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Abstract: The dynamics of flexible multibody systems (FMBSs) is governed by ordinary differential
equations or differential-algebraic equations, depending on the modeling approach chosen. In both
the cases, the resulting models are highly nonlinear. Thus, they are not directly suitable for the
application of the modal analysis and the development of modal models, which are very useful
for several advanced engineering techniques (e.g., motion planning, control, and stability analysis
of flexible multibody systems). To define and solve an eigenvalue problem for FMBSs, the system
dynamics has to be linearized about a selected configuration. However, as modal parameters
vary nonlinearly with the system configuration, they should be recomputed for each change of the
operating point. This procedure is computationally demanding. Additionally, it does not provide
any numerical or analytical correlation between the eigenpairs computed in the different operating
points. This paper discusses a parametric modal analysis approach for FMBSs, which allows to
derive an analytical polynomial expression for the eigenpairs as function of the system configuration,
by solving a single eigenvalue problem and using only matrix operations. The availability of a
similar modal model, which explicitly depends on the system configuration, can be very helpful
for, e.g., model-based motion planning and control strategies towards to zero residual vibration
employing the system modal characteristics. Moreover, it allows for an easy sensitivity analysis of
modal characteristics to parameter uncertainties. After the theoretical development, the method is
applied and validated on a flexible multibody system, specifically using the Equivalent Rigid Link
System dynamic formulation. Finally, numerical results are presented and discussed.
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1. Introduction

The dynamic behavior of a mechanical system can be easily studied by means of modal
analysis, which provides the system modal parameters or characteristics (i.e., natural frequencies,
mode shapes, and damping ratios). The knowledge of the modal characteristics is a fundamental
requirement for the implementation of several advanced model-based engineering techniques, such
as motion planning [1], control design [2,3], stability analysis [4,5], model reduction [6–10], model
updating [11–13], and structural modification [14–16].

Modal analysis relies on the solution of an eigenvalue problem, which seeks the eigenvalues and
eigenvectors associated to a linear system of equations. However, the adoption of such an analysis may
provide a useful insight also for the study of mechanical systems whose dynamics is not governed
by linear time-invariant equations. A significant class of mechanical systems that falls in this folder
is the one of the flexible-link multibody systems (FMBSs). Such systems are robots or mechanisms
that can deflect due to external loads or internal body forces, whose motion is described by means
of kineto-elastodynamic models, hereafter referred to as dynamic models [17]. Several contributions
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can be found in the literature on the modeling of such systems as well as survey papers [18,19]
and books [20,21]. The system elastic behavior is represented by continuous ordinary and partial
differential equations. Such equations, so as to be simplified and solved, are discretized by means
of lumped parameters, assumed modes, or finite element methods [19]. The common approach for
modeling FMBSs consists in the use of the finite element method to discretize the flexible links and
to represent their elastic deformations and in superposing such deformations to a known rigid body
motion. Based on the set of coordinates chosen to model the rigid body motion, i.e., a minimum
set of independent coordinates (representing the system degrees of freedom) or a redundant set of
coordinates (including both the independent and dependent coordinates), the equations of motion
are formulated as a set of ordinary differential equations (ODEs) or a coupled set of differential and
algebraic equations (DAEs) to be solved simultaneously [20], respectively. In both the aforementioned
cases, due to the large displacements to which FMBSs are subjected, their dynamic models are highly
nonlinear and depend on the system configuration. Therefore, the related mass, stiffness, and damping
matrices are in general nonconstant, as well as the resulting modal parameters.

A common practice used in the literature to apply the modal analysis to FLMBSs consists of
linearizing the nonlinear dynamic model about a selected configuration so that the modal parameters
can be computed. In particular, if the system model is formulated by means of ODEs, the eigenvalue
analysis can be straightforwardly applied to the linearized system equations [12,22]. Conversely, if the
system model is formulated by means of DAEs, two different strategies are possible for computing the
eingensolutions: (a) transform the motion equations from DAEs to ODEs, linearize the resulting model,
and then compute the eigenpairs [5,23,24]; (b) perform a direct eigenanalysis, i.e., the eigenanalysis for
the system of equations resulting from the direct linearization of the DAEs [25,26]. The main difference
between the eigensolutions obtained from linearized ODEs or DAEs is that the linearized ODEs allow
to obtain the exact problem spectrum, while the linearized DAEs are affected by the linearization
method and introduce spurious eigenvalues in the spectrum [27]. Due to such an evidence, this paper
will focus on FMBSs modeled by means of a minimum set of ODEs.

Although the adoption of linearized models, on the one hand, allows the computation of the
eigenpairs of FMBSs, on the other hand, it does not take directly into account the variability of the
modal parameters due to the system configuration change. This last point is typically addressed by
discretizing a given system motion/task in a certain number of operative points about which the
nonlinear model is linearized and a new eigenvalue problem solved [5,6]. Following such an approach,
several eigenvalue problems are to be solved, which is typically a computational expensive operation;
additionally, unless interpolation techniques are used, the eigenpairs computed at different operating
points are not related among them.

An approach that could help in overcoming such an issue has been proposed by
Wittmuess et al. [28]. In such a paper, a method to get a parametric representation of the eigenvalues
and eigenvectors of an undamped second-order mechanical system, whose model is analytically
known, has been presented. In [29], Wittmuess et al. extended the method to proportionally
damped systems. In this approach, the parametric representation of the eigenpairs is inferred from
an iterative Taylor series expansion of the eigenvalue problem associated to the linearized system
matrices about a parametric operating point. A first extension and application of the approach
proposed by Wittmuess et al. to FMBSs characterized by small deformation and negligible damping
and velocity-dependent terms has been proposed by the authors in [30,31]. In particular, in [31],
the authors performed a preliminary investigation on the method capability to approximate the
modal content over a wide range of the FMBS parameters, including not only the rigid motion
coordinates, but also the payload handled by a two-degree-of-freedom (dof) planar robot carrying out
a pick-and-place trajectory.

