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A B S T R A C T

Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can
be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-
grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific
stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent
fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells
showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-
barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells.
Additionally, their antitumor activity can be redirected and further improved with chimeric antigen
receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained
from a growing body of literature support CIK cells as a very promising cell population for adoptive
immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role
of the cytokines involved in CIK cell generation, expansion and functionalization.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Adoptive cell therapy (ACT) aims at restoring cancer recognition
by the immune system, leading to effective tumor cell killing. ACT
is based on the administration of antitumor immune cells, which
have been stimulated and expanded ex vivo to obtain highly active
tumor-specific effectors to be finally transferred back to the
patients. If required, these activated cells can also be genetically
modified to express tumor-specific recognition molecules, such as
chimeric antigen receptors (CAR) or T cell receptors (TCR) [1].
Abbreviation: ACT, Adoptive cell transfer; ADCC, Antibody-Dependent Cell-
mediated Cytotoxicity; CAR, Chimeric antigen receptor; CIK, Cytokine Induced Killer
cells; CMV, Cytomegalovirus; EGFR, Human epidermal growth factor 1; GVHD,
Graft-versus-Host disease; ICI, Immune Checkpoint Inhibitors; IFN-g, Interferon-g;
IL-2, Interleukin-2; IL-15, Interleukin-15; LAK, Lymphokine-activated killer cells;
mAbs, Monoclonal Antibodies; MHC, Major Histocompatibility Complex; NKG2D,
Natural-Killer group 2 member D; NKT, Natural Killer T cells; PBMCs, Peripheral
Blood Mononuclear Cells; TCR, T cell receptor; TILs, Tumor-infiltrating lymphocytes.
* Corresponding author at: Department of Surgery, Oncology and Gastroenterol-

ogy, Oncology and Immunology Section, University of Padua, Via Gattamelata 64,
35128 Padua, Italy.
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Effector cells used for adoptive immunotherapy strategies must
meet several requirements to ensure a successful outcome of the
treatment. First, they must be easily expandable ex vivo to get
sufficient numbers to achieve relevant clinical responses. Second,
they must have a high specificity for the cancer cells to traffic to the
tumor site and avoid any damage to healthy tissues. Third, they
should be able to proliferate and persist significantly in vivo,
exerting a sustained and prolonged antitumor response. Impor-
tantly, ACT should be safe and well tolerated in patients, generating
only mild adverse effects or toxicities.

Several effector cell populations have been developed for ACT
purposes, such as Lymphokine-activated killer (LAK) cells [2],
Tumor-infiltrating lymphocytes (TILs) [3], CAR- or TCR-transduced
T cells [4], NK cells [5], gd T cells [6], Natural Killer T (NKT) cells [7]
and Cytokine-Induced Killer cells (CIK) [8]. This review will focus
on CIK cells highlighting differences with other cell populations, as
well as the involvement and importance of cytokines in shaping
CIK cell features.

1.1. Cytokine-Induced Killer (CIK) cells

CIK cells are a very promising cell population for ACT
approaches. They were essentially obtained by the optimization
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of LAK cell expansion protocol, but they differ from these latter
cells for some critical aspects.

In the early 1980s, Rosenberg’s group described the generation
of LAK cells from both murine and human lymphocytes, as a cell
population capable of lysing cancer cells after a short-term
incubation (from 3 to 5 days) in interleukin-2 (IL-2) [2,9]. These
cells were able to lyse a wide array of autologous and allogeneic
fresh tumors, and NK-resistant cells [2]. However, LAK cells did not
expand efficiently ex vivo and therefore alternative culture
conditions were investigated, to allow long-term culturing and
higher proliferation of effector cells. The use of activation signals
such as OKT3, a mitogenic anti-CD3 monoclonal antibody (mAb), in
combination with IL-2 led to a significant expansion of effectors
with an improved lytic activity [10,11]. Moreover, the incubation of
cells with IFN-g further increased the cytotoxic activity but only if
the cytokine was added 24 h before IL-2; IFN-g priming at the same
time or following incubation with OKT3 and IL-2 was much less
effective in generating cytotoxic cells [8,12]. Likewise, IL-1 alone
had no effect on cytotoxic activity, unless it was combined with
IFN-g and anti-CD3 [8]. Thus, the optimization of the LAK
expansion protocol through the definition of a time-sensitive
schedule for the addition of IFN-g, OKT3 and IL-2, led to the
obtainment of CIK cells [8,13].

