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Validation of a model-based inverse kinematics approach based on
wearable inertial sensors
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ABSTRACT
Wearable inertial measurement units (IMUs) are a promising solution to human motion estima-
tion. Using IMUs 3D orientations, a model-driven inverse kinematics methodology to estimate
joint angles is presented. Estimated joint angles were validated against encoder-measured kine-
matics (robot) and against marker-based kinematics (passive mechanism). Results are promising,
with RMS angular errors respectively lower than 3 and 6deg over a minimum range of motion
of 50deg (robot) and 160deg (passive mechanism). Moreover, a noise robustness analysis
revealed that the model-driven approach reduces the effects of experimental noises, making the
proposed technique particularly suitable for application in human motion analysis.
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Introduction

Inertial measurement units (IMUs) are becoming
popular components of devices that need to measure
orientation in space. An IMU is composed by two tri-
axial sensors: a gyroscope to measure angular velocity
and an accelerometer to sense linear accelerations.
These quantities are then generally fused together
using a sensor fusion algorithm (SFA) to estimate the
IMU orientation in a global reference frame. If a tri-
axial magnetometer is also integrated in the IMU
then the global reference frame is Earth-fixed, defined
using gravitational and magnetic field directions. The
IMU orientation is therefore an estimated quantity,
resulting from the fusion of measurements taken in
different domains (Ligorio et al. 2016) and naturally
affected by undesired experimental factors such as
measurement noises, external disturbances, sensor
biases, etc. These factors were demonstrated to nega-
tively impact on the accuracy and the reliability of the
orientation estimates (Khaleghi et al. 2013).

Preliminary studies on motion tracking using a
combination of accelerometers and gyroscopes dates
back to the early 70 s (a good historical review is pro-
vided in (Picerno 2017)). However, the advent of
Micro Electro-Mechanical Systems (MEMS) technol-
ogy has led to a broad adoption of IMUs in a variety

of fields and, in the latest 25 years, opened new fron-
tiers in wearable human motion analysis (Picerno
2017; Cuesta-Vargas et al. 2010).

Human motion analysis was defined by Cappozzo
et al. (Cappozzo et al. 2005) as the science that “aims
at gathering quantitative information about the
mechanics of the musculoskeletal system during the
execution of a motor task”. Joint kinematics, one of
the key descriptors of human motion, are routinely
measured in laboratory settings, where a set of stereo-
photogrammetric cameras track the 3D position of
passive reflective markers placed on well-defined sub-
ject’s bony landmarks (Wu et al. 2002; Cappozzo
et al. 1995). In decades of use of stereophotogram-
metric systems, experimental protocols (Ferrari et al.
2008), data processing pipelines (Kadaba et al. 1990;
Davis et al. 1991), and joint kinematics estimation
techniques (Grood and Suntay 1983) contributed to
the success of this technology that became the de
facto gold standard in biomechanics. Model-based
simulations further enhanced estimated joint kinemat-
ics accuracy and, at the same time, enabled insight on
musculoskeletal function (Arnold et al. 2010). The use
of accurate musculoskeletal models that provide kine-
matics constraints helps to reduce the effects of
experimental sources of errors (Duprey et al. 2010;
Clement et al. 2015; Lamberto et al. 2016). Moreover,
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these models enable the estimation of other internal
quantities such as muscle length and muscle forces
(Delp et al. 2007; Saxby et al. 2016), even in real-time
applications (Van den Bogert et al. 2013; Pizzolato
et al. 2017). Stereophotogrammetric technology, how-
ever, is not the optimal solution for every application.
Optoelectronic systems are bulky, expensive, require
trained personnel to be correctly and efficiently used,
and finally they can only be used in a laboratory
environment. The latter issue is critical, since tasks
performed inside a laboratory may not reflect real-life
movements as in the case of outdoor sports or daily
life tasks executed by patients.

For all these reasons, the biomechanics community
looks toward IMUs as a potential alternative. IMUs
are nowadays wearable, relatively cheap, easy to use
and reliable enough for the requirements of most
human motion analysis applications. Provided with
on-board long-lasting batteries, long range communi-
cation protocols and/or on-board data logging fea-
tures, IMUs could enable continuous kinematics
analysis in almost every environment (i.e. clinical,
outdoor, daily life, industry).

