibrated
ones as they do not need actuator effort to stay in equilibrium at any configuration.

Methods that use springs to improve the efficiency of robotic systems in repetitive operations are
based on the concept of the natural motion [19]. The basic idea of these methods is to shape by means
of a proper tuning of the spring stiffness the free vibration response of the robot so that it matches with
the repetitive tasks that the robot has to perform. An iterative procedure to exploit the system free
response for performing pick-and-place tasks between two given points in a prescribed amount of
time is presented in [22,23]. A multibody simulator is used to simulate the free response of the system
for the given initial position and for guess values of the springs mounted in parallel with the actuators.
Simulations are stopped when the optimal spring values are found, i.e., when after the desired time
the position of the system is close enough to the final given position.

In [24], adjustable compliant actuators mounted in series with the joints are used to exploit the
natural dynamics of serial robots. The actuator stiffnesses are tuned by imposing the desired natural
frequencies in the decoupled modal model of the system obtained through linearization of the dynamic
model. A control scheme based on a feedback linearization method is then used to generate smooth
reference link positions that excite the mode corresponding to the desired periodic motion that is
performed employing a small amount of energy.

Linearization and modal analysis techniques are used also in [25,26] to minimize the consumed
mechanical energy of actively controlled multibody systems moving between two given points.
In particular, the optimal spring design, the optimal trajectory, and the operating time are determined
using the optimal control theory. A concurrent optimization of the springs and the trajectory is
performed also in [27,28] where both the trajectory and the nonlinear spring profile are parameterized
by means of polynomial functions whose coefficients are determined to minimize actuation torques.

All methods provide efficient ways to tune the elastic elements added to the system for minimizing
the energy consumption, but they also impose constraints on the kind of path that the robot must
follow, i.e., they do not allow to use an arbitrary trajectory for the operation. This can be a drawback
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in several scenarios, e.g., when an obstacle avoidance planning is necessary, if the robot controller
allows only for the implementation of standard motion primitives, if an optimal motion planning with
a different objective function is to be used, such as minimum execution time [29] or smoothness of the
motion profile [30].

Few works in the literature deal with the optimal design of springs when the system moves
following an arbitrary, given trajectory. Additionally, all these works have been developed for a
specific type of system. In [31], a constrained optimization problem is formulated to reduce the peak
torque requirement of a one-dof rotating link by finding the stiffness value and placement of a linear
spring to be added in parallel with the joint actuator. In [32], springs in parallel with the actuators are
used to minimize the mechanical energy required by the motors of a four-dof parallel robot performing
predefined pick-and-place trajectories. In [33], an analytical method has been developed with reference
to a one-dof rotating beam provided with a regenerative drive. The method allows to find the optimal
design of the spring balancing the system that minimizes the electric energy of rest-to-rest motions.
The authors of the present work in [34] achieved energy consumption minimization retrofitting a
Delta-2 robot with both regenerative drives recovering braking energy and springs, properly tuned for
a chosen trajectory by means of numerical optimization, storing elastic energy.

As promising results have been obtained (e.g., energy reduction up to 70%), this paper further
develops and generalizes such an approach for robotic systems performing cyclic tasks. In particular,
the electromechanical model of the system provided with regenerative drives and linear springs
mounted in parallel with the actuators is described. It is demonstrated analytically that the addition of
the springs is always beneficial for reducing the energy consumption of the system if they are properly
designed in terms of stiffness and preload. The optimal values for the spring parameters are analytically
determined through a bounded optimization problem whose objective function is the reduction of the
electrical energy consumption. No constraints are set on the system trajectory, so the energy efficiency
can be improved for any arbitrary trajectory (e.g., the current one or an energy-optimal motion profile
to further boost the energy savings). Numerical results of the two test cases, a five-bar mechanism and
a SCARA robot, show that the consumed energy can be significantly reduced. The paper is organized
as follows. Section 2 reports the electromechanical model of robots provided with regenerative drives.
Section 3 describes the model of the system with linear elastic elements mounted in parallel with the
actuator and the optimal design of these components. Section 4 shows the results of the numerical
simulations. Finally, Section 5 draws the conclusions.