CIK cells are a heterogeneous subset of polyclonal CD3+CD56+ T
cells with phenotypic and functional properties of NK cells. They
derive from CD3+ T cell precursors that acquire the expression of
CD56 during expansion [14]. CIK cells show a higher proliferation
rate than LAK cells, up to 1000 folds, and can be obtained from
PBMCs, bone marrow mononuclear cells and umbilical cord blood.
After 2 weeks of expansion, the bulk population is mainly
composed by CD3+CD56+ CIK cells and CD3+CD56� T cells, and
only a small fraction of CD3�CD56+ NK cells [15,16]. Cytotoxic
activity is mainly associated with the CD3+CD56+ subset,
differently from LAK cells in which the major effectors express
conventional NK markers (CD3�CD56+) [2].

Expanded CIK cells also differ from NKT cells, which are mainly
defined accordingly to their ability to recognize a relatively
monomorphic non-classical class I-like MHC molecule, CD1d,
which presents a wide range of lipid antigens from bacterial lipids
to mammalian self-lipids [17–19]. Most NKT cells express the same
Va chain (Va24 in humans and Va14 in mice), Ja segment (Ja18),
single N-region glycine residue, and a limited number of TCRb
chains, namely Vb8, Vb7 and Vb12 in the mouse, and Vb11 in the
humans [20]; thus, NKT cells are also defined invariant NKT cells, or
iNKT. CIK cells, instead, express a polyclonal TCR repertoire [21,22].

CIK cells, similarly to LAK cells, do not require antigen-specific
stimuli to be activated and proliferate, and exert a potent MHC-
unrestricted antitumor activity against both hematological and
solid malignancies, but not against normal tissues and hemato-
poietic precursors [8,23]. CIK cell cytotoxicity is mainly mediated
by the engagement of NKG2D and release of perforin and
granzyme-containing granules [24]. Preclinical studies and clinical
trials have demonstrated the feasibility and the therapeutic
efficacy, together with low toxicity, of CIK cells infusion [8,25,26].

These data support CIK cells as a very promising cell population
for adoptive immunotherapy. Three crucial properties favorably
characterize CIK cells: i) the easy and relatively inexpensive ex vivo
expansion; ii) the MHC-unrestricted tumor killing; iii) the reduced
alloreactivity across MHC barriers. Each of these aspects will be
addressed, outlining the role of the cytokines involved.

2. Cytokines and signals for CIK cell expansion

As described in the previous paragraph, CIK cells grow
efficiently in vitro relying on a time-sensitive schedule for the
addition of IFN-g, OKT3 and IL-2 to the culture medium.
2.1. Interferon-g (IFN-g)

Maximal induction of cytotoxic activity occurs only if the IFN-g
priming precedes by 24 h the mitogenic stimulation with OKT3 and
IL-2. Itoh et al. demonstrated that the pre-incubation with IFN-g
induces a differentiation signal that promotes and enhances the IL-
2-mediated proliferation [27]. Indeed, IFN-g itself does not induce
proliferation nor cytotoxic activity of killer cells, as demonstrated
by culturing in IFN-g alone, but acts with a synergistic effect
enhancing the recruitment and activation of IL-2-responding cells
[28]. Upon IFN-g priming, the IL-2 receptor expression on effector
cells is induced, resulting in a higher responsiveness to IL-2
followed by a higher activation [27].

Moreover, IFN-g activates the monocytes that are present in
PBMCs at the beginning of the culture period. Activated monocytes
provide two types of signal: first, the contact-dependent signal of
CD58 (also called LFA-3), which interacts with the adhesion
molecule CD2 expressed on T cells, regulating the responsiveness
to IL-12 [29]; second, IL-12 as a soluble factor, which has potent
immunomodulatory effects on both T and NK cells, inducing IFN-g
production and proliferation of pre-activated cells [30]. These two
signals synergistically promote CIK cell proliferation and increase
their cytotoxic activity [31].

2.2. Interleukin-2 (IL-2)

IL-2 is one of the most important cytokines that play extremely
important roles in the immune system. It drives CIK cells
proliferation and is the only stimulus regularly provided during
all culture period, whereas IFN-g and OKT3 are added only on the
first and the second day, respectively.