As promising results have been obtained in these preliminary studies, this paper aims at providing
a comprehensive dissertation on the extension of such a method to FMBSs characterized by small
deformations and non negligible damping and velocity-dependent terms. Indeed, the knowledge of
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an analytical relationship between the system motion condition and the natural frequencies, damping
factors and modal shapes of, at least, the main vibrational modes, can be fruitfully exploited for,
e.g., the development and implementation of more efficient model-based motion planning and control
strategies towards to vibration minimization or the set-up of optimization problems based on the
system modal characteristics. Additionally, a similar analytical expression allows for an easy sensitivity
analysis of the system model to parameter uncertainties.

The paper is set out as follows. Starting from a nonlinear dynamic model formulated by means of
a minimum set of ODEs, Section 2 derives the linearized dynamic model of a FMBS about a dynamic
equilibrium configuration and discusses the eigenvalue problem for systems having nonsymmetric
matrices, as it is the case of the linearized models of FMBSs. Section 3 outlines the method to derive
the polynomial expressions for the eigenpairs of a FMBS in its generalized coordinates. In Section 4,
the effectiveness of the method is proved by applying it to a flexible planar robot following a predefined
trajectory. Finally, Section 5 gives concluding remarks.

2. Modeling of Flexible-Link Multibody Systems

2.1. Motion Equations

The total motion of a FMBS undergoing large rigid body motion and small elastic deformations
can be modeled as an elastic motion, due to the link flexibility superposed onto a rigid body motion.
Different strategies exist to model both the elastic and the rigid motions. The widespread approach
to model link flexibility is by means of finite element model. Such a model is then embedded into a
floating frame [20], in a corotational frame [32], or in a moving reference configuration [33], which
represents the rigid motion. Depending on the selected model strategy and the type of coordinates
used (i.e., relative, absolute, natural, minimal, or nodal coordinates) the motion equations result
in a nonlinear set of DAEs or ODEs. Despite the large use of the DAE formulation, in this paper
dynamic models formulated by means of ODEs will be adopted, as we are interested in the system
modal parameters. Indeed, models employing ODEs lead to the exact system spectrum, unlike DAE
formulation that may lead to approximate eigenvalues or introduce spurious ones [27].

The motion equations of a FMBS represented by means of a minimum set of second-order ODEs
expressed in terms of the system degrees of freedom (i.e., independent coordinates) take the following
matrix form,

M(qr)q̈ + C(qr, q̇r)q̇ + K(qr)q = f(qr, u) (1)

where q =
{

qT
f qT

r

}T
is the vector of the independent coordinates, including the vector q f ∈ Rn f

of the elastic coordinates of the flexible links and the vector qr ∈ Rnr of the rigid body variables.
The number of rigid coordinates, nr, is equal to number of rigid body motions of the system, whereas
the number of the elastic coordinates, n f , depends on the number of finite elements employed to
discretize the flexible links; their sum gives the total number of the system dofs, ndo f = n f + nr.
In Equation (1), M is the symmetric, positive definite mass matrix; C is the matrix containing the
damping, centrifugal, and Coriolis terms; K is the system stiffness matrix, which is semi-positive
definite as rigid-body motion is allowed. According to the model formulation employed, the K matrix
can depend or not on the rigid body coordinates qr. Indeed, e.g., if the floating frame of reference
formulation [20] is employed, K is constant, whereas in the case of the Equivalent Rigid Link System
(ERLS) formulation [34], it depends nonlinearly on qr. The term on the right-hand side of Equation (1)
represents the vector of the gravity, friction, and generalized external forces, it depends on the system
coordinates, qr, and on the external inputs, u.
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2.2. Linearization of the Equations of Motion

Due to the strong coupling between the gross rigid body motion and the fine motion (vibration)
of the flexible links, the system motion equations are highly nonlinear differential equations in the
coordinates and velocities.

To compute the modal characteristics of the system, the motion equations are to be linearized.
Let us rewrite Equation (1) as follows.

Γ(P) = Γ(q, q̇, q̈, u) = Mq̈ + Cq̇ + Kq− f (2)

Equation (2) can be linearized about an operating point P0 = (q0, q̇0, q̈0, u0) as follows.

Γ(P0 + δP) ' ∂Γ

∂q

∣∣∣∣
P=P0

δq +
∂Γ

∂q̇

∣∣∣∣
P=P0

δq̇ +
∂Γ

∂q̈

∣∣∣∣
P=P0

δq̈ +
∂Γ

∂u

∣∣∣∣
P=P0

δu (3)

where

∂Γ

∂q
= K =

∂M
∂q
⊗ q̈ +

∂C
∂q
⊗ q̇ +

∂K
∂q
⊗ q + K +

∂f
∂q

(4)

∂Γ

∂q̇
= C =

∂C
∂q̇
⊗ q̇ + C (5)

∂Γ

∂q̈
= M = M (6)

∂Γ

∂u
= −F = − ∂f

∂u
(7)

In Equations (4) and (5), the symbol ⊗ indicates the inner product between the partial derivative
of a matrix A ∈ Rndo f×ndo f with respect to vector s ∈ Rndo f by vector b ∈ Rndo f :

∂A
∂s
⊗ b =

[
∂A
∂s1

b . . .
∂A

∂sndo f

b
]

(8)

Equations (4)–(7) represent the most general formulation of the linearized system matrices,
i.e., when the operating point is chosen as a dynamic equilibrium state of the system. As it is
typically the case, whenever the system model is linearized about a static equilibrium position, i.e.,
P0 = (q0, 0, 0, u0), some of the terms in the linearized stiffness K and damping C matrices vanish.
Then, it holds that

∂Γ

∂q
= K =

∂K
∂q
⊗ q + K +

∂f
∂q

(9)

∂Γ

∂q̇
= C = C (10)

Finally, the system motion equations linearized about an operating point can be written as

Mδq̈ + Cδq̇ + Kδq = Fδu (11)
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2.3. Modal Analysis for Systems with Nonsymmetric Matrices

The linearized damping matrix C in Equation (11) is, in general, neither proportional to the mass
and stiffness matrices nor symmetric (due to the velocity-dependent terms); therefore, the eigenvalue
problem associated to the model (11) takes the form of a quadratic eigenvalue problem:(

λ2M + λC + K
)

φ = 0 (12)

ψ∗
(

λ2M + λC + K
)

= 0 (13)

where λ is a system eigenvalue, and φ ∈ Rndo f and ψ ∈ Rndo f are the corresponding right and
left eigenvectors, respectively. In Equation (13), symbol ∗ denotes the conjugate transpose, as λ, φ,
and ψ may be complex valued. The quadratic eigenvalue problem in Equations (12) and (13) has
2ndo f eigenvalues, which are symmetric with respect to the real axis of the complex plane, being
the system matrices real [35]. This means that the system eigenvalues can be either real or complex,
but in the last case, they occur in complex conjugate pairs as well as the corresponding eigenvectors:
if λ1 = λr + iλi is a system eigenvalue, then λ2 = λr − iλi is a system eigenvalue too, and the
corresponding eigenvectors are φ1 = φr + iφi and φ2 = φr − iφi, respectively.