A common approach in most studies using IMUs
to assess human kinematics is the so called “direct
kinematics” one. This method directly prescribes the
IMU orientations to the segments to which they are
attached to in order to estimate the joint kinematics.
Another possible approach directly uses the raw meas-
urements provided by each IMU (i.e. angular velocity,
linear acceleration and, optionally, magnetic field)
together with a kinematic model of the human body
inside an extended Kalman filter, to compute joints
and segments kinematics (Kortier et al. 2014; Van den
Noort et al. 2016; Seel et al. 2014). However, such solu-
tions might be difficult to be used and tuned for other
applications by non-experts in filtering techniques. In
both these approaches, possible misalignments between
sensors and joint axes can be mitigated using ad-hoc
calibration procedures (Palermo et al. 2014; Van den
Noort et al. 2013). However, to the best of authors’
knowledge, very few studies investigated the use of a
model-based inverse kinematics estimation approach
(Koning et al. 2015; Borb�ely and Szolgay 2017; Kortier
et al. 2014; Karatsidis et al. 2018). Furthermore, none
of them presented a throughout methodological assess-
ment of accuracy and robustness to measurement noise
for the proposed algorithms.

This study proposes a model-based Inverse
Kinematics (IK) approach to assess the motion of
multi-link systems from the orientation of IMUs
placed on the constituting bodies. In this approach,

the joint constraints included in the model have to be
respected when calculating joint kinematics (Lu and
O’Connor 1999). General applicability and ease of use
motivated the choice of using IMU orientations as
input for the developed methodology, even if poten-
tially affected by the inaccuracies previously described,
instead of raw sensor data. Furthermore, the proposed
approach has been implemented to be model-inde-
pendent, allowing users to select the most appropriate
kinematic model (lower limb, upper limb, spine, etc.)
according to their specific needs. Moreover, since
musculoskeletal models are essentially chains of rigid
bodies, the use of robots or limb-like mechanisms
reduces the effects of non-methodological sources of
errors when the focus is the assessment of the per-
formances of a new IK approach. In this study, the
proposed approach to calculate joint angles from
IMUs was evaluated in two experimental scenarios,
using respectively a robot and a passive plastic planar
mechanism. This choice allows evaluating the pro-
posed methodology without the confounding effect of
errors that would have been present in human testing,
e.g. soft tissue artifacts, and led to the design of ad
hoc test-benches. The developed orientation-based IK
is freely available as a plug-in for OpenSim (Delp
et al. 2007) at the SimTK project’s page1.

Materials and methods

Inverse kinematics analysis based on
orientation data

Orientation-based Inverse kinematics (OB-IK) is simi-
lar to the marker-based inverse kinematics (MB-IK)
available in OpenSim (Delp et al. 2007), a popular
model-driven global optimization procedure that
allows to estimate joint kinematics starting from
marker data (Lu and O’Connor 1999). The main
benefit of an inverse kinematic method, assuming
enough experimental kinematic measurements are
available to be tracked, is the use of a multi-link
mechanical model with associated joint constraints
(Kainz et al. 2016). Indeed, the constraints in the
model can prevent physiologically unfeasible configu-
rations, such as joint dislocation or joint angles out-
side their physiologycal ranges of motion, possibly
resulting from experimental errors and noises. In
order for OB-IK to work, “virtual” orientation sensors
should be placed on the model links matching the
experimental configuration.

To programmatically retrieve the relative trans-
formation between sensors and segments coordinate
frames we developed a calibration procedure which
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assumes the joint angles to be known in at least one
frame, usually in a predefined static configuration.
The calibration procedure then locks the model in
that pose and moves each virtual orientation sensor
around the model segment to which it is attached to
so that its orientation coincides with the experimen-
tally measured one. Thanks to this procedure, no
accurate experimental alignment between sensors and
segment axes (Favre et al. 2006; Liu et al. 2009) is
required. This in turns allows also to avoid experi-
mental functional calibration trials (Seel et al. 2014).