2. Electromechanical Model

Let us consider a fully-actuated n-dof robot with rigid links and either closed or open kinematic
chain. Let t be the time variable and q = q(t) ∈ Rn be the vector of the generalized coordinates of the
actuated joints. The torques τ = τ(t) ∈ Rn that the actuators must exert to move the system from the
initial time t0 to the final one t f along a given trajectory in the joint space (q(t) with t ∈ [t0; t f ]) can be
computed from the system equations of motion as follows:

τ = IK−1
r q̈ + Kr

(
M(q)q̈ + fc(q, q̇) + Fvq̇ + fs(q, q̇) + fg(q) + fe(q)

)
(1)

where

• q̇ = q̇(t) ∈ Rn and q̈ = q̈(t) ∈ Rn denote the first and second time derivative of vector q, i.e.,
the vectors of the actuated joint velocities and accelerations, respectively;

• I ∈ Rn×n is the diagonal matrix of the motor inertia;
• Kr ∈ Rn×n is the diagonal matrix of the gear transmission ratios;
• M(q) ∈ Rn×n is the mass matrix;
• fc(q, q̇) ∈ Rn is the torque vector due to centrifugal and Coriolis effects;
• Fv ∈ Rn×n is the diagonal matrix of viscous friction coefficients;
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• fs(q, q̇) ∈ Rn is the vector of the static friction torques, that may be represented by means of the
Coulomb friction model. In this case fs = Fssign(q̇), where Fs ∈ Rn×n is a diagonal matrix of the
static friction coefficients;

• fg(q) ∈ Rn is the torque vector due to the effects of gravity;
• fe(q) ∈ Rn is the torque vector due to the interaction of the end-effector with the environment.

The robotic system considered is actuated by means of DC or permanent magnet synchronous
(PMS) motors. The vector of the actuation torques in Equation (1) is related to the armature current
vector, i ∈ Rn, of the motors by means of the diagonal matrix of the motor torque constants Kt ∈ Rn×n:

i(t) = K−1
t τ(t) (2)

The supply voltage of the motor drivers e ∈ Rn is given by:

e(t) = Ri(t) + KeK−1
r q̇(t) (3)

where R ∈ Rn×n and Ke ∈ Rn×n are diagonal matrices of the resistances of the motor windings and
the velocity constants of the motors, respectively. K−1

r q̇(t) is the motor speed. In Equation (3), the
inductive terms have not been considered since the energy dissipated in the inductances in rest-to-rest
motion is equal to zero [35]. The instantaneous input power, P, to the motor drivers is given by the
product of Equations (2) and (3), that it is equivalent to the sum of the instantaneous input power to
each motor driver, Pj:

P(t) = e(t)Tη−1i(t) =
n

∑
j=1

Pj(t) =
n

∑
j=1

ej(t)ij(t)
ηj

(4)

where η ∈ Rn×n is the diagonal matrix of the efficiency of each driver, ηj, j = 1, . . . , n. According to the
passive sign convention, Pj is positive and here denoted as Pc,j if the power flows from the network to
the system, i.e., if the system consumes power:

Pc,j =

{
Pj i f Pj ≥ 0
0 i f Pj < 0

(5)

Conversely, Pj is negative if the electric power flows out of the actuator. In general, such power
is passed through resistors and dissipated as heat, unless regenerative devices are used. In this case,
the power flowing out of the system is stored in capacitors and reused as regenerated power Pr,j:

Pr,j =

{
0 i f Pj ≥ 0

−Pj i f Pj < 0
(6)

The energy consumption of a robot provided with traditional, non-regenerative drivers is given
by the sum of time integral of the power consumed by each motor Pc,j:

E =
∫ t f

t0

Pc(t)dt =
n

∑
j=1

∫ t f

t0

Pc,j(t)dt (7)

If regenerative drivers are used, as it is assumed in this work, the electrical energy consumed by
the robot is smaller, as the energy necessary to move the system is taken not only from the network
but also from the capacitors that store the braking energy. The net energy consumption is given by the
sum of the time integral of both the consumed power Pc,j and the regenerated one Pr,j of each motor,
that corresponds to the time integration of Equation (4):
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E =
∫ t f

t0

Pc(t)dt−
∫ t f

t0

Pr(t)dt =
∫ t f

t0

P(t)dt

=
n

∑
j=1

Ej =
n

∑
j=1

∫ t f

t0

Pj(t)dt =
n

∑
j=1

∫ t f

t0

ej(t)ij(t)
ηj

dt (8)