Although the quadratic eigenvalue problem in Equations (12) and (13) could be directly solved,
it is usually transformed in a generalized eigenvalue problem

Aw = λBw (14)

z∗A = λz∗B (15)

by reducing the ndo f -dimensional set of second-order homogeneous differential equations in
Equation (11) to a 2ndo f -dimensional first-order set of equations:[

C M
N 0

]
︸ ︷︷ ︸

B

{
δq̇
δq̈

}
︸ ︷︷ ︸

ẏ

−
[
−K 0

0 N

]
︸ ︷︷ ︸

A

{
δq
δq̇

}
︸ ︷︷ ︸

y

=

[
0
0

]
(16)

where N ∈ Rndo f×ndo f can be any nonsingular matrix; here it is considered N = M. The quadratic
(Equations (12) and (13)) and the generalized (Equations (14) and (15)) eigenvalue problems have
the same 2ndo f eigenvalues, whereas the corresponding eigenvectors are correlated by the following
relations,

w =

{
φ

λφ

}
z =

{
ψ

λ∗ψ

}
(17)

If all the system eigenvalues are distinct and the left and the right eigenvectors are normalized so
that w∗i Bzi = 1, the following biorthonormality relations hold,

z∗i Awj =

{
λi if i = j
0 if i 6= j

; z∗i Bwj = 1 =

{
1 if i = j
0 if i 6= j

(18)
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3. Polynomial Representation of the Eigenpairs of Flexible-Link Multibody Systems

3.1. Taylor Series for Multivariate Function

Let E be a matrix depending nonlinearly on a set of p parameters collected in the vector x ={
x1 . . . xp

}T
∈ Rp, if the parameter dependency is analytically known, it is possible to approximate

the multivariate function E(x) with a polynomial by means of a Taylor series truncated at order t:

E(x) ≈
t

∑
σ1=0
· · ·

t

∑
σp=0

1
σ1! . . . σp!

∂σ1+···+σp E(x0)

∂xσ1
1 . . . ∂x

σp
p
· δxσ1

1 . . . δx
σp
p =

t

∑
|σ|=0

∂σE(x0)

σ!︸ ︷︷ ︸
:=E(σ)

δxσ (19)

where x0 =
{

x1,0 . . . xp,0

}T
∈ Rp is the expansion point, and δxi = xi − xi,0 with i = 1, . . . , p.

The last term on the right-hand side of Equation (19) has been obtained by using a multi-index
formulation. In particular, σ is the multi-index, i.e., a tuple of non-negative integers in a number equal
to the one of system parameters: σ = (σ1, σ2 . . . , σp) with σi ∈ N+, i = 1, . . . , p. In Equation (19) and in
the remaining of the paper, the following definitions for a multi-index are adopted [36]:

(1) norm: |σ| = σ1 + σ2 + · · ·+ σp
(2) factorial: σ! = σ1!σ2! . . . σp!
(3) power: xσ = xσ1

1 xσ2
2 . . . x

σp
p

(4) partial derivative: ∂σE = ∂|σ|E
∂x

σ1
1 ∂xσ2

2 ...∂x
σp
p

(5) number of ordered combinations of p positive integers whose sum is equal to |σ|:

np,σ =
(p + |σ| − 1)!
(|σ|)!(p− 1)!

(6) identity: two multi-indices σ = (σ1, σ2 . . . , σp) ans ς = (ς1, ς2 . . . , ςp) are identical, i.e., σ = ς,
if and only if σ1 = ς1, σ2 = ς2, . . . , σp = ςp.

3.2. Eigensolution Expansion

The dynamic model of a FMBS depends nonlinearly on the values assumed by the rigid motion
coordinates and their derivatives. Therefore, the solution of the eigenvalue problem obtained by means
of a linearized model has only a local validity, i.e., it holds for the expansion point P = P0. The validity
of such a solution can be extended by deriving a polynomial representation of the eigenpairs in the
system rigid motion coordinates and velocities. To this end, the Taylor series for multivariate functions
(see Section 3.1) and the eigenvalue problem formulation of Equation (12) are here exploited.

Let x ∈ Rp≥2nr be the vector of model parameters including the rigid motion coordinates qr;
their velocities q̇r; and, possibly, the parameters which the system model can depend on, such as
payload mass, stiffness varying with the operative conditions, design parameters, and so on. Let us
approximate, by means of Taylor series (see Equation (19)), the linearized system matrices, which are
functions of x, about the operative point x0:

M(x) ≈
t

∑
|σ|=0

M(σ)
δxσ, C(x) ≈

t

∑
|σ|=0

C(σ)
δxσ, K(x) ≈

t

∑
|σ|=0

K(σ)
δxσ (20)

Now, let us assume that also the eigenpairs can be approximated by means of a Taylor expansion:

φi(x) ≈
t

∑
|σ|=0

φ
(σ)
i δxσ, λi(x) ≈

t

∑
|σ|=0

λ
(σ)
i δxσ, i = 1, . . . , 2ndo f (21)