Once the calibration phase is completed, the devel-
oped OB-IK algorithm takes as input the calibrated
model with virtual orientation sensors correctly
placed on the segments and the orientations provided
by experimental IMUs, expressed as unitary quatern-
ions. This representation allows to minimize data size
and, at the same time, avoids the singularity implied
in more compact representations (i.e. Euler Angles)
(Diebel 2006). The goal of the OB-IK is to calculate
the whole-model joint angles that determine the best
match between the orientations of the experimental
IMUs and those of the corresponding virtual orienta-
tion sensors attached to the model (Figure 1). The
algorithm always considers the model as a whole,
therefore no local steps considering kinematic sub-
chains are performed. In order to quantify the orien-
tation mismatch between one experimental IMU and
its virtual correspondent the Euler axis-angle repre-
sentation was used and the angle (a) given by this
representation chosen as the parameter to minimize.
The developed computational tool was based on the
implementation available in the Simbody (Sherman
et al. 2011) source code.

The minimization problem was defined as a state-
less whole-body optimization, where each time frame
is solved independently from the previous ones. For
each time frame, a gradient descent algorithm itera-
tively looks for the global minima of a weighted
quadratic function of the angular tracking error a.
Depending on a priori knowledge of the experimental
setup (e.g., sensors’ placement or hardware character-
istics), a different weighting factor could be assigned
to each sensor to represent the level of confidence we
expect for its measurements.

Being wi the weighting factor associated to the i-th
orientation sensor and ai the orientation mismatch
for the i-th pair (i.e. the angular error coming from
the Euler angle-axis representation of the relative
orientation between the real and the virtual orienta-
tion sensor), the cost function to be minimized can
be written as

cost qð Þ ¼
P

i wi � a2i qð Þ
P

i wi
(1)

In Eq.1 the dependency from the set of the model
generalized coordinates q has been made explicit.

Framework 1: validation against encoder
measurements

A 6-DoF actuated robotic arm UR-10 (Universal
Robots A/S, Denmark) was used in this experimental
setup (Figure 2a). Four Cometa WaveTrack IMUs
(Cometa Systems, Italy) were positioned on the four
links around the three most proximal joints of the
robot (i.e. shoulder-pan, shoulder-lift and elbow

Figure 1. Single degree of freedom sketches of the model pose before (a) and after (b) solving the orientation-based IK for a sin-
gle time-frame. Experimental IMUs in green and corresponding virtual sensors in blue. Graphical offset in models position was
manually added for clarity.
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joints). The desired motion was defined by manually
moving the robot’s end-effector within the three-
dimensional reachable workspace, while at the same
time measuring the individual joint angles by means
of the embedded encoders. The recorded joint trajec-
tories were then prescribed to the robot controller pro-
grammed to exactly repeat them four times for each
task in order to ensure repeatability of the performed
task at varying speed of execution. Two task at two dif-
ferent speeds were recorded. During the manipulation,
care was taken to simultaneously involve in the motion
all the three joints of interest, while also spanning a
wide portion of their ranges of motion (i.e. approxi-
mately 90deg for the shoulder_pan_joint and 45deg
for the others). Data were collected, using a common
trigger signal, from both the robot encoders (125Hz)
and from IMUs (286Hz). Two different movement
speeds were selected for the assessment, respectively
the 50% (TR_50) and the 100% (TR_100) of the robot
maximum speed (i.e. maximum 120 deg/s for the
shoulder and 180 deg/s for the elbow) in order to test
robustness of joint angle estimation to various angular
velocities. One trial was recorded for each speed.

A model of the UR-10 was implemented in
OpenSim (Figure 2c) porting the URDF model avail-
able as part of the ROS-Industrial package2.

Virtual orientation sensors were placed on model
links by aligning them to known reference points, as
done during the preparation of the experimental
setup. After the model calibration procedure, the joint
angles were computed by the developed OB-IK tool
using as input the orientations provided by the real
IMUs attached to the robot links.

Results obtained from the OB-IK were compared
to the experimental joint angles measured from the
robot encoders (Figure 3), in terms of squared
Pearson correlation coefficient (r2), root mean square
error (RMSE) and maximum absolute error (MAE)
over the full trial. Within this framework, designed as
the most controlled scenario, our aim was to validate
OB-IK estimates of joint angles against data measured
from robot encoders, considered as gold standard
for accuracy.