3. Optimal Design of Compliant Elements

The adoption of the regenerative drives leads to a reduction of the energy consumption, as is
evident from the comparison of Equations (7) and (8). It is possible to further reduce the energy
consumption by providing the robot with compliant elements, i.e., springs. Compliant elements store
elastic energy and release it as kinetic energy, which then in addition to actuation moves the system.
Different ways exist to add compliant elements to a system as described in [19]. In this study, parallel
springs are added to the actuated joints of the robot. The moment (torque) exerted by the springs is:

τe(t) = K(q(t)− θ) (9)

where K = diag(k1, . . . , kn) is the elastic stiffness matrix of the added springs and θ is the vector of the
spring mounting positions. The torque of the springs must be included in the equations of motion for
the system (Equation (1)):

τ̃(t) = IK−1
r q̈ + Kr

(
M(q)q̈ + fc(q, q̇) + Fvq̇ + fs(q, q̇) + fg(q) + fe(q)

)︸ ︷︷ ︸
τ(t)

+Kr K(q− θ)︸ ︷︷ ︸
τe(t)

=



τ1
...

τj
...

τn


+



Kr,1k1(q1 − θ1)
...

Kr,jk j(qj − θ1)
...

Kr,nkn(qn − θn)


(10)

where τ̃ is the torque that includes both the contributions from the actuators as well as the added
springs. As the trajectory is given, all the terms in Equation (10) are known with the exception of
the spring stiffnesses k j and mounting positions θj (j = 1, . . . , n). These values are to be found by
minimizing the energy consumption of the system E. By substituting Equations (2), (3), and (8) into
Equation (10), the following expression is obtained for the system energy consumption:

E = ∑n
j=1
∫ t f

t0
Pj(t)dt

= ∑n
j=1

∫ t f

t0

(
Rj

ηjK2
t,j
(τj(t) + Kr,jk j(qj(t)− θj))

2 +
Ke,j

ηjKt,jKr,j
(τj(t) + Kr,jk j(qj(t)− θj))q̇j(t)

)
dt︸ ︷︷ ︸

Ej

(11)

By analyzing Equation (11), it results that the energy consumption of each motor, Ej, depends only
on the parameters, i.e., spring stiffness and mounting position, of the compliant element added to it.
Therefore, the spring parameters can be determined independently for each axis:

min{E(θj, k j)} = min

{
n

∑
j=1

Ej(θj, k j)

}
=

n

∑
j=1

min
{

Ej(θj, k j)
}

(12)

The optimal design of the springs is determined by solving n sub optimizations. For simplicity of
representation we are discussing the case in which a spring is added in parallel with all the actuated
system joints. However, a reduction of the energy consumption can be obtained also adopting a
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small number of springs ns, i.e., 0 < ns ≤ n, as shown in Section 4.2. In this case, the number of
optimizations to be solved is ns.

By solving the integral in Equation (11), the energy consumption of motor j can be more explicitly
written as function of the spring parameters:

Ej(θj, k j) = Ewsj + ajKr,j Iq2
j
k2

j − 2ajKr,j Iqk2
j θj + ajKr,jTk2

j θ2
j + 2aj Iτqj k j − 2aj Iτj k jθj (13)

where

T = t f − t0 (14)

aj =
RjKr,j

ηjK2
t,j

(15)

Iqj =
∫ t f

t0

qj(t)dt (16)

Iq2
j

=
∫ t f

t0

q2
j (t)dt (17)

Iτj =
∫ t f

t0

τj(t)dt (18)

Iτqj =
∫ t f

t0

τj(t)qj(t)dt (19)

Ewsj =
RjKr,j

∫ t f
t0

τ2
j (t)dt + Ke,jKt,j

∫ t f
t0

τj(t)q̇j(t)dt

ηjK2
t,jKr,j

(20)

The term Ewsj corresponds to the energy consumption of motor j without springs. Equation (13)
considers that the system performs a cyclic task, i.e., the start and the end positions coincide q(t0) =

q(t f ). Therefore, the following terms become zero:

Ke,j

ηjKt,j
k j

∫ t f

t0

q̇j(t)qj(t)dt =
Ke,j

2ηjKt,j
k j

(
q2

j (t f )− q2
j (t0)

)
= 0 (21)

Ke,j

ηjKt,j
k jθj

∫ t f

t0

q̇j(t)dt =
Ke,j

ηjKt,j
k jθj

(
qj(t f )− qj(t0)

)
= 0 (22)

For feasibility reasons, the spring stiffnesses must be positive, and this is considered by
formulating the problem as a constrained optimization problem with lower bounds kL

j > 0 for
the stiffnesses:

min
{

f j(xj)
}

(23)

subject to gj(xj) ≤ 0 (24)

where f j = Ej (25)

xj =
[
θj k j

]T
(26)

gj = kL
j − k j (27)

In order to solve the constrained optimization problem formulated in Equations (23)–(27),
the Lagrangian function is used:

L(xj, µj) = f
(
xj
)
+ µjgj

= Ewsj + ajKr,j Iq2
j
k2

j − 2ajKr,j Iqk2
j θj + ajKr,jTk2

j θ2
j + 2aj Iτqj k j − 2aj Iτj k jθj + µj

(
kL

j − k j

) (28)
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where µj is the Lagrange multiplier. A design x∗j is a solution if and only if the Karush–Kuhn–Tucker
(KKT) conditions [36,37] are satisfied:

1. Stationary condition:
∇xjL(x

∗
j , µ∗j ) = 0 (29)

2. Complementary slackness:
µ∗j g(xj) = 0 (30)

3. Primal feasibility:
g(xj) ≤ 0 (31)

4. Dual feasibility:
µ∗j ≥ 0 (32)

Additionally, the solution x∗j , µ∗j is a constrained minimum, if the second-order condition holds:

5. Positive definite matrix:

yT∇2
xjxj
L(x∗j , µ∗j )y > 0 (33)

with : y 6= 0

∇xj g(x
∗
j )

Ty = 0

Two possible feasible solution types exist for such a problem: points inside the boundary g(xj) < 0
(inactive constraint) and points on the boundary g(xj) = 0 (active constraint). Both described in the
next subsections specifically to our design case. It should be noted that a further stationary point
(specifically a saddle point) exists at k j = 0, i.e., the case of no added compliance, at which corresponds
an energy consumption equal to Ewsj . This point will not be considered as possible solution of
the problem being in the infeasible domain. However, it will be considered as benchmark case to
demonstrate that the addition of the springs is beneficial for reducing the energy consumption, i.e.,
Ej < Ewsj .

3.1. Inactive Constraint (µ∗ = 0)

When the design for minimum energy consumption lies within the feasible design set,
the constraint is inactive, i.e., g(xj) < 0. In this case, the stationary point of the Lagrangian in
Equation (28) takes the following form:

θ
∗(1)
j =

Iτj Iq2
j
− Iτqj Iqj

Iτj Iqj − TIτqj

(34)

k∗(1)j =
Iτj Iqj − TIτqj

Kr,j

(
TIq2

j
− I2

qj

) (35)

µ∗(1) = 0 (36)

The stationary point found is a minimum point if the condition 5 of Equation (33) is verified,
i.e., if the Hessian matrix H of the Lagrangian function with respect to the design variables is
positive definite.

H = ∇2
xjxj
L(x∗(1)j , µ

∗(1)
j ) =

[
h11 h12

h21 h22

]
(37)
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where

h11 =
2ajT
Kr,j

 Iτj Iqj − TIτqj

TIq2
j
− I2

qj

2

(38)

h12 = h21 = 2aj Iτj (39)

h22 =

2ajKr,j

(
TIq2

j
− I2

qj

)(
I2
τj

Iq2
j
− 2Iτj Iqj Iτqj + TI2

τqj

)
(

Iτj Iqj − TIτqj

)2 (40)

The Hessian matrix H is positive definite if the determinants of all the upper-left submatrices are
positive, i.e., if the following conditions hold:

1st condition: det(h11) =
2ajT
Kr,j

 Iτj Iqj − TIτqj

TIq2
j
− I2

qj

2

> 0 (41)

2nd condition: det(H) =
4a2

j

(
Iτj Iqj − TIτqj

)2

TIq2
j
− I2

qj

> 0 (42)

The condition in Equation (41) is always satisfied, as aj, T, and Kr,j are positive while the other
term of the product is squared. The condition in Equation (42) is satisfied if the denominator is positive,
i.e., if:

I2
qj
< TIq2

j
(43)

In order to demonstrate that this condition is satisfied, Jensen’s inequality is applied.