Note that having assumed to analytically know the system matrices, the Taylor series in
Equation (20) are known expressions; conversely, the derivatives of the eigensolutions (λ(σ)

i , φ
(σ)
i )
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with respect to x in Equation (21) are unknown quantities and must be determined. To this end, let
us rewrite the eigenvalue problem of Equation (12) as a Taylor series expansion truncated to the t-th
order through Equations (20) and (21):

t

∑
|α|=0

λ
(α1)
i λ

(α2)
i M(α3)φ

(α4)
i δxα1+α2+α3+α4 +

t

∑
|β|=0

λ
(β1)
i C(β2)φ

(β3)
i δxβ1+β2+β3 +

t

∑
|γ|=0

K(γ1)φ
(γ2)
i δxγ1+γ2 = 0

i = 1, . . . , 2ndo f (22)

where α = (α1, α2, α3, α4), β = (β1, β2, β3) and γ = (γ1, γ2) are three multi-indices. The components
of such multi-indices set the order of each factor of the three addends in Equation (22), so that their
whole order is equal to |α| = |β| = |γ|. Note that the entries of α, β and γ are multi-indices too.
They play the same role of the multi-index σ in Equation (19), i.e., they are the multi-indices related to
the system parameters x, and include p non-negative integer entries:

αa = (αa1 , αa2 . . . αap), a = 1, . . . , 4

βb = (βb1 , βb2 . . . βbp), b = 1, . . . , 3 (23)

γc = (γc1 , γc2 . . . γcp), c = 1, . . . , 2

If the terms in Equation (22) are now ordered by powers of δx, by defining

τ = (τ1, . . . , τp) =

(α11 + α21 + α31 + α41 , . . . , α1p + α2p + α3p + α4p) =

(β11 + β21 + β31 , . . . , β1p + β2p + β3p) =

(γ11 + γ21 , . . . , γ1p + γ2p) =

|τ| = |α| = |β| = |γ| (24)

Equation (22) can be rearranged as
t

∑
|α|=0

α1+α2+α3+α4=τ

λ
(α1)
i λ

(α2)
i M(α3)φ

(α4)
i +

t

∑
|β|=0

β1+β2+β3=τ

λ
(β1)
i C(β2)φ

(β3)
i

t

∑
|γ|=0

γ1+γ2=τ

K(γ1)φ
(γ2)
i

 δxτ = 0

i = 1, . . . , 2ndo f (25)

It results in a sum of np,τ terms for each value of τ (see Section 3.1) made by two coefficients each,
i.e., the term between brackets and δxτ . Equation (25) has to hold for all δx ∈ Rp, meaning that for a
given |τ|, all the np,τ terms between brackets resulting from Equation (25) have to be equal to zero:

t

∑
|α| = 0

α1+α2+α3+α4=τ

λ
(α1)
i λ

(α2)
i M(α3)φ

(α4)
i +

t

∑
|β|=0

β1+β2+β3=τ

λ
(β1)
i C(β2)φ

(β3)
i

t

∑
|γ|=0

γ1+γ2=τ

K(γ1)φ
(γ2)
i = 0

i = 1, . . . , 2ndo f (26)

Equation (26) contains the eigenvalue λ
(order)
i and eigenvector φ

(order)
i derivatives from order 0 to

t. Let us rearrange such an equation so that the highest eigenpair derivatives are outside the sums:
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2λ
(t)
i M(0)

φ
(0)
i + λ

(0)
i λ

(0)
i M(0)

φ
(t)
i + λ

(t)
i C(0)

φ
(0)
i + λ

(0)
i C(0)

φ
(t)
i + K(0)

φ
(t)
i =

= −



t

∑
|α|=1

α1 6=|α|

α2 6=|α|

α4 6=|α|
α1+α2+α3+α4=τ

λ
(α1)
i λ

(α2)
i M(α3)φ

(α4)
i +

t

∑
|β|=1

β1 6=|β|

β3 6=|β|

β1+β2+β3=τ

λ
(β1)
i C(β2)φ

(β3)
i +

t

∑
|γ|=1

γ2 6=|γ|
γ1+γ2=τ

K(γ1)φ
(γ2)
i


︸ ︷︷ ︸

rτ,i

i = 1, . . . , 2ndo f (27)

By solving Equation (27) for the highest derivatives of the eigenpairs it holds that{
φ
(t)
i

λ
(t)
i

}
= −

[
λ
(0)
i λ

(0)
i M(0)

+ λ
(0)
i C(0)

+ K(0)
(

2λ
(0)
i M(0)

+ C(0)
)

φ
(0)
i

]
︸ ︷︷ ︸

Si

†
rτ,i (28)

i = 1, . . . , 2ndo f

where Si is a rectangular matrix with ndo f rows and ndo f + 1 columns. Symbol “ † ” indicates the
pseudo-inverse matrix. Note that on the right-hand side of Equation (28) only the eigenpair derivatives
up to order t− 1 appear. Therefore, by proceeding iteratively from the first order (that requires the
only knowledge of the eigenpairs computed at the expansion point λ

(0)
i , φ

(0)
i ) up to the desired

Taylor order, it is possible to compute all the coefficients of the Taylor series expansion in Equation (22).
In such a way, the eigenvectors and eigenvalues of a FMBS are expressed as polynomial functions of
the system rigid-body motion and of other possible variables of interest.

Although the method has been derived for the right eigenvectors (φ), its extension to the left (ψ)
ones is trivial: the same procedure has to be repeated by substituting the linearized system matrices
with their transposes, i.e., the starting eigenvalue problem is the following one,(

λ∗λ∗MT
+ λ∗CT

+ KT
)

ψ = 0 (29)

Note that the derivatives of each eigenpair (λi, φi) are independent from the others 2ndo f − 1
pairs; therefore, the problem can be solved for just the eigenpairs of interest, as well as if the eigenpairs
are all complex conjugate, it is enough to solve the problem for ndo f eigenpairs. The order t at
which to truncate the Taylor series must be chosen as a trade-off between accuracy and complexity
of the approximated eigensolutions. Indeed, a higher truncation order better approximates the real
solutions, but the number of addends of the polynomial functions representing the eigensolutions
rapidly increases with it, compromising the computational benefits of the method. An evidence of
this is provided in Table 1. It shows the number of addends of the approximated functions expanded
up to a certain order t and parameterized on the rigid-body motion of systems having nr rigid dofs.
The parameterization about dynamic equilibrium configurations is computationally more demanding
with respect to the one made about static equilibrium configurations, as the first uses twice the number
of parameters. Therefore, a computationally efficient approximation of the eigenpairs about dynamic
equilibrium configurations can be obtained only for systems with few rigid dofs. Conversely, if,
as it is common in practice, the eigenpairs are computed about static equilibrium configurations,
they can be efficiently approximated with the proposed method also if they depend on several rigid
dofs. Regardless the computational efficiency and hence the possibility to employ the approximated
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eigenpairs in real-time applications, the method provides a function that puts in correlation the modal
parameters with the system configurations; these could be used in offline methods such as optimization
techniques.