Framework 2: validation against marker-
based kinematics

For this framework, a rigid mechanism (phantom)
consisting of four links (lengths from 110 to 150mm)
connected by three co-planar hinge joints was
designed and 3D printed using plastic material
(Figure 2b). Four Cometa WaveTrack IMUs (Cometa

Figure 2. Experimental setups. Picture of the UR-10 robot with real IMUs placed (a). Picture of the custom-designed mechanism
with both IMUs and passive markers placed (b). OpenSim model of the UR-10 robot (c) and of the custom-designed mechanism
(d). In (c) and (d) virtual orientation sensors are placed on the models and numbered respectively A1 to A4 and B1 to B4. Joint
names are also identified in both the models. UR-10 links’ length: La1 ¼ 89:2mm; La2 ¼ 425mm; La3 ¼ 392mm. Custom-designed
mechanism links’ length Lb0 ¼ 75mm; Lb1 ¼ 150mm; Lb2 ¼ 150mm; Lb3 ¼ 110mm.
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Systems, Italy) and fourteen passive reflective markers
were positioned on the mechanism links. Marker tra-
jectories were collected using a Vicon T160 with 10
cameras (Vicon Motion Systems Ltd., UK). A com-
mon trigger signal was used to synchronize the acqui-
sition systems. Markers data were collected at 100Hz,
IMUs data at 286Hz.

Three different trials were recorded involving
respectively one (TR_1, j-1 joint involved), two
(TR_2, only j-3 joint locked) and three (TR_3)
degrees of freedom of the mechanism at the same
time. During all trials the phantom was manually
moved on a planar surface. At the beginning of each
trial the mechanism was aligned to a reference to
guarantee consistency of the starting position.

A model of the phantom mechanism (Figure 2c)
was developed in OpenSim matching the CAD model
used to design and print it. Virtual orientation sen-
sors were placed on the model and their orientations,
with respect to the segments, were refined using the
described calibration procedure. Then, the measured
IMU orientations were processed using the developed
OB-IK tool. Marker trajectories were low-pass filtered
with a 6Hz, 4th order, zero-lag Butterworth filter.
Marker data were then processed using the standard
OpenSim (v.3.3) marker-based IK tool. Simulation
quality for MB-IK was evaluated using tracking

metrics such as RMSE and maximum tracking errors
(reported as mean ± standard deviation).

Joint angle estimates from OB-IK were compared
against MB-IK results (Figure 4) in terms of r2,
RMSE, and maximum absolute error (MAE). The lat-
ter, computed for each frame, has been classified into
three classes (i.e. lower than 6 deg, between 6 and
12 deg, and higher than 12 deg). Then the percentage
of frames in each class has been computed. Finally,
the same classification has been performed excluding
from the trial the frames corresponding to joint accel-
erations and joint velocities higher than the 110% of
the maximum reference values reported for human
gait in Appendix 1 of Winter (2009). The final aim of
this additional computation was to preliminary assess
the performance of the proposed methodology in
conditions comparable to the ones of the final tar-
geted applications, i.e. human motion analysis.

Robustness of joint angle estimation to noisy
input data

Framework 2 was then used to assess the robustness
of the OB-IK to the experimental noise. As starting
point for this analysis, marker trajectories and IMUs
data from TR_3 were used. Using custom Matlab
(v2016-b, The MathWorks, USA) code, Gaussian

Figure 3. Flowchart reporting the quantities involved in the first validation framework and their relationship.

Figure 4. Flowchart reporting the quantities involved in the second validation framework and their relationship. Green boxes rep-
resent the workflow for orientation-based estimates, red ones for marker-based estimates.
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noise was added to each component (i.e. X, Y, and Z)
of each marker 3D trajectory. The characteristics of
the noise distribution were chosen to approximate
realistic experimental noise (mean¼ 0 and
S.D.¼ 3mm) during a standard data collection (Di
Marco et al. 2017). This procedure was repeated 20
times with different seeds of the random noise gener-
ator, obtaining 20 noisy versions of the original trial.