Besides its potent T cell growth factor activity, IL-2 induces
proliferation and cytolytic activity of CIK, NK as well as LAK and TIL
cells, and modulates T cell differentiation into Th1 or Th2 cells [32].

IL-2Ra (CD25) is absent or minimally expressed on resting T and
NK cells, but is transcriptionally upregulated in T cells stimulated
via the TCR or IL-2 [33], or in NK cells stimulated with IL-2 [34].
After T cell stimulation by both IL-2 and IFN-g, the receptor is
rapidly induced and forms high-affinity dimers assembling with
the IL-2Rg, increasing responsiveness to IL-2 [32,35].

IL-2 is crucial for CIK cell in vitro expansion, but in vivo
experiments demonstrated that CIK effector activity is indepen-
dent of exogenous IL-2 administration [8,14,26]. Notably, one of the
major issues in the clinical translation of LAK cells was the relevant
toxicity produced by the high doses of IL-2 required to treat
patients (approximately 100,000 units per kilogram every 8 h)
[36]. CIK cell independence from exogenous IL-2 is an extremely
important feature because allows to completely eliminate the IL-2-
related side effects in clinical applications.

2.3. Anti-CD3 mAb (OKT3)

OKT3, an anti-human T cell monoclonal antibody, recognizes
the CD3 epsilon chain of the human TCR, and stimulates T cell
proliferation through TCR cross-linking [37].

The addition of OKT3 to PBMC cultures induces their
proliferation through a mechanism dependent on the availability
of IL-2, as provides a mitogenic signal subsequently sustained by
IL-2. Indeed, the most important transcription targets of OKT3
downstream signaling are IL-2 and its receptor [38].

2.4. Interlerukin-15 (IL-15)

IL-15, together with IL-2, is one of the members of the common
g-chain (gc) family of cytokines [39]. It plays a major role in the
survival of NK, NKT and memory CD8+ T cells, and both in the
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differentiation and activation of NK cells [40]. Rettinger et al.
demonstrated that the stimulation with IL-15 induces a significant
enhancement of CIK cell (CIKIL-15) cytotoxicity against acute
myeloid (AML) and lymphoblastic leukemia/lymphoma (ALL) cell
lines, as well as against primary human AML and defined ALL
leukemia cells, compared to conventional IL-2-activated CIK cells
(CIKIL-2) [41]. The IL-15-modified protocol consists in the expan-
sion of CIK cells with the standard protocol (IFN-g, OKT3, IL-2) for
the first 3 days, followed by the addition of IL-15 from day 4 of
culture. The percentages of CD3+CD56� T cells, CD3�CD56+ NK cells
and CD3+CD56+ CIK cells among CIKIL-15 did not significantly differ
from CIKIL-2. However, the percentage of CD3+CD8+ CD25+

activated T cells was significantly increased in CIKIL-15 cultures.
No differences in the proliferative capacity between CIKIL-15 and
CIKIL-2 were observed over a culture period of 21 days. Neverthe-
less, the crucial role for the NKG2D receptor in triggering
cytotoxicity was confirmed for CIKIL-15, as well as the low
alloreactive potential against allogeneic PBMC and fibroblasts
[41]. With subsequent in vivo experiments, the same group
demonstrated that CIKIL-15 retain strong anti-leukemia activity in
vivo, and are able to traffic and survive in AML and sarcoma mouse
models for a prolonged time with minimal GVHD, as demonstrated
by histological analyses of gut, liver, and spleen of treated mice
[42].

3. CIK cell MHC-unrestricted tumor killing activity

One of the most important and distinctive features of CIK cells is
their MHC-unrestricted antitumor activity against a broad range of
tumor histotypes. This activity is mainly associated with the
CD3+CD56+ subset, does not require prior antigen exposure or
priming, and is not exerted against normal tissues and hemato-
poietic precursors [14,21,23].

Functional assays using blocking antibodies against CD3, CD8,
CD56, TCRa/b, and MHC class I and II molecules failed to inhibit
cytotoxicity, demonstrating that CIK cells recognize target cells by
TCR- and MHC-independent mechanisms; moreover, the cell-to-
cell contact is strongly required for cytolysis, as proved by the
significant inhibition of cytotoxicity induced by blocking CD11 and
ICAM-1 [12,43,44].