Table 1. Number of addends of the polynomial functions approximating the eigensolutions.

Static Equilibrium Dynamic Equilibrium
(x = qr) (xT = {qT

r q̇T
r })

nr t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

1 2 3 4 5 6 3 6 10 15 21
2 3 6 10 15 21 5 15 35 70 126
3 4 10 20 35 56 7 28 84 210 462
4 5 15 35 70 126 9 45 165 495 1287
5 6 21 56 126 252 11 66 286 1001 3003
6 7 28 84 210 462 13 91 455 1820 6188

4. Results

The effectiveness of the method in approximating the variability of the eigenpairs of FMBS due
to system configuration change has been validated by means of the test case shown in Figure 1. It is
an open-chain, planar mechanism with two flexible links and two revolute joints, and therefore two
rigid dofs. The system has been modeled by means of the ERLS formulation [34], which leads to a
dynamic model consisting of a minimum set of nonlinear ODEs (the interested reader can find the
analytical nonlinear model of the studied system in the Appendix A.1). The link flexibility has been
modeled through finite elements, in particular, uniform two-node and six-dof beam elements (see
Figure 1) have been employed with the properties shown in Table 2. The system dynamic model has
23 dofs, of which two are the rigid motion coordinates and 21 are elastic dofs. The two rigid motion
coordinates have been chosen as the absolute angular position of the shoulder and the elbow joints,
respectively. They have been denoted q1 and q2 in Figure 1.

To test the correctness of the method in approximating the eigenpairs under motion condition,
the system is forced to follow a given trajectory. In particular, the end-effector (point E in Figure 1)
moves along a horizontal linear path of 0.3 m in 0.5 s. The corresponding trajectory in the joint
coordinates is shown in Figure 2.

Rigid dofs
Elastic dofs

𝑞𝑞2

𝑞𝑞1
y

x

𝐸𝐸

𝑞𝑞𝑓𝑓,1

𝑞𝑞𝑓𝑓,2
𝑞𝑞𝑓𝑓,3

𝑞𝑞𝑓𝑓,4

𝑞𝑞𝑓𝑓,5
𝑞𝑞𝑓𝑓,6

𝑞𝑞𝑓𝑓,7

𝑞𝑞𝑓𝑓,8
𝑞𝑞𝑓𝑓,9

𝑞𝑞𝑓𝑓,10

𝑞𝑞𝑓𝑓,11
𝑞𝑞𝑓𝑓,12
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𝑞𝑞𝑓𝑓,14

𝑞𝑞𝑓𝑓,15 𝑞𝑞𝑓𝑓,16

𝑞𝑞𝑓𝑓,17

𝑞𝑞𝑓𝑓,18
𝑞𝑞𝑓𝑓,19

𝑞𝑞𝑓𝑓,20

𝑞𝑞𝑓𝑓,21

Figure 1. Finite element model of the studied 2-degree-of-freedom (dof) planar manipulator.

To apply the method under investigation, the system dynamic model has been linearized about a
dynamic equilibrium configuration: P0 = (q0 = q(T/2), q̇0 = q̇(T/2), q̈0 = q̈(T/2), u0 = u(T/2)),
where T is the time period of the trajectory, the numerical values of the dynamic equilibrium
configuration are stated in Appendix A.2. Then, the linearized system has been parameterized

on the positions and velocities of the rigid motion coordinates, i.e., x =
{

q1 q2 q̇1 q̇2

}T
.

Starting from the solution of the eigenvalue problem computed at the expansion point x = x0 =
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{
q1(T/2) q2(T/2) q̇1(T/2) q̇2(T/2)

}T
, the eigenpair derivatives up to the fourth Taylor series

expansion have been computed by means of Equation (28). Finally, fourth-grade polynomials,
representing the eigenvalues and eigenvectors as function of the angular positions and velocities
of the shoulder and the elbow joints, have been obtained.

Table 2. Finite element model parameters.

Property Symbol Value

Length first link L1 0.6 m
Length second link L2 0.45 m
Bending moment of inertia J 3.97 · 10−8 m4

Circular cross-sectional area A 7.06 · 10−4 m2

Mass density ρ 2700 kg/m3

Linear mass density ρl 1.906 kg/m
Young’s modulus E 69 · 109 Pa
Mass proportional damping coefficients α 8.7 · 10−1 m/s
Stiffness proportional damping coefficients β 4.5 · 10−6 m·s
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(a) Position of the shoulder joint.
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(b) Position of the elbow joint.
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(c) Angular velocity of the shoulder joint.
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(d) Angular velocity of the elbow joint.
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(e) Angular acceleration of the shoulder joint.
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(f) Angular acceleration of the elbow joint.

Figure 2. Joint trajectory.
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The approximated eigenpairs have been compared with the exact ones, which are computed
linearizing the model at each sample time (∆t = 0.01 s) and solving the corresponding eigenvalue
problem. In particular, for comparison, the following indices have been employed,

• relative percentage error on the undamped natural frequency, ε f :

ε f =
| f − f̃ |

f
· 100 (30)

Let λ = λr + iλi be a system eigenvalue, it holds:

ω =
√

λ2
r + λ2

i ; f =
ω

2π
(31)

• relative percentage error on the damping factor, εξ :

εξ =
|ξ − ξ̃|

ξ
· 100; ξ = −λr

ω
(32)

• modal assurance criterion (MAC):

MAC =
|φ∗φ̃|2

(φ̃∗φ̃) (φ∗φ)
(33)

In Equations (30), (32) and (33), the over-set tilde denotes the approximated quantities. The target
value for the comparison of the adopted indices is 1 for the MAC and 0 for ε f and εξ .