Theorem 1. Let f be an integrable function defined on [a, b] and let φ be a convex function defined at least on
the set [m, M] where m is the integral of f and M is the upper bound of f . Then,

φ

(
1

b− a

∫ b

a
f (x)dx

)
≤ 1

b− a

∫ b

a
φ( f (x)dx) (44)

By applying the Jensen’s inequality with φ(y) = y2, f (x) = q(t), and t ∈ [t0, t f ] (t f − t0 = T),
the resulting equation is equivalent to Equation (43), less than it is not a strict inequality:(

1
T

∫ t f

t0

qj(t)dt
)2
≤ 1

T

∫ t f

t0

q2
j (t)dt (45)

However, the equality of Equation (45) holds only if qj(t) is a constant function, which contrasts
with our assumption of analyzing the system in motion. Therefore, this is a strict inequality and both
the conditions in Equations (41) and (42) are satisfied. The stationary point found in this case is a
design of minimum energy for the system, corresponding to the global minimum of the unconstrained
energy consumption function (Equation (13)). This design reduces the energy consumption of motor j
of the quantity Esj :

Ej = Ewsj −
aj

Kr,j
·

I2
τj

Iq2
j
− 2Iτj Iqj Iτqj + TI2

τqj

I2
qj
− TIq2

j︸ ︷︷ ︸
Esj

(46)
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3.2. Active Constraint (µ∗ > 0)

When the design of minimum energy consumption lies outside the feasible region, the inequality
is active and therefore binds the solution to the constraint:

θ
∗(2)
j =

Iτj

TKr,jkL
j
+

Iqj

T
(47)

k∗(2)j = kL
j (48)

µ∗(2) =
2aj

T

(
Kr,j

(
TIq2

j
− I2

qj

)
kL

j + TIτqj − Iτj Iqj

)
(49)

In order to verify that the solution found is a minimum, the Hessian of the Lagrangian function at
the stationary point is evaluated:

H = ∇2
xjxj
L(x∗(2)j , µ

∗(2)
j ) =


2ajTKr,jkL

j
2 2aj Iτj

2aj Iτj 2aj

 I2
τj

TKr,jkL
j

2 +
Kr,j

T

(
TIq2

j
− I2

qj

)
 (50)

H is positive definite if the determinant of all the upper-left sub-matrices are positive, i.e., if the
following conditions hold:

1st condition: det(H11) = 2ajTKr,jkL
j

2
> 0 (51)

2nd condition: det(H) =
(

2ajKr,jkL
j

)2
(

TIq2
j
− I2

qj

)
> 0 (52)

The first condition in Equation (51) is always satisfied as all the coefficients are positive.
The second condition in Equation (52) is satisfied as the first factor is squared and the second one
is always positive as demonstrated in Section 3.1. Therefore, the solution in Equations (47)–(49) is a
minimum point of the Lagrangian function.

Determination of the Lower Bounds kL
j

Although the solution outlined in Section 3.2 is a minimum of the bounded objective function,
this does not ensure a reduction of the energy consumption with respect to the case without springs,
as it does not correspond to the global minimum of the unconstrained energy consumption function
(Equation (13)). In order for the addition of the springs to also be advantageous in this case, the value
of the stiffness bound kL

j must be properly set. Let us evaluate the energy consumption when the

design variables take the values θ
∗(2)
j and k∗(2)j (Equations (47) and (48)):

Ej(x
∗(2)
j ) = Ewsj +

aj

TKr,j

(
K2

r,j

(
TIq2

j
− I2

qj

)
kL2

k + 2Kr,j

(
TIτqj − Iτj Iqj

)
kL

j − I2
τj

)
︸ ︷︷ ︸

Esj

(53)

In Equation (53), Ewsj is the energy consumption of the system without springs; therefore, in order
to reduce the energy consumption Ej, the term Esj must be negative. By solving for kL

j the inequality
Esj < 0 it is possible to find the range of values of the stiffness bounds allowing for energy reduction:

0 < kL
j <

Iτj Iqj − TIτqj +

√(
TIτqj − Iτj Iqj

)2
+ I2

τj

(
TIq2

j
− I2

qj

)
Kr,j

(
TIq2

j
− I2

qj

) (54)
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The selection of the most suitable value of kL
j inside the range in Equation (54) is to be chosen by

the user depending on the specific system analyzed. As general guidelines, such selection is based on
a trade-off between energy reduction and technical feasibility of the solution. For example, very small
values of kL

j (kL
j → 0) lead to very large values for the mounting angle (θ∗(2)j → ∞, see Equation (47)),

which may be physically impossible.

4. Results

Two test cases have been employed for the numerical validation of the proposed method: a five-bar
mechanism and a SCARA robot. They are discussed in the following subsections.

4.1. Five-Bar Mechanism

The five-bar mechanism considered is shown in Figure 2a, while its dynamic properties are listed
in Table 1. In this first test case the static and the viscous friction forces have been neglected (fs = 0,
Fv = 0) as well as the interaction forces between the end-effector and the environment (fe = 0), while
both the cases in which the mechanism works on the horizontal (fg = 0) or the vertical (fg 6= 0) plane
have been considered. The end-effector moves a payload of 2 kg following a typical pick and place
trajectory, shown in Figure 2b, consisting in a vertical motion of 0.1 m between the Cartesian positions
P0 = [−0.4, −0.6] m and P1 = [−0.4, −0.5] m, a horizontal motion of 0.5 m from P1 to P2 = [0.1, −0.5]
m and another vertical motion of 0.1 m from P2 to P3 = [0.1, −0.6] m.

0.4 m

0.645 m
(0.45 kg)

0.645 m
(0.45 kg)

𝜗𝜗1 𝜗𝜗2
0.25 m

(0.78 kg)
0.25 m

(0.78 kg)

(a) (b)

Figure 2. Five-bar mechanism: (a) kinematic schematic and (b) end-effector trajectory path in
Cartesian space.

Table 1. Five-bar mechanism parameters.

Parameters Joint 1 and Joint 2

Kr Gear ratio [−] 1/20
I Motor inertia [kg ·m2] 4.13 · 10−5

R Motor winding resistance [Ω] 2.6
Ke Motor velocity constant [Vs/rad] 0.42
Kt Motor torque constant [Nm/A] 0.42
η Efficiency [−] 1

In such a task, the tool center point (TCP) moves from P0 to P3 and returns back in T = 1.6 s.
Each linear segment of the trajectory is executed following a double-S speed profile in the workspace
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with acceleration and deceleration times equal to 1/3 Ti and acceleration ramp rise and fall times equal
to 1/10 Ti, with Ti the time period of each trajectory segment (see Figure 3a). The position, velocity
and acceleration profiles of actuated joints corresponding to the chosen end-effector path have been
computed by means of the inverse kinematics and are shown in Figure 3b.

-0.6

-0.4

-0.2

0

0.2

-2

-1

0

1

2

0 0.4 0.8 1.2 1.6

-20

-10

0

10

20

(a)

2

3

4

5

6

7

-8

-4

0

4

8

0 0.4 0.8 1.2 1.6
-80

-40

0

40

80

(b)

Figure 3. Five-bar mechanism trajectory planning: (a) TCP coordinates vs. time and (b) joint
coordinates vs. time.

Both the motors of the system are equipped with regenerative drives and torsional springs
designed following the approach described in Section 3. According to Equation (54), the lower bounds
for the two springs must be included in the following range:

vertical plane :

{
0 < kL

1 < 17.23 Nm/rad
0 < kL

2 < 6.42 Nm/rad
(55)

horizontal plane :

{
0 < kL

1 < 11.62 Nm/rad
0 < kL

2 < 8.92 Nm/rad
(56)

A lower bound equal to 1 Nm has been set for both the spring stiffnesses in both the considered
cases, as such a choice gives reasonable values for the variable θ computed according to Equation (47):

vertical plane :

{
θ1(kL

1 = 1) = 9.36 rad
θ2(kL

2 = 1) = −3.09 rad
(57)

horizontal plane :