A similar procedure was used to generate noisy
IMUs data. Since IMUs data were stored in quatern-
ion form, and the quaternion space is not linear, it
was not possible to directly add noise to each compo-
nent. Therefore, three independent noise signals were
generated, one for each IMU axis, and treated as if
they were Euler angles defining a “noise” rotation in
space, so that they could be converted into quaternion
form and finally multiplied to the experimental qua-
ternions. This procedure has the physical meaning of
applying “noise” to the original orientation expressed
in quaternion form. The amplitude of the Gaussian
distribution (mean: 0 deg, std: 2 deg) was chosen equal
to the worst orientation error declared by IMU manu-
facturers in a dynamic scenario. Same as for the
markers case, 20 noisy trials were generated.

The obtained noisy data were then processed
according to the procedure described in Framework
2. Similarly, the obtained results were then compared
against the original data using the same metrics, i.e.,
r2, RMSE, and MAE. This procedure enabled to com-
pare the robustness of our methodology to both MB-
IK and to the forward use of IMU orientations in
estimating joint angles.

Results and discussion

Validation against encoder measurements

The goal of this framework was to assess the perform-
ances of the developed OB-IK tool with respect to
directly measured robot joint angles. Obtained results
were similar for both recorded trials (Table 1).

For TR_50 a correlation coefficient r2>0:999 was
obtained for all joints. The highest RMSE¼ 0.83 deg
was obtained for the shoulder_pan_joint (see
Figure 2). At the same joint was recorded also the
highest MAE¼ 1.76 deg. The higher amplitude of
errors at the shoulder_pan_joint with respect to the
other joints could be explained by the wider range of
motion that it spanned during the task.

During the second trial (Figure 5), the robot was
moving at its maximum speed. It can be noticed that
the maximum error amplitude increased up to around
6 deg at the extreme position of the range of motion,

when higher linear accelerations occur on adjacent
links. These results can be explained by the fact that
IMU orientation is not directly measured but esti-
mated using sensor fusion techniques, which are
deeply affected by filter settings. In fact, the set of
parameters chosen by the IMU manufacturer, appro-
priate for slow movements, were not suitable for high
speed ones. The slow filter behavior explains the over-
shoot effects in Figure 5. In fact, it was realized dur-
ing the data collection that the set of parameters
chosen by the IMU manufacturer, neither accessible
nor modifiable through the data collection system,
were appropriate for slow movement but not for high
speed ones.

Validation against marker-based kinematics

Joint angle estimates from OB-IK were compared
with the MB-IK results (Figure 6). Quantitative evalu-
ation parameters, for all the framework trials, are pre-
sented in Table 2.

For joints actively involved in trial motion a good
agreement between the two estimation methods was
found in terms of both RMSE (< 5.8 deg) and r2 (>
0.98) for all the trials, with at least the 66% of the
complete trial characterized by absolute errors lower
than 6 deg. Only for the most distal joint we found
31.4% of frames leading to error up to 12 deg, and in
less than 2.5% of frames the tracking error was larger
than 12 deg with a MAE of 17 deg in the worst frame.
Values related to the unmobilized joints during each
trial were omitted from Table 2, which only reports
metrics for mobilized joints.

In evaluating the outcomes of this framework, it is
worth to remember that both methods are affected by
issues that could negatively influence their outputs.
IMUs are sensitive to environmental noises and their
dynamic behavior strongly depends on their internal

Table 1. Evaluation parameters for the validation against
encoder measurements.

RMSE [deg] MAE [deg] r2

TR_50
Joint
shoulder_pan 0.83 1.76 0.999
shoulder_tilt 0.76 1.53 0.999
elbow 0.65 1.16 0.999

TR_100
Joint
shoulder_pan 3.04 5.82 0.994
shoulder_tilt 1.76 4.02 0.996
elbow 2.0 3.68 0.999

TR_50 and TR_100 are the trial at the 50 and 100% of the robot max-
imum speed (i.e. maximum 120 deg/s for the shoulder and 180 deg/s for
the elbow) respectively. Root mean squared error (RMSE), Maximum
absolute error (MAE) and correlation coefficient r2 are reported.
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filter settings, as shown in framework 1. On the other
hand, joint angle estimates from MB-IK are sensitive
to experimental marker placement and segment size.
In this specific case, however, the metrics from MB-
IK (RMSE <1:760:5 mm, maximum tracking error
<3:561:0 mm in all the trials) allow us to consider
the joint angle estimation of acceptable quality.