The comparison indices for the first three elastic pairs of complex conjugate eigenvalues and
eigenvectors are shown in Figures 3–5. The same figures also show the trend of the undamped
eigenfrequencies and of the damping ratio along the trajectory, to provide an evidence of the variability
of the modal parameters due to system configuration change. All the three figures show a good
agreement between the exact and the approximated modal parameters along almost the entire trajectory.
The biggest discrepancies (but still bounded) occur on the tails of the trajectory (at the beginning
and the end), where the expansion parameters differ significantly from the values they assumed
at the expansion point. Overall, the results appear very satisfying for all the three comparison
metrics adopted.

Finally, note that, although the system has been parameterized around a dynamic equilibrium
configuration, the computational time has been drastically reduced. Indeed, the solution of the
eigenvalue problem in the 51 operating points in which the trajectory has been discretized requires
approximately 0.135 s with a Matlab implementation on a machine with one processor of the type
Intel Core i5-6200U CPU at 2.4 GHz with 8 gigabyte of RAM. Conversely, the computation of the
approximations of the analyzed eigenpairs in the same points takes on average 0.008 s, leading to a
reduction of the computation time of 94%.
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(f) MAC between approximated and the exact
left eigenvectors.

Figure 3. Second vibration mode along the planned trajectory.
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Figure 4. Cont.
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(f) MAC between approximated and the exact
left eigenvectors.

Figure 4. Third vibration mode along the planned trajectory.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

1350

1400

1450

F
re

q
u
en

cy
 f

 [
H

z]

Exact

Approx.

(a) Comparison between the approximated
and exact undamped eigenfrequencies.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0.0195

0.02

0.0205

D
am

p
in

g
 r

at
io

 
 [

-]

Exact

Approx.

(b) Comparison between the approximated
and exact damping ratio.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

0.02

0.04

0.06

f [
%

]

(c) Relative percentage error on the undamped
eigenfrequencies.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

 [
%

]

(d) Relative percentage error on the damping
ratio.

Figure 5. Cont.



Appl. Sci. 2019, 9, 5156 14 of 21

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0.9994

0.9996

0.9998

1

M
A

C
 

 [
-]

(e) MAC between approximated and the exact
right eigenvectors.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0.92

0.94

0.96

0.98

1

M
A

C
 

 [
-]

(f) MAC between approximated and the exact
left eigenvectors.

Figure 5. Fourth vibration mode along the planned trajectory.

5. Conclusions

This paper has outlined the entire procedure to get an analytical polynomial expression of the
eigenpairs of a flexible-link multibody system (FMBS) as function of its configuration, in terms of
rigid-body motion coordinates and velocities. The method is suitable for FMBSs characterized by small
deformations, whose dynamic model is analytically known and formulated by means of a minimum
set of ordinary differential equations. Starting from a dynamic model linearized about a static or
dynamic equilibrium configuration, the eigenvalue problem in such a configuration is computed.
By iteratively expanding the eigenvalue problem in a Taylor series with respect to the rigid motion
coordinates, their velocities, and, possibly, the parameters which the system model can depend on (e.g.,
payload mass), the eigenpair derivatives at the expansion points are inferred. These terms represent
the coefficients of the polynomial functions describing the approximated eigenpairs.

The correctness of the method in approximating the system eigenpairs under motion condition
(while reducing the computational time), has been numerically proved with satisfactory results by
employing a two-dof flexible planar manipulator forced to follow a given trajectory. An experimental
validation of the method both in static and dynamic conditions will be addressed in future works by
means of an impact analysis and an operational modal analysis, respectively.

The availability of a polynomial function for the eigenpairs explicitly depending on the system
configuration can result very helpful for model-based techniques that need an accurate knowledge
of the system modal characteristics, such as motion planning and control strategies towards to zero
residual vibration.

The method allows to reach a desired accuracy in the eigenpair approximation by selecting the
proper expansion order of the Taylor series. However, the selection of a high expansion order could
compromise the computational benefits, as the number of addends of the polynomial functions that
approximate the eigenpairs rapidly increases with the expansion order. Further research will focus
on the development of an index that allows a priori estimation of the proper order of the truncated
Taylor series to reach a desired accuracy on the approximated eigensolutions while preserving the
computational efficiency.
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Appendix A. Test Case Implementation Details

Appendix A.1. Nonlinear Dynamic Model

The nonlinear dynamic model of the studied planar flexible-link mechanism, obtained through
the equivalent rigid-link mechanism formulation, takes the form of Equation (1). The coordinate vector
contains the following 21 elastic coordinates and 2 rigid coordinates, whose physical meaning can be
inferred from Figure 1.

q =



q f ,1
q f ,2
q f ,13
q f ,4
q f ,5
q f ,6
q f ,7
q f ,8
q f ,9
q f ,10
q f ,11
q f ,12
q f ,13
q f ,14
q f ,15
q f ,16
q f ,17
q f ,18
q f ,19
q f ,20
q f ,21

q1

q2



(A1)

The force vector (see Equation (A2)) includes the effects of the gravity forces and the two torques,
u1 and u2, acting on the shoulder and elbow joints, respectively.

The stiffness, mass, and damping matrices for this system are shown in Equations (A3)–(A5),
respectively. The symbols used in these equations are those defined in Table 2.
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fT =

{
0 −

ρl L1 g
4

0 0 −
ρl L1 g

4
0 0 −

ρl L1 g
4

0 0 −
ρl (3L1 + 4L2)g

24
−u2 +

ρl L2
1 g cos(q1)

192
0 −

ρl L2 g
3

0 0 −
ρl L2 g

3
0 0 −

ρl L2 g
6

ρl L2
2 g cos(q2)

108
u1 − u2 −

ρl L1(L1 + 2L2)g cos(q1)
2

u2 −
ρl L2

2 g cos(q2)

2

}
(A2)

K =

[
K11 0

0 0

]
(A3)

K11 =



2k2 −2k5 0 k3 k5 −k6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2k1 0 k5 k4 k7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2k8 k6 −k7 k8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2k2 −2k5 0 k3 k5 −k6 0 0 0 0 0 0 0 0 0 0 0 0