{
θ1(kL

1 = 1) = 2.47 rad
θ2(kL

2 = 1) = 6.35 rad
(58)
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By solving the bounded optimization problem, the following optima are found:

vertical plane :


θ∗1 = 1.67 rad k∗1 = 4.3 Nm/rad
θ∗2 = 8.73 rad k∗2 = 1.2 Nm/rad
µ∗ = 0

(59)

horizontal plane :


θ∗1 = 3.00 rad k∗1 = 5.7 Nm/rad
θ∗2 = 5.70 rad k∗2 = 4.4 Nm/rad
µ∗ = 0

(60)

In both cases, the solution found lies inside the feasible region of the constraint and corresponds to
the minimum of the unconstrained objective function. The time histories of the electric power required
by the two motors provided with the optimal springs are shown in the second row of Figures 4 and 5
for the case with and without gravity, respectively. The same figures also show in the first row the
electric power required by the system without torsional springs. The comparison between the areas
delimited by the electric power curves when springs are used or not clearly shows that the springs
reduces the energy consumption in all the scenarios considered.

-50

-25

0

25

50

75

Consumed energy Regenerated energy

0 0.4 0.8 1.2 1.6
-50

-25

0

25

50

75

(a)

-50

-25

0

25

50

75

Consumed energy Regenerated energy

0 0.4 0.8 1.2 1.6
-50

-25

0

25

50

75

(b)

Figure 4. Electric power without (top) and with (bottom) springs of motor 1 (a) and motor 2 (b) when
the mechanism lies on the vertical plane.

In order to corroborate the effectiveness of the co-exploitation of either energy-recovering devices
and elastic-energy storing systems, in Table 2 the values of the consumed energy per cycle for the
original system and the one retrofitted following the proposed approach are reported.

The values of the energy reduction clearly demonstrate that a great saving can be achieved with
the suggested retrofit of the system. By comparing the consumed energy values obtained considering or
not the effects of the gravity forces (i.e., vertical or horizontal plane), it is evident that the spring torques
do not compensate only the self-weight of the manipulator. Their use appears really advantageous
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also with no-gravity to compensate the inertial forces, leading to an overall reduction of the energy
consumption of about 70%.

-40

-20

0

20

40

60

Consumed energy Regenerated energy

0 0.4 0.8 1.2 1.6

-40

-20

0

20

40

60

(a)

-40

-20

0

20

40

60

Consumed energy Regenerated energy

0 0.4 0.8 1.2 1.6

-40

-20

0

20

40

60

(b)

Figure 5. Electric power without (top) and with (bottom) springs of motor 1 (a) and motor 2 (b) when
the mechanism lies on the horizontal plane.

Table 2. Consumed energy per cycle with (•) or without (◦) energy reducing devices.

Vertical Plane Horizontal Plane
Motor Energy (J) Energy Energy (J) Energy

◦ • Reduction (%) ◦ • Reduction (%)

1 10.15 2.06 79.70 5.62 1.88 66.59
2 9.43 2.29 75.69 7.31 2.14 70.63

Total 19.58 4.35 77.78 12.93 4.02 68.90

4.2. SCARA Robot

As the second test case a 4-dof SCARA robot is used. The kinematic diagram scheme and the
geometrical dimensions of the robot are shown in Figure 6a, while its main electric and mechanical
parameters are reported in Table 3. The system performs a linear rest to rest motion of the end-effector
between the Cartesian positions P0 = [−0.175, 0.400, 0.300] m and P1 = [0.175, 0.350, 0.200] m with
initial and final orientation angles about the z-axis of π/3 rad and π rad, respectively (see Figure 6b),
and returns back to P0.



Appl. Sci. 2020, 10, 7475 14 of 18

𝜗𝜗1 𝜗𝜗2

𝜗𝜗4

𝑧𝑧3

𝑥𝑥 𝑦𝑦

𝑧𝑧
𝑑𝑑1

𝑎𝑎1 𝑎𝑎2

𝑖𝑖 𝛼𝛼𝑖𝑖
[rad]

𝑎𝑎𝑖𝑖
[mm]

𝑑𝑑𝑖𝑖
[mm]

𝜗𝜗𝑖𝑖
[rad]

1 0 425 398 𝜗𝜗1
2 0 375 0 𝜗𝜗2
3 0 0 𝑧𝑧3 0
4 0 0 0 𝜗𝜗3

Denavit-Hartenberg parameters

TCP

(a) (b)

Figure 6. SCARA robot: (a) kinematic schematic and (b) end-effector trajectory path in Cartesian space.