The high amplitude of MAE obtained in this
framework, with spikes up to 21 deg, could be due to

the effect of the mechanism’s size on the two IK algo-
rithms. For the OB-IK if two IMUs are too close to
each other a cross-talk effect, generated by magneto-
meters, could emerge leading to inaccurate orientation
estimates. For MB-IK instead the smaller the body
dimensions and the distance between joints and
tracked markers, the larger will be the angular offset
generated by the same marker tracking error.
Furthermore, consequently to the general

Figure 5. Orientation-based IK (dashed black) and encoder measured joint angles (cyan) during the trial TR_100 performed at
maximum robot speed.

Figure 6. Left column: orientation-based IK (dashed black) and marker-based IK (cyan) joint angle estimates for TR_02 when joint
j-2 and j-3 were moving contemporaneously and joint j-1 was manually kept steady. Right column: percentages of frames for
each absolute error (AE) class over all the frames of the trial (blue) and over the frames corresponding to frames corresponding
to joint accelerations and velocities compatible with the ones which characterize the human gait according to literature data
(Winter 2009).
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characteristics and assumptions of the algorithms
employed inside each IMU to estimate its orientation,
the closer the linear acceleration due to the motion is
to the gravitational acceleration, the more prone to
errors is the estimated orientation. In this case, for
both TR_2 and TR_3, the linear accelerations of the
segments reach values close to 1.5 g. However, such
values are unlikely to be reached in biomechanical
applications. Excluding from the trial the frames char-
acterized by joint accelerations and velocities higher

than the maximum values reported for a typical
human gait (Winter 2009), it was found that at least
the 83% of each trial has errors lower than 6 deg with
a maximum of 16% of frames for which the AE is
in between 6 and 12 deg. Concluding, the global met-
rics were reasonably aligned with the results of
Framework 1 and could be considered a promising
starting point to investigate the performances of OB-
IK in estimating human kinematics. In that case
indeed body segments are larger, therefore size-effects

Table 2. Evaluation parameters for the validation against marker-based kinematics. TR_1 consisted in manually moving the joint
j-1 and keeping steady the other joints.

RMSE MAE r 2 AE <6 deg 6 <AE <12 deg AE >12 deg
[deg] [deg] [frame %] [frame %] [frame %]

TR_1
Joint
j-1 – – – – – –
j-2 – – – – – –
j-3 3.89 12.08 0.999 83.4 (91.8) 16.5 (8.1) 0.1 (0.02)

TR_2
Joint
j-1 – – – – – –
j-2 4.89 13.03 0.99 78.0 (89.9) 21.4 (9.9) 0.6 (0.2)
j-3 5.86 18.1 0.98 67.6 (86.4) 28.2 (12.2) 4.2 (1.4)

TR_3
Joint
j-1 1.53 5.32 0.997 100 (100) 0.0 (0.0) 0.0 (0.0)
j-2 5.58 21.4 0.987 76.6 (92.2) 18.7 (6.8) 4.7 (1.0)
j-3 5.83 16.95 0.979 66.2 (83.7) 31.4 (16.0) 2.3 (0.3)

In TR_2 joint j-2 and j-3 were moved simultaneously and joint j-1 was kept steady. During TR_3 all the three joints of the mechanism were moved at
the same time. Root mean squared error (RMSE), maximum absolute error (MAE) and correlation coefficient r2 are reported. Moreover, percentages of
frames included in each absolute error class are listed (in bold only the trial frames corresponding to joint accelerations and velocities compatible with
the ones which characterize the human gait, according to literature data, Winter 2009, have been considered).

Figure 7. Standard deviation of joint angle estimates over the 20 noisy trials for marker-based IK (cyan) and orientation-based IK
(dashed black) during TR_03.
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should be less pronounced, and accelerations should
be lower, leading to more accurate IMU orienta-
tion estimates.