The molecule that plays the most important role in tumor
recognition by CIK cells is NKG2D, a member of the c-type lectin-
activating receptor family that is normally expressed on all NK
cells, and interacts with receptors almost exclusively expressed in
malignant tissues [45,46]. NKG2D is upregulated by IFN-g, IL-2 and
TCR-crosslinking with OKT3 antibody; thus, it appears highly
expressed in expanded CIK cells while not being restricted to the
CD3+CD56+ subpopulation only. The main known ligands for
NKG2D are stress-inducible molecules, such as the MHC class I-
related molecules A and B (MIC A/B) and members of the UL16-
binding protein family (ULBP1-4) [23,24]. The receptor engage-
ment triggers IL-2-activated NK cells, and induces calcium flux,
cytokine release and cytotoxicity [47]. Studies with antibodies
blocking the NKG2D receptor, siRNA experiments and redirected
cytolysis indicated that the majority of the MHC-unrestricted
cytotoxicity of CIK cells is exerted through the NKG2D interaction
rather than the TCR engagement [23,24,48].

While NKG2D mediates the interaction between CIK cells and
tumor targets, the final cytolytic effect is perforin- and granzyme-
mediated; in fact, CIK cells generated from perforin-knockout mice
completely lack their antitumor ability [49].

Even though most of the cytotoxicity is mediated by NKG2D, CIK
cells can also retain TCR-mediated lytic activity, showing a “dual-
functional capability” [43]. In this regard, Pievani et al. induced CIK
cells from the PBMCs of CMV-seropositive healthy donors,
obtaining a remarkable increase of CMV-specific CD3+CD56+ CIK
cells. The same cell population could mediate antitumor activity
based on both TCR-dependent (against autologous cells loaded
with CMV peptides) and TCR-independent cytotoxicity (NK-like,
MHC-unrestricted cytotoxicity against tumor cell lines and freshly
isolated leukemic blast). Notably, an anti-NKG2D blocking mAb
affected the non-MHC-restricted cytotoxicity but had no effect on
TCR-dependent killing of CMV-pulsed autologous blasts, thus
demonstrating a role in the NK-like cytotoxicity only. In contrast,
blocking the binding between effectors and target cells by addition
of anti-LFA-1 mAb induced a strong inhibition of both lytic
pathways [43].

Recently, our group reported the remarkable observation that
CIK cells present a donor-dependent expression of CD16, and that
the concurrent administration of therapeutic mAbs, such as
trastuzumab or cetuximab, leads to a significant improvement
in their antitumor activity, triggering a potent antibody-dependent
cell-mediated cytotoxicity (ADCC) both in vitro and in vivo.
Interestingly, ADCC activity is accountable to CD3+CD56+CD16+

CIK cell fraction, as the removal of both NK cells and TCRg/d+ CIK
cells did not affect the enhancement of cytotoxicity induced by
mAbs [50]. This mAb-mediated increase of CIK cell antitumor
potential could allow reducing the total cell dose and the number
of infusions required for treatment, with positive implications for
patients with limited ex vivo expansion rates of CIK cells [51].

The MHC-unrestricted cytotoxicity of CIK cells has the potential
to bypass HLA restrictions in the therapeutic settings, and thus
offers interesting perspectives to widen the number of patients
that could be treated with a CIK cell-based therapy. Moreover, such
MHC-unrestricted tumor recognition might help to overcome
important immunological tumor escape mechanisms, like the
downregulation of MHC molecules and the improper presentation
of tumor associated antigens.

4. Role of CIK cells in GVDH

Graft-versus-host disease (GVHD) is the most frequent and
severe complication associated with the adoptive infusion of
allogeneic lymphocytes. Since from the early in vitro studies, CIK
cells appeared to be endowed with a reduced alloreactive potential
compared with conventional T cells, even when challenged across
MHC-barriers. This observation was subsequently confirmed by
preclinical studies in animal models that helped to highlight
crucial mechanisms responsible for the reduced GVHD.