Table 3. SCARA parameters.

Parameters Joint 1 Joint 2 Joint 3 Joint 4

M [kg] 12 15 − 2
Kr [−, m/rad] 1/60 1/100 1/210 1/30

I [kgm2] 2.08 · 10−5 2.08 · 10−5 1.70 · 10−6 1.70 · 10−6

Fv [Nms/rad, Ns/m] 0.03 0.03 0.2 0.001
Fs [Nm, N] 0.4 0.4 0.1 0.02

R [Ω] 39.4 39.4 18.2 18.2
Ke [Vs/rad] 0.588 0.588 0.16 0.16
Kt [Nm/A] 0.588 0.588 0.16 0.16

η [−] 1 1 1 1

Fifth-degree polynomial profiles have been chosen for the motion planning in the operative space
as shown in Figure 7. The same figure also shows the corresponding position, velocity, and acceleration
profiles of actuated joints. For this second test case, it has been assumed to provide all the four motors
with regenerative drives. Conversely, the elastic elements are added only to the first two joints, that are
the ones undergoing the largest motion. A lower bound of 5 Nm has been set for both the stiffnesses
(kL

1 , kL
2 ) which is inside their admissible ranges:

0 < kL
1 < 84.5 Nm/rad

0 < kL
2 < 180 Nm/rad

(61)

For the analyzed trajectory the optimum spring design is k∗1 = 42 Nm/rad, θ∗1 = 0.7418 rad,
k∗2 = 59 Nm/rad, and θ∗2 = 1.88 rad. Such a design leads to a reduction of the electric energy
consumption as it can be seen by comparing the areas delimited by the electric power curves in
Figure 8 when torsional springs in parallel with the motors are used (second row) or not (first row).
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Figure 7. SCARA trajectory planning: (a) TCP coordinates vs. time and (b) joint coordinates vs time.
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Figure 8. Electric power without (top) and with (bottom) springs of motor 1 (a) and motor 2 (b).

In order to quantify the benefits of the concurrent addition of regenerative drives and compliant
elements to the system, Table 4 states the values of the consumed energy per cycle employing or not
such devices.
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Table 4. Consumed energy per cycle employing (•) or not (◦) energy reducing devices.

Motor Energy (J) Energy
◦ • Reduction (%)

1 19.69 2.50 87.28
2 6.38 0.6689 89.53
3 19.68 14.30 27.35
4 1.97 1.50 24.03

Total 47.72 18.96 60.26

By comparing the consumed energy reduction of motors 3 and 4 with that of motors 1 and 2,
it appears evident the positive contribution of the compliant elements in the minimization of the
energy consumption. Indeed, motors 3 and 4 are provided only with regenerative drives and the
energy reduction is on average about 25.5%, while an energy saving up to 89% is obtained for motors 1
and 2 that exploit both energy reducing devices. Overall, a very satisfactory result is obtained being
the system energy consumption reduced about 60%.

5. Conclusions

This work has presented a method to minimize the energy consumption of robotic systems
performing cyclic tasks. The method relies on a retrofit of the system by means of energy-recovering
and energy-storing devices, such as regenerative drives and compliant elements. The first device
allows to harvest instead of waste the system braking energy, while the second stores potential elastic
energy. Both these sources of energy are then transferred to the system reducing the energy needed by
the actuators.

In order to enhance the energy efficiency of the system, the compliant elements must be optimally
designed in terms of stiffness and preload. To this end, a bounded optimization problem has been
solved analytically. This allows the determination of the optimal compliant element parameters that
minimize the motor electrical energy consumption for a given periodic path executed by the robot.

The method has been applied to a five-bar mechanism and to a four-dof SCARA robot. The results
demonstrate how this technique has distinct advantages in terms of reduction of consumed energy
that can reach values as high as 77.8% with a standard, not-optimized trajectory. Further trajectory
optimization could lead to even further reduction.
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