2k1 0 k5 k4 k7 0 0 0 0 0 0 0 0 0 0 0 0

2k8 k6 −k7 k8 0 0 0 0 0 0 0 0 0 0 0 0

2k2 −2k5 0 k3 k5 −k6 0 0 0 0 0 0 0 0 0

2k1 0 k5 k4 k7 0 0 0 0 0 0 0 0 0

2k8 k6 −k7 k8 0 0 0 0 0 0 0 0 0

k2 + k10 −k5 − k13 k6 k11 k13 −k14 0 0 0 0 0 0

k1 + k9 −k7 k13 k12 k15 0 0 0 0 0 0

4k8 0 0 0 0 0 0 0 0 0

2k10 −2k13 0 k11 k13 −k14 0 0 0

2k9 0 k13 k12 k15 0 0 0

2k16 k14 −k15 k16 0 0 0

2k10 −2k13 0 k11 k13 −k14

2k9 0 k13 k12 k15

2k16 k14 −k15 k16

sym. k10 −k13 k14

k9 −k15

4k16



k1 =
4AEsin(q1)

2

L1
−

768EJ(sin(q1)
2 − 1)

L3
1

k2 =
4AEcos(q1)

2

L1
−

768EJ(cos(q1)
2 − 1)

L3
1

k3 =
4AE(sin(q1)

2 − 1)
L1

−
768EJsin(q1)

2

L3
1

k4 =
4AE(cos(q1)

2 − 1)
L1

−
768EJcos(q1)

2

L3
1

k5 =
2Esin(2q1)(−AL2

1 + 192J)

L3
1

k6 =
96EJsin(q1)

L2
1

k7 =
96EJcos(q1)

L2
1

k8 =
8EJ
L1

k9 =
3AEsin(q2)

2

L2
−

324EJ(sin(q2)
2 − 1)

L3
2

k10 =
3AEcos(q2)

2

L2
−

324EJ(cos(q2)
2 − 1)

L3
2

k11 =
3AE(sin(q2)

2 − 1)
L2

−
324EJsin(q2)

2

L3
2

k12 =
3AE(cos(q2)

2 − 1)
L2

−
324EJcos(q2)

2

L3
2

k13 =
3Esin(2q2)(−AL2

2 + 108J)

2L3
2

k14 =
54EJsin(q2)

L2
2

k15 =
54EJcos(q2)

L2
2

k16 =
6EJ
L2
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M =

[
M11 MT

21
M21 M22

]
(A4)

M11 =



m1 −m5 0 −m3
m5
2

13m6
840

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m2 0
m5
2

−m4 −
13m7
840

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2m8
7

−
13m6
840

13m7
840

−
3m8
28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m1 −m5 0 −m3
m5
2

13m6
840

0 0 0 0 0 0 0 0 0 0 0 0

m2 0
m5
2

−m4 −
13m7
840

0 0 0 0 0 0 0 0 0 0 0 0

2m8
7

−
13m6

84
0

13m7
840

−
3m8
28

0 0 0 0 0 0 0 0 0 0 0 0

m1 −m5 0 −m3
m5
2

13m6
840

0 0 0 0 0 0 0 0 0

m2 0
m5
2

−m4 −
13m7
840

0 0 0 0 0 0 0 0 0

2m8
7

−
13m6
840

13m7
840

−
3m8
28

0 0 0 0 0 0 0 0 0

m1 + m9
2

−
m5
2
−

m13
2

11m6
420

−m11
m13

2
13m14

420
0 0 0 0 0 0

m2 + m10
2

−
11m7
420

m13
2

−m12 −
13m15

420
0 0 0 0 0 0

m8
7

0 0 0 0 0 0 0 0 0

m9 −m13 0 −m11
m13

2
13m14

420
0 0 0

m10 0
m13

2
−m12 −

13m15
420

0 0 0

2m16
945

−
13m14

420
13m15

420
−

m16
1260

0 0 0

m9 −m13 0 −m11
m13

2
13m14

420

m10 0
m13

2
−m12 −

13m15
420

2m16
945

−
13m14

420
13m15

420
−

m16
1260

sym.
m9
2

−
m13

2
11m14

210
m10

2
−

11m15
210

m16
945



M21 =

 −
m6
2

m7
2

m8 −m6 m7 m8 −
3m6

2
3m7

2
m8 −

37m6 + 20m18
40

37m7 + 20m19
40

−
9m8

2
−m18 m19 0 −m18 m19 0 −

m18
2

m19
2

−
m17
54

0 0 0 0 0 0 0 0 0 −
3m14

20
3m15

20
0 −m14 m15

m16
135

−2m14 2m15
m16
135

−
27m14

20
27m15

20
−

13m16
540


M22 =

[
m20 m17
m17 m16

]

m1 = ρl
L1(4 sin(q1)

2 + 35)
210

; m2 = ρl
L1(4 cos(q1)

2 + 35)
210

; m3 = ρl
L1(8 sin(q1)

2 − 35)
840

; m4 = ρl
L1(8 cos(q1)

2 − 35)
840

; m5 = ρl
L1 sin(2q1)

105
; m6 = ρl

L2
1 sin(q1)

8
; m7 = ρl

L2
1 cos(q1)

8
; m8 = ρl

L3
1

960
;

m9 = ρl
2L2(4 sin(q2)

2 + 35)
315

; m10 = ρl
2L2(4 cos(q2)

2 + 35)
315

; m11 = ρl
L2(8 sin(q2)

2 − 35)
630

; m12 = ρl
L2(8 cos(q2)

2 − 35)
630

; m13 = ρl
4L2 sin(2q2)

315
; m14 = ρl

L2
2 sin(q2)

9
; m15 = ρl

L2
2 cos(q2)

9
; m16 = ρl

2L3
2

3
;

m17 = ρl
L1 L2

2 cos(q1 − q2)

2
; m18 = ρl

L1 L2 sin(q1)
3

; m19 = ρl
L1 L2 cos(q1)

3
; m20 = ρl

L2
1(L1 + 3L2)

3
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C =

[
C11 + αM11 + βK11 C12

C21 + αM21 C22

]
(A5)