Noise robustness analysis

The joint angle estimates obtained with the developed
OB-IK tool for the 20 noisy trials were summarized in
terms of mean and standard deviation (S.D.). Comparing
that mean with the results obtained for the original data,
no relevant differences arose (RMSE< 0.13deg and a
MAE< 0.67 deg were obtained for all joints). The mean
standard deviation of the 20 noisy estimates was lower
then 0.53±0.1 deg for all joints.

In the worst case scenario of forward use of IMUs
orientation to estimate joint angles, for a planar
movement, a maximum joint angle error of 4 deg is
expected, resulting from an orientation error (of
opposite sign) for both joined links of 2 deg. This
value is approximately five times greater than the one
obtained with OB-IK, suggesting that including model
constraint within the optimization framework results
in a more accurate estimation of joint kinematics.

Figure 7 reports the standard deviation of the 20
noisy trials outputs for both the markers case (cyan
lines) and IMUs case (dashed black lines). The ampli-
tude of the standard deviation of OB-IK outputs over
the 20 trials is constant over joints, time, and move-
ment speed. The amplitude of the standard deviation
of MB-IK outputs is instead larger for the joint con-
necting the smallest links (j_3) and increases at higher
movement speeds (as during the second half of the
trial). This suggests that OB-IK produces more con-
sistent estimation of angles in the face of varying
dynamic conditions than the MB-IK.

Conclusions

The OB-IK methodology presented in this paper com-
bines the benefits of model-driven simulations with
those of inertial sensors in the challenge of accurately
estimating joint kinematics with wearable technolo-
gies. The proposed methodology was tested both
against joint angles directly measured from encoders
and against joint angle estimates from commonly
adopted multibody optimization procedure.
Robustness to noise was also evaluated.

The first testing framework demonstrated the capa-
bilities of the developed OB-IK in estimating joint
angles with a very good accuracy when compared
with experimentally measured angles. The important
aspect of IMU internal filter settings emerged clearly.

Even if it is an aspect related to the acquisition devi-
ces and not to the developed tool, it should be taken
into account by users. Indeed, to accurately estimate
joint kinematics it is necessary to select the adequate
parameter set for the filter (Mazz�a et al. 2012), which
in this investigation was not varied.

In the second framework, the OB-IK tool was vali-
dated using synchronous measurements from a stereo-
photogrammetric system combined with OpenSim’s
MB-IK algorithm. Obtained results are promising even
if characterized by larger errors than those found in
the first framework. The main source of errors was the
most distal segment, which was also the smallest and
most mobile in the tested movements. For this seg-
ment, positioning errors of markers and IMUs,
together with experimental and methodological errors
like its dimensions and its motion characteristics (high-
est accelerations and velocities), could have affected the
estimated kinematics more heavily than other joints.
Nevertheless, once considering only the frames charac-
terized by dynamic parameters comparable with the
ones of a typical biomechanical application (i.e. clinical
gait analysis), the global metrics could be considered
fairly good. Furthermore, they are comparable with the
results obtained for the first framework.

Outcomes from the noise robustness analysis sug-
gested that the use of a model-based inverse kinemat-
ics approach could reduce the effects of experimental
noises and IMU non-idealities on the final joint
angle estimates.

The presented assessments constitute a necessary
step before moving to the application of the developed
orientation-based Inverse Kinematics tool to human
motion analysis. The calibration procedure developed
to adjust the placement of virtual orientation sensors
in the model can be easily applied for other mecha-
nisms similar to those investigated in this work poten-
tially obtaining fairly good results. However, before
application to the study of human motion, the calibra-
tion methodology will have to be thoroughly assessed
and might require specific modifications.

Finally, the developed methodology has been imple-
mented as a plug-in for OpenSim and made freely avail-
able via SimTK project’s page and Github repository3.
The underlying research materials for this article can be
accessed at https:/doi.org/10.15131/shef.data.7097744.

Endnotes

1. https://simtk.org/projects/orientation_based_ik
2. http://wiki.ros.org/universal_robot
3. https://github.com/RehabEngGroup/ob-ik-opensim-

plugin.git
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