To explore CIK cell GVHD potential in vivo, experiments were
performed in both syngeneic and allogeneic settings. In the
allogeneic setting, the injection of up to 20 � 106 CIK cells did not
result in clinically significant GVHD, whereas as few as 2.5 �106

splenocytes induced acute lethal GVHD [26]. This could be
explained by the relevant endogenous production of IFN-g by
CIK cells [49], which is known to be protective against GVHD [52].
This hypothesis was confirmed by generating CIK cells from IFN-g
knockout mice, which rapidly induced lethal GVHD when infused
across MHC-barriers with a kinetics similar to unmanipulated
splenocytes. On the other hand, CIK cells expanded from IL-2, Fas,
FasL, and perforin knockout animals behaved as the wild-type
cells, inducing just little to none GVHD across major histocompat-
ibility barriers. Interestingly, the IFN-g production is required by
the donor cells and not by the recipient animals, since wild-type
CIK cells injected into IFN-g knockout animals did not cause GVHD
[49].

Sangiolo et al. observed that in bulk-expanded CIK cell
populations the CD3+CD56� and the CD3+CD56+ subsets can be
distinguished according to their phenotype and function [23].
Indeed, expanded CIK cells are alloreactive across major HLA
barriers only when tested as a bulk population, similar to fresh
lymphocytes. If tested separately, it was clear how the majority of
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the observed alloreactivity was due to the CD3+CD56� subset,
whereas CD3+CD56+ cells showed only minimal alloreactive
capacity while maintaining their antitumor activity [23]. The
CD3+CD56� subpopulation retains its alloreactive potential, and is
responsible for the GVHD reactions. Thus, for clinical applications,
the depletion of the alloreactive CIK cell subpopulation would not
affect the tumor killing capacity, and could help in extending this
approach across major HLA barriers, further reducing the risk of
severe GVHD and preserving the anticancer effect [23].

An additional explanation for the reduced alloreactivity comes
from the observation that, upon allogeneic stimulation, the
upregulation of homing molecules and chemokine receptors,
which are necessary to enter the inflamed and GVHD target organs,
was much slower and its peak lever lower in CIK cells compared to
conventional T lymphocytes [26]. Both allogeneic CIK cells and
naïve splenocytes homed to and proliferated in GVHD target
organs with a similar pattern, homing to spleen and lymph nodes
with an expansion peak within the first week. However, CIK cells
division rate in vivo was much slower than that of naïve T cells, thus
avoiding the death in all recipient mice due to acute GVHD.
Moreover, CIK cells are more susceptible to apoptosis, as
demonstrated by annexin V and PI staining of donor-derived CIK
cells [26].

Clinical trials confirmed the feasibility of this approach and the
reduced propensity of these cells to cause GVHD. Mild GVHD
occurred in a very small portion of patients treated with allogeneic
CIK cells, and in all cases, symptoms were responsive to
corticosteroid treatment. Besides GVHD, the most common side
effects of CIK cell therapy are mostly mild, with fever, headache,
fatigue, rashes, nausea and vomiting, which are easily controllable
and well tolerated [25].

5. CIK cells and immune checkpoint inhibitors

Tumors canpromote an immunosuppressive activity, leading to a
major survival, proliferation and metastatization. An important
challenge today is to understand how the different components of
the tumor microenvironment inhibit the immune response [53], and
how these could be blocked. Recently, the use of immune checkpoint
inhibitors (ICI) showed highly satisfactory clinical results in patients
with advanced cancers and treated with ACT [54].