C11 =



2c1 c2 0 −c1 −
c2
2

c5
30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−c3 −2c1 0
c3
2

c1
c4
30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
c5
420

c4
420

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−c1 −
c2
2

−
c5
30

2c1 c2 0 −c1 −
c2
2

c5
30

0 0 0 0 0 0 0 0 0 0 0 0

c3
2

c1 −
c4
30

−c3 −2c1 0
c3
2

c1
c4
30

0 0 0 0 0 0 0 0 0 0 0 0

−
c5
420

−
c4
420

0 0 0 0
c5
420

c4
420

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −c1 −
c2
2

−
c5
30

2c1 c2 0 −c1 −
c2
2

c5
30

0 0 0 0 0 0 0 0 0

0 0 0
c3
2

c1 −
c4
30

−c3 −2c1 0
c3
2

c1
c4
30

0 0 0 0 0 0 0 0 0

0 0 0 −
c5
420

−
c4
420

0 0 0 0
c5
420

c4
420

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −c1 −
c2
2

−
c5
30

c1 + c6 −
c2 + c7

2
c5
20

−c6 −
c7
2

c10
15

0 0 0 0 0 0

0 0 0 0 0 0
c3
2

c1 −
c4
30

c3 + c8
2

−c1 − c6
c4
20

c8
2

c6
c9
15

0 0 0 0 0 0

0 0 0 0 0 0 −
c5
420

−
c4
420

0
c5
420

c4
420

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −c6 −
c7
2

0 2c6 c7 0 −c6 −
c7
2

c10
15

0 0 0

0 0 0 0 0 0 0 0 0
c8
2

c6 0 −c8 −2c6 0
c8
2

c6
c9
15

0 0 0

0 0 0 0 0 0 0 0 0 −
c10
210

−
c9
210

0 0 0 0
c10
210

c9
210

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −c6 −
c7
2

−
c10
15

2c6 c7 0 −c6 −
c7
2

c10
15

0 0 0 0 0 0 0 0 0 0 0 0
c8
2

c6 −
c9
15

−c8 −2c6 0
c8
2

c6
c9
15

0 0 0 0 0 0 0 0 0 0 0 0 −
c10
210

−
c9
210

0 0 0 0
c10
210

c9
210

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c6 −
c7
2

−
c10
15

c6
c7
2

c10
10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c8
2

c6 −
c9
15

−
c8
2

−c6
c9
10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −
c10
210

−
c9
210

0
c10
210

c9
210

0



; C12 =



−
c5
2

0

−
c4
2

0

0 0

−c5 0

−c4 0

0 0

−
3c5

2
0

−
3c4

2
0

0 0

−
11c5 + 6c12

12
−

c10
6

−
11c4 + 6c11

12
−

c9
6

0 0

−c12 −c10

−c11 −c9

0 0

−c12 −2c10

−c11 −2c9

0 0

−
c12

2
−

4c10
3

−
c11

2
−

4c9
3

c13 q̇1
54

0



C21 =

 0 0 0 0 0 0 0 0 0 −
c5
60

−
c4
60

0 0 0 0 0 0 0 0 0
c13 q̇2

27

0 0 0 0 0 0 0 0 0
c10
30

c9
30

0 0 0 0 0 0 0 −
c10
30

−
c9
30

0



C22 =

[
0 c13 q̇2

c13 q̇1 0

]

c1 = ρl
L1 sin(2p1)

105
q̇1 c2 = ρl

L1(16 sin(p1)2 − 7)
420

q̇1 c3 = ρl
L1(16 cos(p1)2 − 7)

420
q̇1 c4 = ρl

L2
1 sin(p1)

8
q̇1 c5 = ρl

L2
1 cos(p1)

8
q̇1

c6 = ρl
4L2 sin(2p2)

315
q̇2 c7 = ρl

L2(16 sin(p2)2 − 7)
315

q̇2 c8 = ρl
L2(16 cos(p2)2 − 7)

315
q̇2 c9 = ρl

L2
2 sin(p2)

9
q̇2 c10 = ρl

L2
2 cos(p2)

9
q̇2

c11 = ρl
L1 L2 sin(p1)

3
q̇1 c12 = ρl

L1 L2 cos(p1)
3

q̇1 c13 = ρl
L1 L2

2 sin(p1− p2)

2
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Appendix A.2. Dynamic Equilibrium Configuration

For numerically validating the method, the system dynamic model has been linearized about the
following operating point P0 = (q0, q̇0, q̈0, u0).

q0 =



1.2417·10−5 m

−0.4033·10−5 m

−16.6300·10−5 rad

4.5427·10−5 m

−1.4656·10−5 m

−28.9446·10−5 rad

9.3360·10−5 m

−3.0052·10−5 m

−37.6365·10−5 rad

15.1539·10−5 m

−4.8723·10−5 m

−43.4043·10−5 rad

14.9137·10−5 m

−4.9993·10−5 m

−3.2050·10−5 rad

14.3918·10−5 m

−5.2719·10−5 m

−4.3918·10−5 rad

13.7905·10−5 m

−5.5850·10−5 m

−4.5621·10−5 rad

1.2607 rad

5.1918 rad



;
.
q0 =



−9.3747·10−6 m/s

1.5069·10−5 m/s

5.5555·10−5 rad/s

2.5101·10−5 m/s

3.6332·10−5 m/s

−4.6108·10−4 rad/s

1.4781·10−4 m/s

4.3995·10−5 m/s

−1.0286·10−3 rad/s

3.3005·10−4 m/s

4.2655·10−5 m/s

−1.2084·10−3 rad/s

3.3079·10−4 m/s

4.5467·10−5 m/s

1.4025·10−5 rad/s

3.2937·10−4 m/s

5.0324·10−5 m/s

1.5411·10−7 rad/s

3.2637·10−4 m/s

5.5323·10−5 m/s

−3.2010·10−6 rad/s

0.8915 rad/s

−0.8640 rad/s



;
..
q0 =



0.1512 m/s2

−0.0482 m/s2

−0.4931 rad/s2

0.2510 m/s2

−0.0800 m/s2

−0.4289 rad/s2

0.2923 m/s2

−0.0927 m/s2

−0.1383 rad/s2

0.2896 m/s2

−0.0923 m/s2

−0.0976 rad/s2

0.2632 m/s2

−0.1047 m/s2

−0.1846 rad/s2

0.2207 m/s2

−0.1268 m/s2

−0.3827 rad/s2

0.1639 m/s2

−0.1564 m/s2

−0.4375 rad/s2

0.6792 rad/s2

0.8368 rad/s2


u0 =

{
3.4787 Nm

0.83091 Nm

}

(A6)
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