In this regard, just a few studies have been reported that
employed CIK cells in combination with monoclonal antibodies
against immune checkpoints. The first clinical evidence was
highlighted in 2015, when one patient with an advanced squamous
non-small cell lung cancer (NSCLC) was treated with 13 � 109 CIK
cells in combination with 2 mg/kg of Pembrolizumab (anti-PD-1
mAb) every 3 weeks. A rapid tumor regression was already noticed
after 2 cycles of Pembrolizumab and one of CIK cells, while after 5
cycles of antibody and 3 of immune effectors the PET-CT scanning
evidenced the reduction of tumor burden and radiotracer uptake.
Notably, this high effective therapy was well tolerated [55]. In
addition, a recent study confirmed that the combination of CIK cell
infusions with a prior treatment with ICI can improve the
therapeutic efficacy in NSCLC patients. This observation argues
against the consideration that CIK cells isolated from NSCLC
patients could be exhausted before the infusion, due to the
dynamic profile expression of different immune checkpoint
receptors during the cell culture period. After 2 weeks of culture,
CIK cells maintained a high expression of TIM-3, LAG-3, PD-L1 and
CEACAM-1, but low expression of PD-1, TIGIT, BTLA and CTLA-4
[56,57]. Hence, it would be important to select the best-fitting ICI
to infuse in patients treated with CIK cells in ACT, to prevent
immunosuppression activities, and to understand whether this
strategy could be applied in all tumor histotypes or if it depends on
the type of the tumor treated.
A very recent work evaluated the expression (which was
comparable between healthy donors and patients with hemato-
logical malignancies) of the inhibitory receptors BTLA, CTLA-4,
CD200R, KIR2DL1/2/3, LAG-3, PD-1 and TIM-3 on CIK cells at day
21–23 of culture. This work underlined the high expression of TIM-
3 over the other receptors, and showed that TIM-3 blockade led to
the highest increase in cytotoxicity; conversely, CTLA-4 blockade
did not potentiate the lytic activity, as the receptor is present at low
levels. Likewise, the combination of the two blocking antibodies
did not further enhance cytotoxicity. However, CIK cells disclose a
much higher cytotoxicity than the unactivated T and NK cells,
supporting the concept that CIK cells may be a promising strategy
to use with ICI to achieve a superior clinical outcome [56].

A simultaneous PD-1/PD-L1 pathway blockade along with CIK
cell infusion was proved as a potential novel immunotherapy
approach for gastric and colorectal cancer in preclinical models,
where the combined therapy induced a delay in tumor growth and
a survival advantage respect to the untreated mice. In this study,
the enhancement of CIK cell cytotoxicity was demonstrated
indirectly by a large release of associated immune–promoting
molecules, such as IFN-g, the expression of CD107a, and the
increase of NKG2D receptor levels due to the PD-1/PD-L1 pathway
blockade [58].

Interestingly, in a retrospective study on hepatocellular
carcinoma (HCC), patients with �5% PD-L1 expression had a
better overall survival and recurrence-free survival than patients
with 1–5% or < 1% PD-L1 expression if treated with CIK cell
immunotherapy, confirming that the PD-L1 expression in HCC
could be used as a biomarker for predicting survival benefits from
CIK cell immunotherapy. The high expression of PD-L1 on tumor
cells indicates a mechanism potentially capable of interfering with
the MHC-restricted antitumor immune responses, and CIK cells
might be a good choice to induce a more potent therapeutic
efficacy [59].

Up to date, there are only two ongoing clinical trials that study
the role of CIK cells in combination with ICI. The first is a Phase II
study, in which patients with different tumors (HCC, renal cell
carcinoma, bladder, colorectal, NSCLC and breast cancer) will
receive 4 cycles of treatment at 2-week intervals, or until disease
progression occur, of autologous dendritic cells and CIK cells (D-
CIK) in combination with anti-PD-1 mAb (NCT02886897) (https://
clinicaltrials.gov/ct2/show/NCT02886897?term=cik&rank=12).

The second study investigates the combination of CIK cell
infusions with ipilimumab (anti-CTLA-4 mAb) in patients with
stage I metastatic melanoma. In this Phase II study, patients will
receive 4 injections of ipilimumab at 3-week intervals, with or
without CIK cells. This therapy should result in tumor stabilization
or shrinkage, significant prolongation of progression-free, disease-
free or overall survival, compared to the use of ipilimumab alone
(NCT02498756) (https://clinicaltrials.gov/ct2/show/
NCT02498756?term=NCT02498756&rank=1).

6. Redirecting CIK cells with chimeric antigen receptors

The chimeric antigen receptor T cell (CAR-T) therapy is a newly
developed ACT antitumor treatment. CAR-T cells can specifically
localize and eliminate cancer cells by interacting with the tumor-
associated antigens (TAAs) expressed on tumor cell surface.
Immunotherapy using CAR-T cells is now being investigated in
several clinical trials both in hematologic diseases and solid
tumors, showing promising outcomes [60].

CIK cells raised interest for use in cellular antitumor therapy
due to their capability to recognize and destroy autologous tumor
cells in an HLA-independent fashion. Nonetheless, this antitumor
efficacy could be improved by redirection with CAR molecules,
which recognize the cancer cells and then trigger CIK cell

https://clinicaltrials.gov/ct2/show/NCT02886897?term=cik%26rank=12
https://clinicaltrials.gov/ct2/show/NCT02886897?term=cik%26rank=12
https://clinicaltrials.gov/ct2/show/NCT02498756?term=NCT02498756%26rank=1
https://clinicaltrials.gov/ct2/show/NCT02498756?term=NCT02498756%26rank=1
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activation. Nevertheless, there are limited data regarding CAR-
modified CIK (CAR-CIK) cells.

An important study by Hombach et al. investigated the efficacy
of second and third generation carcinoembryonic antigen (CEA)-
specific CAR molecules in inducing the best antitumor activity in
CIK cells against colon carcinoma. CAR-redirected CIK cells
benefited from a CD28 co-stimulation, whereas the addition of
further co-stimulation by OX40, as found in third generation CAR
(CD28-z-OX40), induced less antitumor efficacy due to increased
activation-induced cell death (AICD) [61]. In contrast, a very recent
study from Zuo et al. has shown better results using a third
generation folate receptor-specific CAR (CAR-FRa), with an
increased CIK cell proliferation, IL-2 release, and enhancement
of cytotoxicity in vitro, and a long-term suppression of tumor and
improved results in vivo, as compared to a first-generation CAR that
induced an increase of IFN-g but a short-term suppression of
tumor [62]. Based on our unpublished results, these discordant
results could be explained by the inherent different affinity/avidity
of CAR molecules for their receptors. Intrinsically low-affinity CAR-
FRa in ovarian cancer might require a more effective co-
stimulation to trigger a strong response, as compared to the
CAR-CEA in the colon carcinoma model that might have better
affinity/avidity for its ligand, and thus does not need further co-
stimulation that on the contrary could foster an excessive signaling
and activation, leading the effector cells to AICD.

Promising results using CAR-CIK cells have been reported
against acute lymphoblastic leukemia (ALL), showing complete
and durable molecular remissions of established primary pre-B-
ALL as compared to the treatment with unmodified CIK cells [63].
CAR-CIK cells bearing anti-CD33 and anti-CD123 CAR [64] and
recognizing acute myeloid leukemia disclosed an increased
proliferative activity, with the release of high levels of immunos-
timulatory cytokines [65,66].

CAR-CIK cell therapy represents a promising option also for the
treatment of solid tumors. Ren. et al. genetically modified CIK cells
to express a CAR molecule directed against the Epidermal growth
factor receptor (EGFR), a cell-surface molecule overexpressed in a
variety of solid tumors including NSCLC, breast, head and neck,
esophageal, gastric, colorectal, prostate, bladder, renal, pancreatic,
and ovarian cancers [67]. They reported an increase of the
cytotoxicity and IL-2 and IFNg release in vitro, and a decrease of
tumor growth in vivo, with an improvement of survival and CAR-
CIK cell persistence in mouse peripheral blood [68].

7. Concluding remarks

CIK cells are a very attractive tool for adoptive immunotherapy
approaches against hematological and solid tumors. They can be
easily expanded using a straightforward and inexpensive expan-
sion protocol, and are safe as they only require GMP-grade
cytokines to obtain very high amounts of cytotoxic cells. CIK cells
have shown promising results in clinical trials, exhibiting a good
profile of safety and tolerability due to the almost complete lack of
GVHD activity, even in allogeneic settings. Moreover, the
independence from the administration of exogenous IL-2 avoids
the cytokine-related adverse effects in patients.

Overall, the evidence obtained from a growing body of
literature highlight the complexity of the mechanisms under-
lining CIK cell-mediated cytotoxicity, and the plethora of
opportunities that CIK cells offer when used in ACT approaches.
CIK cells can be exploited for clinical use not only for their
intrinsic MHC-independent antitumor properties, but also for the
possibility to be redirected against specific tumor antigens by
already available molecular tools, such CAR molecules. More
interestingly, they can acquire antigen-specificity by the simple
combination with clinical-grade mAb, bypassing the expensive
and technically challenging steps of genetic manipulation.
Importantly, the simple change of the mAb could broad the
approach to other different cancer types. Furthermore, the
combination of ICI therapy with CIK cell ACT may yield a superior
clinical outcome compared to the many currently ongoing clinical
trials employing effector cell monotherapy or chemotherapy
combinations.

Thus, a very fascinating story started with LAK cells has evolved
and improved, ending up with the optimization of an effector cell
population that holds great promises for cancer therapy.
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